第13回情報論的学習理論ワークショップ (IBIS 2010)

2010/11/4(木)-6(土) 東京大学 生産技術研究所 (駒場第IIキャンパス) コンベンションホール

特別招待講演

Approximate inference for partly observable continuous time Markov processes
Manfred Opper
Department of Computer Science, Technische Universität Berlin [Slides]

Continuous time Markov processes (such as jump processes and diffusions) play an important role in the modelling of dynamical systems in many scientific areas ranging from physics to systems biology. In a variety of applications, the stochastic state of the system as a function of time is not directly observed. One has only access to a set of nolsy observations taken at discrete times. The problem is then to infer the unknown state path as best as possible. In addition, model parameters (like diffusion constants or transition rates) may also be unknown and have to be estimated from the data. Since Monte Carlo sampling approaches can be time consuming one is interested in efficient approximations. I will discuss variational approaches to this problem which are based on methods developed in statistical physics and machine learning and which have also interesting relations to stochastic optimal control. Applications to transcriptional regulation in systems biology will be given.

IBIS

English

  • 発表申し込み
  • 参加申し込み
  • ホーム
  • プログラム
  • 企画セッション
  • ポスター発表
  • 特別招待講演
  • ポスター奨励賞
  • 懇親会
  • 会場・現地情報
  • 実行委員会
  • スケジュール
  • 問い合わせ先

共催:電子情報通信学会 情報論的学習理論と機械学習 (IBISML) 研究会/統計数理研究所 | 利用規約 | 個人情報保護方針 |