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Accidents caused by software bugs

¢ Therac-25 radiation therapy
O Involved six accidents of radiation overdoses

¢ Ariane 5 rocket | l%
0 Resulted in the launch failureand =~ = ' § &

|
Y

a loss > $370 million B LA
¢ Heartbleed (an OpenSSL vulnerability)

O Major servers (Apache, nginx, etc.)
on the internet were vulnerable

¢ Others: List of software bugs (Wikipedia)
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https://en.wikipedia.org/wiki/List_of_software_bugs

Program verification

Methodology to assure correctness of programs
by mathematical reasoning

(imt Pt my £ {Program P has been proven

to work as specified by ¥
Ly 7| Program P

int x = n, y = 0;
>@ -
Specification 3 l \@/Q

while (x != @) {
Verification tool
[ vn € N.P(n) = )iL,i

y =y + X;
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Program verification

Methodology to assure correctness of programs
by mathematical reasoning

(it pant m £ ) A counterexample that witnesses
P doesn't work as specified by ¥

X =x-1; }
_return 5; 3 F Program P

int x = n, y = 0;
SA  »
Specification 3 l \@/Q

while (x != @) {
Verification tool
[ vn € N.P(n) = )iL,i

y =Yy + X
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Difference from software testing

Program verification Software testing

¢ Logical Specification ¢ Executable Specification

assert (P(1) == 1);
vn € N.P(n) = )iL,i assert (P(2) == 3);
assert (P(5) == 15);

¢ Assuring correctness for any input ¢ Assuring correctness for given inputs
m Correctness Assured m Correctness Assured
1 v 1 v
2 v 2 v

3 v 3 x
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Verification of real-world software

¢ SLAM: a research project to verify Windows device drivers

¢ Infer: a verification tool for Java, C, and C++ code
O Used to verify Facebook’s Android / 10S apps

¢ CPAcheker: a verification tool for C
O Used to verify control software of airplanes and a space station

¢ Astree: a verification tool for C
¢ Used to verify Linux device drivers



@oa re @

Let’s try verification!




Example: sum from 1 to n

Goal

Specification , ,
Proving "y = Y./, 1" holds after
exiting from the loops (%)

vn € N.P(n) = )iL,i

Program Question

int P(int n) {
int Xx = n, vy

- 0; [ What holds during the loops? ]
while (x != 0) { 7

y =y + X;
X = x - 1; ®
}

% return y;

¥




Example: sum from 1 to n

Specification EREE

vh € N.P(n) = 31, i Before the loop n 0

Program

int P(int n) {
int Xx = n, y = 0;
while (x != @) {

y =Yy + X
X =X - 1;
¥

return y,;

¥
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Example: sum from 1 to n

Specification EREE

vh € N.P(n) = 31, i Before the loop n 0

After the 15t loop n-1 n
Program

int P(int n) {
int Xx = n, y = 0;
while (x != @) {

y =Yy + X
X =X - 1;
¥

return y,;

¥
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Example: sum from 1 to n

Specification EREE

vn € N.P(n) = X1, i Before the loop n 0
p After the 15t loop n-1 n
rogram
9 After the 2" loop  n-2 n+ n-1

int P(int n) {
int Xx = n, y = 0;
while (x != @) {

y =Yy + X
X =X - 1;
¥

return y,;

¥
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Example: sum from 1 to n

Specification N

vn € N.P(n) = X, i Before the loop n 0
After the 15t loop n-1 n
Program After the 2" loop  n-2 n+ n-1
int P(int n) { After the 39 loop  n-3 n+n-1+n-2

int x = n, y = 0;
while (x != 0) {

y =Yy + X
X =X - 1;
¥

return y,;

¥
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Example: sum from 1 to n

Specification N

vn € N.P(n) = 31, i Before the loop n 0
b After the 15t loop n-1 n
rogram
9 After the 2" loop  n-2 n+ n-1
int P(int n) { After the 39 loop  n-3 n+n-1+n-2

int X = n, vy

= @;
while (x != ©
( ) { After the nth loop 0 n+n-1+n-2+..+1

y =Yy + X
X =X - 1;
¥

return y,;

¥

Loop Invariant Synthesis with Machine Learning / Taro Sekiyama (NII) 15



Example: sum from 1 ton “en

— Lui=x+1

Specification EN
vn € N.P(n) = 31, i Before the loop n 0
After the 15t loop n-1 n
Program
After the 2" loop  n-2 n+ n-1
int P(int n) { After the 39 loop  n-3 n+n-1+n-2

int Xx = n, vy

= @;
while (x != ©
( ) { After the nth loop 0 n+n-1+n-2+..+1

y =y + X;
X =X - 1;

) (x =0)
return y; IS a property that holds before / after every loop

¥
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Example: sum from 1 to n Cen

Specification X
vn € N.P(n) = X1, i Before the loop n 0
After the 15t loop n-1 n
Program
After the 2" loop  n-2 n+ n-1
int P(int n) { After the 39 loop  n-3 n+n-1+n-2
int x = n, = 0;
while (x != 0) { P —
Y = Y+ X ter the n™" loop 0 nNn+n-1+n-2+..+1
X = Xx - 1; X s _xn s
) ’ Qiicol+y=2ioci)A(x =0)
return y; Is a property that holds before / after every loop
} [ J [
Loop invariant
Loop Invariant Synthesis with Machine 17




Example: sum from 1 to n
Goal

Specification
P Proving "y = )i, i" holds after
vn € N.P(n) = Y1, i exiting from the loops (%)
Program
int P(int n) { Loop invariant
int x = n, y = 0; P, y) = Qicgi+y=XLoi)AN(x=0)
while (x != @) {
y =y + X; Proof of the goal
X =X - 1; 4 , , , )
} The final loop exits with x = 0, so
* return y; $(0,y) = (Xi_pi+y =2i) A(0=0)
} \_ holds )
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Example: sum from 1 to n
Goal

Specification
P Proving "y = )i, i" holds after
vn € N.P(n) = Y1, i exiting from the loops (%)
Program
int P(int n) { Loop invariant
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Example: sum from 1 to n

Snecificati Goal
ecitication
P Proving "y = )i, i" holds after
vn € N.P(n) = Y1, i exiting from the loops (%)
Program
int P(int n) { Loop invariant
int x = n, y = 0; d(x,y) = Qizol +y =Xizgi ) A(x = 0)
while (x != 0) {
y =y + X;
X =X - 1; 4 , , , )
} The final loop exits with x = 0, so
% return y; $(0,y) = [ Y = Dico i] A (0= 0)
} \_ holds )




Challenge in automating verification

Finding loop invariants

¢ Itis an undecidable problem in general

¢ (Incomplete) approaches to invariant synthesis
0 Learning-based approaches

O Template-based approaches

O Fixing the shape of invariants and searching for parameters that
satisfy constraints on invariants



Learning framework for invariant synthesis

Interleaving learning and checking of invariant candidates

Logical constraint C
on loop invariants

¥

Invariant candidate ¢

[ Learner } —' { Teacher }
No candidate ‘

Counterexample ¢ to ¢ ¢ is an
(¢ (c) doesn't satisfy C) invariant
NG OK
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Learning framework for invariant synthesis

Interleaving learning and checking of invariant candidates

Logical constraint € ( Machine Learning!
on loop invariants Implemented by
' SAT/SMT solvers

Invariant candidate ¢

{ Learner ] = [ Teacher ]

Counterexample ¢ to ¢ ¢ is an
No candidate N , : . :
‘ (¢ (c) doesn't satisfy C) invariant

NG OK
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Invariant learning

Goal: To find a loop invariant ¢

Given:

Specification

Program

vn € N.P(n) =

n "
i=01

int P(int n) {

int x = n, y = 0;
while (x != 0) {

y =y + X

X =X -1; }
return y; }

A set € of counterexamples to candidates, categorized into:

¢ Positive examples: ¢ s.t. ¢p(€) must be true

In P, Vn = 0. ¢(x :=n,y = 0,n) must be true as invariants must hold before entering the loops

¢ Negative examples: ¢ s.t. ¢ (¢) must be false

In P, ¢(x := 0,y := 10,n := 2) must be false as y = Zi-,i must hold after exiting the loops

¢ Implication constraints: (¢, ?l)) s.t. ¢(c) = qb(?i)




ML-based approaches to invariant learning

¢ ML to lean invariants

0 Learning invariants as decision trees
[Krishna, Puhrsch & Wies, arXiv'15; Garg, Neider, Madhusudan & Roth, POPL'16]

O Learning by deep reinforcement learning
[Si, Dai, Raghothaman, Naik & Song, NeurlPS'18]

¢ Encoding constraints into neural networks
[Ryan, Wong, Yao, Gu & Jana, ICLR'20 & PLDI'20]

¢ ML to aid symbolic reasoning

O Speeding up symbolic approaches with
reinforcement learning
[Tsukada, Unno, Sekiyama & Suenaga, arXiv'21]
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Learning invariants as decision trees

Decision tree Converting to
learning logical formula

Example set € ‘ Decision tree ‘ Invariant candidate

A1 Sy

(p1 = —p2) A (—p1 = p3)
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Nodes are predicates over program variables

de )

E.g., for integer-manipulating programs, Challenge: poor scalability of
every node p; is an inequationd - x = ¢ decision tree learning in

¢ X are program variables of integers the number of parameters a, c

¢ a, c are parameters to be optimized \ /
Optimizing d,c  Decision tree Converting to

in each node learning logical formula

Example set £ | “ Decision tree ‘ ‘ | Invariant candidate

A1 Sy

(p1 = —p2) A (—p1 = p3)
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Solution to scalability

¢ Pre-synthesizing predicates used as nodes

Example set €

Decision tree

learning

g

Set of predicates p;

Loop Invariant Synthesis with Machine Learning / Taro Sekiyama (NII)

Selecting nodes from

iven predicates
J P ~wiverwuny 1O

logical formula

Decision tree

—)

Invariant candidate

1

(p1 = —p2) A (Ap1 = ps3)

30




Solution to scalability

¢ Pre-synthesizing predicates used as nodes

Selecting nodes from
given predicates

Decision tree ~vrrves winy 1O
learning logical formula

Example set € ‘ #‘ Decision tree ‘ ‘

‘ Invariant candidate

1

(p1 = —p2) A (Ap1 = ps3)

Set of predicates p;

Loop Invariant Synthesis with Machine Learning / Taro Sekiyama (NII)

31




Neural synthesis of predicates over integers

x; | x, | label

Example set €

Training

)

[Kobayashi, Sekiyama, Sato & Unno, SAS'21]

Synthesis from
the weights a;
in the NN

/—xl +.X'2+9>0,\

< 4x; —x, >0, T

\ L -/

Predicates used

in DT learning



Predicate synthesis from NNSs | oecision tree icarning witr

synthesized predicates to
Idea: Designing a NN that encodes invariants and | generate invariant candidates

represents predicate parameters a, ¢ as weights

Assumption: Formulas are logical combinationsof @’ - x + ¢ > 0

- =o(a; - x +c¢;),so .

Vi N (1 ‘ % 0 Intended to recognize {le +3x,+9> 0»}
yi= 1 al X+ > y; ~ logical combinations 4% +1x,+0>0
yi==0=a;-x +¢; <0 '

(eg. (p1V Pz) A (P3 V pa)) fGrouping the ratios
Aj1 - Ajz - €

0; |
—11.76355457

—11.36994552
—10.83486366

if |la; - x +¢;| >0

o : sigmoid function

. 67634 40+ —10.78136634
‘J : |215.02200022 —3. 75841569<‘ —am==aa=Al 9100707084
—13.6460354 —3.41494207¢ 4 : 1 : 0 —8.159220278

—11.69845199 —2.927870512 0.8412334322 | —7.779587745
Vg |—12.65479946 —3.168056249 0.9739738106 | —6.938682556

Feedforward NN with 2 hidden layers



Experiments
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ML-based approaches to invariant learning

¢ ML to lean invariants

0 Learning invariants as decision trees
[Krishna, Puhrsch & Wies, arXiv'15; Garg, Neider, Madhusudan & Roth, POPL'16]

O Learning by deep reinforcement learning
[Si, Dai, Raghothaman, Naik & Song, NeurlPS'18]

¢ Encoding constraints into neural networks
[Ryan, Wong, Yao, Gu & Jana, ICLR'20 & PLDI'20]

¢ ML to aid symbolic reasoning

O Speeding up symbolic approaches with
reinforcement learning
[Tsukada, Unno, Sekiyama & Suenaga, arXiv'21]



Template-based symbolic invariant synthesis

Invariant learner

(

Constraint C

Example set E

Invariant template T (parameterized over
# of Boolean combinators, bounds of a, ¢, etc.)

OK

-3¢

Extending T
by a heuristic

-
-)

Invariant candidate ?

Synthesizing candidate ¢ by
instantiating parametersin T

¢
[ Teacher ]

Counterexample ¢

to the candidate ¢
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Template-based symbolic invariant synthesis

Invariant learner

(

Constraint C

Example set E

Invariant template T (parameterized over
# of Boolean combinators, bounds of a, ¢, etc.)

OK

-3¢

Extending T
by a heuristic

-
-)

\—

Synthesizing candidate ¢ by
instantiating parametersin T

Invariant candidate ?

¢
[ Teacher ]

Counterexample ¢
to the candidate @

¢ Challenge: finding effective heuristics for template extension
¢ Approach: applying reinforcement learning to optimize
heuristic strategies

LUUPIIIVCIIICIIIL JyIIL Vv viacrinic I_CCIIIIIIIy/ 1dirv OCNI
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Reinforcement learning

Learning strategies of agent’s actions to maximize total
rewards obtained from environments

Action Environment

~—
~——

State & Reward




Applying to heuristic learning

Goal: learning template extension strategies to minimize
the total time spent by invariant synthesis

Action Environment @

Invariant learner

Synthesizing
candidate ¢ from T

State & Reward



Applying to heuristic learning

Goal: learning template extension strategies to minimize
the total time spent by invariant synthesis

Decides which part of T is enlarged

Action Environment @

Invariant learner

Synthesizing
candidate ¢ from T

—1 X (Time spent on verification)

State & Reward

Human-engineered features of
template T and example set E



Experiments

¢ Implemented on a verifier PCSat unno+, aaar20acav21]

¢ Effective heuristics can be learned!

# of solved test problems (total # = 171)

PCSat w/ Advantage Actor-Critic 154 (90.05%) Ours: PCSat with
PCSat w/ Monte Carlo 155 (90.06%) learned heuristics
LooplnvGen 92 (53.80%)

CVC4 111 (64.91%)

Eldarica 131 (76.61%)

Baseline

PCSat w/ the hand-tuned heuristic 144 (84.21%)

Holce

Spacer

149 (87.13%)
165 (96.49%)
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Outline

1.
2.

3. Conclusion



Findings

Applying ML to verification is possible but hard

“Softer” program verification

¢ Program verification is deductive, < more suitable to use ML?

while ML is inductive

¢ Program verification addresses hard constraints,
while some of ML techs target only soft constraints

¢ Needing a means to interpret / explain ML models logically

¢ E.g., converting decision trees to logical formulas,
extracting predicates from weights in a neural net

¢ Available are only small datasets (of the sizes from 10 to 1000)



Conclusion

¢ A main bottleneck of automating verification is
iInvariant synthesis

¢ Data-driven invariant synthesis is emerging!

¢ Collaboration b/w ML and verification is promising
and challenging

%

Software Machine
verification learning
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