Loop Invariant Synthesis with Machine Learning

Taro Sekiyama

National Institute of Informatics

Including joint work with

Unno Hiroshi, Naoki Kobayashi, Issei Sato, Kohei Suenaga, Takeshi Tsukada, Minchao Wu

Software verification & Machine learning

Software verification & Machine learning

Accidents caused by software bugs

- Therac-25 radiation therapy
 - Involved six accidents of radiation overdoses
- Ariane 5 rocket
 - Resulted in the launch failure and a loss > \$370 million

- Heartbleed (an OpenSSL vulnerability)
 - Major servers (Apache, nginx, etc.) on the internet were vulnerable

♦ Others: <u>List of software bugs (Wikipedia)</u>

Program verification

Methodology to assure correctness of programs by mathematical reasoning

Program verification

Methodology to assure correctness of programs by mathematical reasoning

Difference from software testing

Program verification

◆ **Logical** Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

♦ Assuring correctness for **any** input

Input	Correctness Assured
1	✓
2	✓
3	✓

Software testing

♦ Executable Specification

♦ Assuring correctness for **given** inputs

Input	Correctness Assured
1	✓
2	✓
3	×

Verification of real-world software

- SLAM: a research project to verify Windows device drivers
- ◆ Infer: a verification tool for Java, C, and C++ code
 - Used to verify Facebook's Android / iOS apps
- CPAcheker: a verification tool for C
 - Used to verify control software of airplanes and a space station
- ♦ **Astree:** a verification tool for C
 - Used to verify Linux device drivers

Let's try verification!

Specification

```
\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i
```

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }

★ return y;
}
```

Goal

Proving " $y = \sum_{i=0}^{n} i$ " holds after exiting from the loops (\star)

Question

What holds during the loops?

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Before the loop

X	y
n	0

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }
  return y;
}
```

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

<pre>int P(int n) {</pre>
int $x = n$, $y = 0$;
while (x != 0) {
y = y + x;
x = x - 1;
}
return y;
}

Before the loop

After the 1st loop

X	y
n	0
n-1	n

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }
  return y;
}
```

Before the loop

After the 1st loop

After the 2nd loop

X	y
n	0
n-1	n
n-2	n + n-1

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }
  return y;
}
```

Before the loop
After the 1st loop
After the 2nd loop
After the 3rd loop

X	y
n	0
n-1	n
n-2	n + n-1
n-3	n + n-1 + n-2

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }
  return y;
}
```

	X	y
Before the loop	n	0
After the 1st loop	n-1	n
After the 2 nd loop	n-2	n + n-1
After the 3 rd loop	n-3	n + n-1 + n-2
	•••	•••
After the n th loop	0	n + n–1 + n-2 + + 1

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }
  return y;
}
```

	Х	y	
Before the loop	n	0	
After the 1st loop	n-1	n	
After the 2 nd loop	n-2	n + n-1	
After the 3 rd loop	n-3	n + n-1 + n-2	
	•••	•••	
After the n th loop	0	n + n–1 + n-2 + + 1	

$$(x \ge 0)$$

is a property that holds before / after every loop

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }
  return y;
}
```

	X	y
Before the loop	n	0
After the 1st loop	n-1	n
After the 2 nd loop	n-2	n + n-1
After the 3 rd loop	n-3	n + n-1 + n-2
	•••	•••
After the n th loop	0	n + n–1 + n-2 + + 1

$$(\sum_{i=0}^{X} i + y = \sum_{i=0}^{n} i) \land (x \ge 0)$$

is a property that holds before / after every loop

Loop invariant

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }

★ return y;
}
```

Goal

Proving " $y = \sum_{i=0}^{n} i$ " holds after exiting from the loops (\star)

Answer

Loop invariant

$$\phi(x,y) \equiv \left(\sum_{i=0}^{x} i + y = \sum_{i=0}^{n} i\right) \land (x \ge 0)$$

Proof of the goal

The final loop exits with x = 0, so $\phi(0,y) \equiv \left(\sum_{i=0}^{0} i + y = \sum_{i=0}^{n} i\right) \land (0 \ge 0)$ holds

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }

★ return y;
}
```

Goal

Proving " $y = \sum_{i=0}^{n} i$ " holds after exiting from the loops (\star)

Answer

Loop invariant

$$\phi(x,y) \equiv \left(\sum_{i=0}^{x} i + y = \sum_{i=0}^{n} i\right) \land (x \ge 0)$$

Proof of the goal

The final loop exits with x = 0, so $\phi(0, y) \equiv \left(\sum_{i=0}^{0} i + y = \sum_{i=0}^{n} i\right) \land (0 \ge 0)$ holds

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }

★ return y;
}
```

Goal

Proving " $y = \sum_{i=0}^{n} i$ " holds after exiting from the loops (\star)

Answer

Loop invariant

$$\phi(x,y) \equiv (\sum_{i=0}^{x} i + y = \sum_{i=0}^{n} i) \land (x \ge 0)$$

Proof of the goal

The final loop exits with x = 0, so $\phi(0, y) \equiv \begin{bmatrix} y = \sum_{i=0}^{n} i \end{bmatrix} \land (0 \ge 0)$ holds

GOAL

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1;
  }

★ return y;
}
```

Goal

Proving " $y = \sum_{i=0}^{n} i$ " holds after exiting from the loops (\star)

Answer

Loop invariant

$$\phi(x,y) \equiv \left(\sum_{i=0}^{x} i + y = \sum_{i=0}^{n} i\right) \land (x \ge 0)$$

Proof of the goal ✓

The final loop exits with x = 0, so $\phi(0, y) \equiv \left(\begin{array}{c} y = \sum_{i=0}^{n} i \end{array} \right) \land (0 \ge 0)$ holds

Challenge in automating verification

Finding loop invariants

- It is an undecidable problem in general
- (Incomplete) approaches to invariant synthesis
 - Learning-based approaches
 - Template-based approaches
 - ♦ Fixing the shape of invariants and searching for parameters that satisfy constraints on invariants

Learning framework for invariant synthesis

Interleaving learning and checking of invariant candidates

Learning framework for invariant synthesis

Interleaving learning and checking of invariant candidates

Invariant learning

Goal: To find a loop invariant ϕ

Specification

$$\forall n \in \mathbb{N}. P(n) = \sum_{i=0}^{n} i$$

Program

```
int P(int n) {
  int x = n, y = 0;
  while (x != 0) {
    y = y + x;
    x = x - 1; }
  return y; }
```

Given:

A set \mathcal{E} of counterexamples to candidates, categorized into:

- Positive examples: \vec{c} s.t. $\phi(\vec{c})$ must be true In P, $\forall n \geq 0$. $\phi(x \coloneqq n, y \coloneqq 0, n)$ must be true as invariants must hold before entering the loops
- Negative examples: \vec{c} s.t. $\phi(\vec{c})$ must be false In P, $\phi(x = 0, y = 10, n = 2)$ must be false as $y = \sum_{i=0}^{n} i$ must hold after exiting the loops
- Implication constraints: (\vec{c}, \vec{d}) s.t. $\phi(\vec{c}) \Longrightarrow \phi(\vec{d})$

ML-based approaches to invariant learning

- ML to lean invariants
 - ♦ Learning invariants as decision trees
 [Krishna, Puhrsch & Wies, arXiv'15; Garg, Neider, Madhusudan & Roth, POPL'16]
 - ♦ Learning by deep reinforcement learning [Si, Dai, Raghothaman, Naik & Song, NeurlPS'18]
 - ♦ Encoding constraints into neural networks [Ryan, Wong, Yao, Gu & Jana, ICLR'20 & PLDI'20]
- ML to aid symbolic reasoning
 - Speeding up symbolic approaches with reinforcement learning

[Tsukada, Unno, Sekiyama & Suenaga, arXiv'21]

ML-based approaches to invariant learning

- ML to lean invariants

 - ♦ Learning by deep reinforcement learning [Si, Dai, Raghothaman, Naik & Song, NeurlPS'18]
 - ♦ Encoding constraints into neural networks [Ryan, Wong, Yao, Gu & Jana, ICLR'20 & PLDI'20]
- ML to aid symbolic reasoning
 - Speeding up symbolic approaches with reinforcement learning

[Tsukada, Unno, Sekiyama & Suenaga, arXiv'21]

Learning invariants as decision trees

Nodes are predicates over program variables

E.g., for integer-manipulating programs, every node p_i is an inequation $\vec{a} \cdot \vec{x} \ge c$

- $\Rightarrow \vec{x}$ are program variables of integers
- $\blacklozenge \vec{a}, c$ are parameters to be optimized

Optimizing \vec{a} , \vec{c} in each node

learning

Example set **E**

Decision tree

Decision tree

Challenge: poor scalability of decision tree learning in the number of parameters \vec{a} , c

Converting to logical formula

$$(p_1 \Longrightarrow \neg p_2) \land (\neg p_1 \Longrightarrow p_3)$$

Solution to scalability

Pre-synthesizing predicates used as nodes

Solution to scalability

Pre-synthesizing predicates used as nodes

Neural synthesis of predicates over integers

[Kobayashi, Sekiyama, Sato & Unno, SAS'21]

Predicate synthesis from NNs

Idea: Designing a NN that encodes invariants and represents predicate parameters \vec{a} , c as weights

Decision tree learning with synthesized predicates to generate invariant candidates

Assumption: Formulas are logical combinations of $\vec{a} \cdot \vec{x} + c > 0$

 $y_i = \sigma(\overrightarrow{a_i} \cdot \overrightarrow{x} + c_i)$, so $y_i \simeq 1 \Leftrightarrow \overrightarrow{a_i} \cdot \overrightarrow{x} + c_i > 0$ $y_i \simeq 0 \Leftrightarrow \overrightarrow{a_i} \cdot \overrightarrow{x} + c_i < 0$ if $|\overrightarrow{a_i} \cdot \overrightarrow{x} + c_i| \gg 0$

 $y_i \approx p_i$

Intended to recognize logical combinations (e.g., $(p_1 \lor p_2) \land (p_3 \lor p_4)$)

Grouping the ratios $a_{i1}: a_{i2}: c_i$

Feedforward NN with 2 hidden layers

	a_{i1}	a_{i2}	c_i	o_i
y_1	4.037725448	6.056035518	2 2 0	-11.76355457
y_2	4.185569763	6.27788019	2:3:9	-11.36994552
	3.775603055	5.662680149	16.86475944	-10.83486366
•	3.928676843	5.892404079	17.63601112	-10.78136634
•	-15.02299022	-3.758415699	4 4 0	-9.199707984
	-13.6469354	-3.414942979	4:1:0	-8.159229278
	-11.69845199	-2.927870512	0.8412334322	-7.779587745
y_8	-12.65479946	-3.168056249	0.9739738106	-6.938682556

Experiments

Predicate synthesis works well on linear invariants

 Quadratic invariants can be supported by preprocessing inputs to the NN

ML-based approaches to invariant learning

- ML to lean invariants
 - ♦ Learning invariants as decision trees
 [Krishna, Puhrsch & Wies, arXiv'15; Garg, Neider, Madhusudan & Roth, POPL'16]
 - ♦ Learning by deep reinforcement learning [Si, Dai, Raghothaman, Naik & Song, NeurlPS'18]
 - ♦ Encoding constraints into neural networks [Ryan, Wong, Yao, Gu & Jana, ICLR'20 & PLDI'20]
- ML to aid symbolic reasoning
 - Speeding up symbolic approaches with reinforcement learning

[Tsukada, Unno, Sekiyama & Suenaga, arXiv'21]

Template-based symbolic invariant synthesis

Invariant learner

Template-based symbolic invariant synthesis

Invariant learner

heuristic strategies

Constraint *C* Example set *E* **Invariant template** *T* (parameterized over # of Boolean combinators, bounds of \vec{a} , c, etc.) Invariant candidate **Extending** T Synthesizing candidate ϕ by Teacher instantiating parameters in Tby a heuristic Counterexample \vec{c} to the candidate ϕ ◆ Challenge: finding effective heuristics for template extension **♦ Approach:** applying **reinforcement learning** to optimize

Reinforcement learning

Learning strategies of agent's actions to maximize total rewards obtained from environments

Applying to heuristic learning

Goal: learning template extension strategies to minimize the total time spent by invariant synthesis

Applying to heuristic learning

Goal: learning template extension strategies to minimize the total time spent by invariant synthesis

Experiments

- ♦ Implemented on a verifier PCSat [Unno+, AAAI′20&CAV′21]
- Effective heuristics can be learned!

Tool	# of solved test problems (total # = 171)	
PCSat w/ Advantage Actor-Critic	154 (90.05%)	Ours: PCSat with
PCSat w/ Monte Carlo	155 (90.06%)	learned heuristics
LoopInvGen	92 (53.80%)	
CVC4	111 (64.91%)	
Eldarica	131 (76.61%)	Baseline
PCSat w/ the hand-tuned heuristic	144 (84.21%)	- baseline
Holce	149 (87.13%)	
Spacer	165 (96.49%)	

Outline

- 1. Introduction to program verification
- 2. Learning-based invariant synthesis
- 3. Conclusion

Findings

Applying ML to verification is possible but hard

 Program verification is deductive, while ML is inductive

- "Softer" program verification is more suitable to use ML?
- Program verification addresses hard constraints, while some of ML techs target only soft constraints
- Needing a means to interpret / explain ML models logically
 - ♦ E.g., converting decision trees to logical formulas, extracting predicates from weights in a neural net
- Available are only small datasets (of the sizes from 10 to 1000)

Conclusion

- A main bottleneck of automating verification is invariant synthesis
- Data-driven invariant synthesis is emerging!
- **♦ Collaboration b/w ML and verification is promising and challenging**

