Weighted Automata Extraction
from Recurrent Neural Networks via Regression

(ARICESBRE=2—FILRXY NT—ID5D
BEHIEA—NY M OHE

Takamasa Okudono Masaki Waga
Taro Sekiyama lchiro Hasuo

{tokudono,mwaga,hasuo,sekiyamaj}@nii.ac.jp
NIl & SOKENDAI

To appear at AAAI 2020
Preprint: https://arxiv.org/abs/1904.02931

1

Recurrent neural networks (RNNs)

Neural networks expandable according to
iInput sequences with variable lengths

& Great success in learning sequential data,
especially thanks to LSTMs/GRUS!

Recurrent neural networks (RNNs)

Neural networks expandable according to
iInput sequences with variable lengths

& Great success in learning sequential data,
especially thanks to LSTMs/GRUSs!
& But there are drawbacks such that:
mHard to interpret what they learnt
mHard to verify their behavior
m Computationally costly (even for inference)

Surrogate of RNNs

Finite automata (FAs)
m More interpretable

m More verifiable

m More efficient

Surrogate of RNNs

Apparent state transition
Finite automata (FAs)

m More interpretable
m More verifiable
m More efficient

Surrogate of RNNs

Finite automata (FAs)

m More interpreta
m More verifiable

m More efficient

Surrogate of RNNs

Apparent state transition
Finite automata (FAs)
Many analysis algorithms

m More interpretable

= More verifiable

m More efficient

Surrogate of RNNs

Apparent state transition
Finite automata (FAs)
= More interpretable Many analysis algorithms
= More verifiable

m More efficient

Extracting
FAs
) from
discrete-input RNNs

Surrogate of RNNs

Apparent state transition
FAs)

Finite automata (i
= More interpretable Many analysis algorithms

m More efficient

Extracting
@\@ FAS

]) from
discrete-input RNNs

Surrogate of RNNs

Apparent state transition
Finite automata (FAs)

= More interpretable Many analysis algorithms

m More efficient

Extracting
@\@ FAS

from
discrete-input RNNs

@_uis#/ob

Surrogate of RNNs

Apparent state transition
Finite automata (FAs)

= More interpretable Many analysis algorithms

m More efficient

Extracting
@@ag@ FAS

from
discrete-input RNNs

@_uis#/()b

Surrogate of RNNs

Apparent state transition
Finite automata (FAs)

= More interpretable Many analysis algorithms

m More efficient

Extracting
@@ag@ FAS

from

discrete-input RNNs
@_uis#/()b @eiss@

Surrogate of RNNs

Apparent state transition
FAs)

Finite automata (i
= More interpretable Many analysis algorithms
® More verifiable

m More efficient

. Extracting
@\@ @anw@ deterministic FAs
from
@_uis#/()b @eiss@

discrete-input,
Boolean-output RNNs

Our work

Extracting weighted FAs (WFAs)
from discrete-input, real-output RNNs

m Based on a weighted extension of L* [angluin's7, Balle+'15]
Technical contribution:

Answering equivalence queries b/w WFAs and
RNNSs by regression on their state spaces

®m Experiments to answer:

How close the extracted WFAs are to the given RNNs
How applicable our method is to expressive RNNs
How efficient the extracted WFAs are

6

Outline

2. Preliminaries
A. Abstract definitions of RNNs and WFASs

B. Weighted extension of Angluin’s L*

3. Our work: extraction of WFAs from RNNs
4. EXxperiments

RNNs

Output

Input

RNNs

Given input
x1x2 X, € 2F ‘ ‘ ‘ ‘

Input

RNNs

Output

Given input

x1x2 X, € 2F I I

Input 1

m Can be viewed as state-passing machines
0 States sy, 55, *+, 5, € R4

RNNs
m RNN R comprises

ap € R% initial state
Br € R? = R: final function

X Xy b

gr € RYx X — R state transition function

RNNs
m RNN R comprises

ap € R% initial state
Br € R? = R: final function

X Xy b

gr € RYx X — R state transition function
m Derived functions

Op(X1%y2X,) = gp(-++, gr(gr(aR, X1), X5), =+, X,
=5, € R?

Fetyreox,) = Br(B(yxy-ox,) = y € R

10

WFASs

m Finite automata s.t.
Each state has an initial and final weight
Each transition is weighted

b, —1 @. a, 1 m State label “g/m/n” means
a, 3 a, —1 initial and final weights at g
b, 1

are m and n, respectively

a,2 b, —2 -
w m Transition label “a,n” means
b3 ’ transition by letter "a" is
| 0 weighted by n
a”

11

WFASs |

m WFA A with n states comprises

.3

a, € R": initial vector (a collection of initial weights)

P, € R": final vector (a collection of final weights)

g, € £ — R transition function

0 ga(a)li, j] is the weight of the transition by a from state i to j

m Derived functions
5A(x1x2---xn) = aAgA(xl)gA(xz)'"gA(xn) e R"
Ja(X1Xy00x,) = 04(X1%5++x,) - Py € R

12

Outline

2. Preliminaries

2. Weighted extension of Angluin’s L*

3. Our method: extraction of WFAs from RNNs
4. EXxperiments

13

L*(m, e) algorithm for WFAS (Balle+'15]

Learning a WFA from a black-box B by queries
m Input: answerers to two kinds of queries

om € 2* — R for membership queries
“What value does B output for input w € 2%?”
te € {WFAs} — {Eq} w X* for equivalence queries
“Is a WFA being constructed equivalent to B?”
* Returns counterexample w € 2* if not
m Output
OA (minimum) WFA

14

Property of L*(m, e)

Fora WFA A,
L*(f4,e4) = Ay st Jy =]f40

Eq (iffq =/a)
wo (if fu(w) # fa(w))

where e,(A") = {

Outline

2. Preliminaries
3. Our work: extraction of WFAs from RNNs
4. EXxperiments

16

Our work

m Using L™ to obtain a WFA close to an RNN
Property of L*

Fora WFA A,
L*(A, eA) — AO S.1.][1‘4 =fAO

Eq (iffy =/a)
w o (if fL(W) # f1(w))

where e,(A") = {

17

Our work

m Using L* to obtain a WFA close to an RNN
Our expectation

For an RNN R,
L*(fasex) = Ag St fio = fo,

Eq (if fp =~ fa)
wo (if flgp(w) % fy(w))

where e, (A’) = {

18

Our work

m Using L* to obtain a WFA close to an RNN

Our expectation
For an RNN R,

L*(fa) = Ag St fie = fi.

. [Ea (iffg = fa)
whers eR(A - {W (i fra(w) 2 fu(w))

- Challenge how do we implement eR(A) that

answers if f, =~ f, and returns an evidence if not

19

Strategy for e,(A)

Eq (if fr =~ f4)
w o (if frw) & f4(W))
1. Trying to find counterexample w s.1.

JrRW) # f4(w)

2(a). Returning w if found

Goal: implement ep(A) = {

2(b). Returning “EqQ” if no counterexample is
found even by sufficient search

20

Strategy for e,(A)

Eq (if fr =~ f4)
w o (if frlw) & f1(W))

Trying to find counterexample w s.t.

JrRW) # f4(w)

Goal: implement ep(A) = {

2(a). Returning w if found

2(b). Returning “EqQ” if no counterexample is
found even by sufficient search

20

Tree traversal for
finding counterexamples

m Finding a node w s.t. frp(w) # f4(W)

/@\Zi{a’b’c}
A S
R

Tree traversal for
finding counterexamples

m Finding a node w s.t. frp(W) # f4(W)

m Question: What order of traversal can find
a counterexample effectively?

/@\Zi{a’b’c}
AR
R

Our approach: guiding the traversal by

a relationship between WFA A and RNN R

m Find\hg a node w s.t. frp(W) # f4(W)

m Question: What order of traversal can find
a counterexample effectively?

/@\Zi{a’b’c}
AR
R

Relationship b/t RNN R and WFA A

Working hypothesis

Jr = Ja

ship b/t RNN R and WFA A

orking hypothesis

and WFA A

=w > 0,(W) - Py

IN'4 hypothesis

and WFA A

Internal states obtained
by 0 and 0, are related

24

and WFA A

25

and WFA A

for some
p € RY - R"

20

and WFA A

for some

m Utilizing p to find counterexamples effectively

m Approximating p by regression on state spaces

20

Traversal with p ».®

D

m ldea: 5\A
frw) & fi(w) & p(Sp(w)) & S,(w) R

Traversal with p ».®

D

m ldea: 5\A
fow) 2 fi(w) & p(5pw)) 2 S,(w) R

D,, = llpo(og(w)) = o,(W)|| > O

if approximation p is sufficiently

closeto p

Traversal with p ».®

2

m ldea: 5\A
fow) 2 fi(w) & p(5pw)) 2 S,(w) R

D,, = llpo(og(w)) = o,(W)|| > O

if approximation p is sufficiently

closeto p

m Traversal strategy:
nodes w with larger D, , have higher priorities

0 If D, is large but fpo(w) =~ f4(W), py is refined on (0x(W), 6,(W))

28

Running example

D D D

AR A
R

Running example

(X - Bl 2N s (Ane, .
(4 \ . 2 “Q, R
KV Y ‘w C
‘.‘. '... ‘.\ ...

(b) k
2%

Por gt S0\ %
'? LY
.‘

Running example

. . - D .. o b 4 - v - ‘.\ \
A, P, C
‘. N -‘ ‘.. R S :

i

} .'\‘ ‘§

if"
HE N HEE

29

Running example

D, .=

o~ a3 ‘.AQ‘ ! C
-
¥ \

/\
8

2

"

30

Running example

b / W=,
X
l"_. v
'K' v

/\ P
-

30

Running example
Jr(D) = f,4(D)

30

Running example

31

Running example

32

Running example

32

Running example

32

Running example

33

Running example

y O,] C
-
‘\ \;

1O,
WU ARR
ARAARdAS

34

Running example

fo(D) =~ f4(b
3

34

Strategy for e, (A)

Eq (if fr =~ f4)

Goal: implement ex(A4) = {w (if fr(w) % f1(W))
R

1.

2(a).

2(b). Returning “EqQ” if no counterexample is
found even by sufficient search

Running example

Running example

Running example

Words w (and their descendants) will not be checked if

the “neighborhoods” of the WFA state for w
have been investigated sufficiently

36

Words w (and their descendants) will not be checked if

p(og(w)) = p(ox(W"))
for sufficiently many already visited words w’

37

Words w (and their descendants) will not be checked if

p(0g(w)) = p(og(w"))
for sufficiently-many already visited M words w' (M € N)

38

Words w (and their descendants) will not be checked if

p(0g(w)) = p(og(w"))
for sufficiently-many already visited M words w' (M € N)

2(b). Returning “EqQ” if words to check run out

38

Summary

We use L*(fz, ep) to extract WFAs from RNNs
m /5 tells the output of an RNN for an input

m ¢ seeks a counterexample by regression on
internal state spaces of an RNN and a WFA

Deeming them equivalent if counterexamples
are not found by sufficient search

 "Sufficiency" is controlled by threshold M

39

Lo

Outline

Introduction
Preliminaries
Our work: extraction of WFAs from RNNs

Experiments

40

Research questions

RQ1. How well do the extracted WFAs
approximate to original RNNs?

RQ2. How applicable is our method to RNNs
that are more expressive than WFAs?

RQ3. How are efficient the extracted WFAS,
compared with original RNNs?

41

Experiment for RQ1

Evaluating how well the WFAs extracted by our method
approximate to original RNNs

m Ours: RGR(M) (M is a threshold)
Using Gaussian process regression
m Baseline: BFS(n)

By Breadth-First Search in tree traversal for finding
counterexamples

Returning “EqQ” if no counterexample is found In
consecutive n +m words (when the previous
counterexample is the m-th candidate word)

42

Target RNNs

m Architecture: two-layer LSTM networks
m Training: performed so that the RNNs behave

similarly to randomly generated WFAs A
m Training datasets: pairs (w, f,(w))
0 For “WFA-like”: w is sampled from the uniform distrib.

0 For “Realistic”: w is sampled from a non-uniform distrib.

* Restricted to words where the occurrences of the
same letter have to be consecutive

* E.g.,, v "aabccc" X “aabcca’

43

Extraction from “WFA-like" RNNs

(1X], |Qae| RGR(2) RGR(5) BFS(500) | BFS(1000) | BFS(2000) | BFS(3000) | BFS(5000)
(4,10) 2.1717286 2.39 /338 26.8 /165 9.771279 4.36 / 545 4.077716 2.33 /1390
(6,10) 24571787 | 2.54/1302 6.99 /386 4.48 /1 641 4.08/1218 | 3.15/1410 | 2.28 /2480
(10, 10) 4.68/7462 | 4.46/5311 22.5/928 11.9/1562 | 590/3521 | 4.55/3638 | 3.55/5571
(10, 15) 5.62 /8941 5.78 18564 || 21.2/2155 | 10.6/4750 | 7.87/5692 | 5.71/7344 | 5.27/7612
(10,20) 3.70/7610 | 3.79/7799 | 6.24/2465 | 10.1/2188 | 6.13/3106 | 3.70/5729 | 3.63/7473
(15,10) 7.34/9569 | 5.52/10000 || 13.5/3227 | 8.01/6765 | 6.07/7916 | 598/8911 | 6.17/8979
(15,15) 8.44 /10000 | 5.58 /9981 16.3/2675 | 9.24/4850 | 7.28 /5135 | 9.88/7204 | 6.44 /8425
(15,20) 9.16/7344 | 5.15/7857 13.7/2224 | 7.26/3823 | 6.60/5744 | 496/5674 | 4.01/9464

Total 54576625 | 4.40/6394 15971778 | 8.92/3107 | 6.04/4110 | 5.25/5078 | 4.21/6549

Observation & discussion
m MSEs are lower as extractions take longer times

Each cell shows “MSE (x 10% / extraction time (sec)”

m (Conjecture) Because the RNNs behave well for any
word and the amount of counterexamples
investigated is more dominant than their “qualities”

44

Configurations

m |2 |: alphabet sizes

m|Q,.|: state sizes of WFAs M “WFA-like" RN NS

used for training RNNs

RGR(2) | RGR(5) || BFS(500) | BFS(1000) | BFS(2000) | BFS(3000) | BFS(5000)

2177286 | 239/338 || 268/165 | 9.77/279 | 4.36/545 | 4.07/716 | 2.33/1390
2.45/1787 | 2.54/1302 || 6.99/386 | 4.48/641 | 4.08/1218 | 3.15/1410 | 2.28/2480
4.68/7462 | 4.46/5311 || 22.5/928 | 11.9/1562 | 5.90/3521 | 4.55/3638 | 3.55/5571
5.62/8941 | 5.78/8564 || 21.2/2155 | 10.6/4750 | 7.87/5692 | 5.71/7344 | 5.27/7612
3.70/7610 | 3.79/7799 || 6.24/2465 | 10.1/2188 | 6.13/3106 | 3.70/5729 | 3.63 /7473
7.34/9569 | 5.52/10000 || 13.5/3227 | 8.01/6765 | 6.07/7916 | 5.98/8911 | 6.17/8979
8.44 /10000 | 5.58 /9981 || 16.3/2675 | 9.24/4850 | 7.28/5135 | 9.88/7204 | 6.44 /8425
90.16/7344 | 5.15/7857 || 13.7/2224 | 7.26/3823 | 6.60/5744 | 4.96/5674 | 4.01/9464
54576625 | 4.40/6394 |[15.9/1778 | 8.92/3107 | 6.04/4110 | 5.25/5078 | 4.21/6549

Each cell shows “MSE (x 10%) / extraction time (sec)”
Observation & discussion

m MSEs are lower as extractions take longer times

m (Conjecture) Because the RNNs behave well for any
word and the amount of counterexamples
investigated is more dominant than their “qualities”

44

Configurations

Ours: RGR(M)

m |2 |: alphabet sizes

m|Q,.|: state sizes of WFAs M “WFA-like" RN NS

used for training RNNs

RGR(2) | RGR(5))| BFS(500) | BFS(1000) | BFS(2000) | BFS(3000) | BFS(5000)
2177286 | 239/338 || 268/165 | 9.77/279 | 4.36/545 | 4.07/716 | 2.33/1390
2.45/1787 | 2.54/1302 || 6.99/386 | 4.48/641 | 4.08/1218 | 3.15/1410 | 2.28/2480
4.68/7462 | 4.46/5311 || 22.5/928 | 11.9/1562 | 5.90/3521 | 4.55/3638 | 3.55/5571
5.62/8941 | 5.78/8564 || 21.2/2155 | 10.6/4750 | 7.87/5692 | 5.71/7344 | 5.27/7612
3.70/7610 | 3.79/7799 || 6.24/2465 | 10.1/2188 | 6.13/3106 | 3.70/5729 | 3.63 /7473
7.34/9569 | 5.52/10000 || 13.5/3227 | 8.01/6765 | 6.07/7916 | 5.98/8911 | 6.17/8979
8.44 /10000 | 5.58 /9981 || 16.3/2675 | 9.24/4850 | 7.28/5135 | 9.88/7204 | 6.44 /8425

N 9.16/7344 | 5.15/7857 || 13.7/2224 | 7.26/3823 | 6.60/5744 | 4.96/5674 | 4.01/9464
5.457 6625 | 4.40/6394)| 15.9/1778 | 8.92/3107 | 6.04/4110 | 5.25/5078 | 4.21/6549

Observation & discussion
m MSEs are lower as extractions take longer times

m (Conjecture) Because the RNNs behave well for any
word and the amount of counterexamples
investigated is more dominant than their “qualities”

44

Each cell shows “MSE (x 10% / extraction time (sec)”

Configurations

m |2 |: alphabet sizes

m|Q,.|: state sizes of WFAs M “WFA-like" RN NS

used for training RNNs

Ours: RGR(M)

RGR(5)

BFS(500)

Baseline: BFS(n)

BFS(1000)

BFS(2000)

BFS(3000)

BFS(5000)

2.177286
24571787
4.68 /7462

5.62 /8941

3.70 /7610
7.34 /9569
8.44 / 10000
) 9.16/7344

2.39 /338
2.54 /1302
4.46 /5311
5.78 1 8564
3.79 17799

5.52 /10000

5.58 /9981
5.15/7857

I 2687165

6.99 /386
22.5/928
21.2 /2155
6.24 / 2465
13.5/73227
16.3 /2675
13.7 /2224

9.771279
4.48 /1 641
11.9/1562
10.6 /4750
10.1/2188
8.01 /6765
9.24 /4850
7.26 /3823

4.36 / 545
4.08/1218
5.90/3521
7.87 15692
6.13 /3106
6.07 /7916
7.28 /5135
6.60 /5744

4.077716
3.15/1410
4.55/3638
5.717/7344
3.70/5729
5.98 /8911
9.88 /7204
4.96 /5674

2.33 /1390
2.28 /2480
3.55/5571
5.27717612
3.63 /7473
6.17 /8979
6.44 / 8425
4.01 /9464

5.45 /6625

4.40 / 6394

15971778

Observation & discussion
m MSEs are lower as extractions take longer times

m (Conjecture) Because the RNNs behave well for any
word and the amount of counterexamples
investigated is more dominant than their “qualities”

44

8.92/3107

6.04 /4110

5.25 /5078

4.21/6549

Each cell shows “MSE (x 10% / extraction time (sec)”

Extraction from “Realistic” RNNs

Ours: RGR(M)

RGR(5) | BFS(500)

Baseline: BFS(n)

BFS(1000) | BFS(2000) | BFS(3000) | BFS(5000)

7.73 1696
4.92 /1442
5.02 /5536
7.1576977

6.98 /4697
5.9718747
5.78 / 8325
4.60 /7652

7.07 /1135
7.43 /1247
4.28 /5951
4.35 /8315
8.06 / 6704
6.77 / 8882
8.71 /7546
8.56 /8334

15.0/ 199
1.46 /552
7.70 /1117
19.4 /1552
18.6 / 1465
23.3 /2359
16.6 / 2874
36.9/1893

7.96 /424
6.95 /660
11.0/1738
13.8 /3271
11.8 /2046
11.2 /4668
7.31/4380
23.7 13069

6.62 /650
5.90/ 1217
4.77 12635
16.8 /3209
12.7 /2851
9.88/6186
9.92/6015
12.8 /3987

6.61 /762
8.78 / 1557
3.52 /3926
8.57 175293
9.03 /4259
6.24 /7557
9.89 /7110
12.0 /5262

9.06 /1693
3.54 /2237
4.52 74777
5.08 /6522
8.01 /4856
6.02 / 8245
6.40 / 8358
8.38 /6441

6.02 /5510

6.90 / 6015

19.0 /1502

11.7 /2532

9.92 /3344

8.08 /4466

6.38 /5391

Each cell shows “MSE (x 10%) / extraction time (sec)”
Observation & discussion

m RGR(2) performs the best

m (Conjecture) BFS(n) investigates the input space on
which the RNNs are NOT trained in more detalil

m (Conjecture) RGR(2) avoids it by early pruning

45

Experiment for RQ2

m Extraction from RNNs learning languages more
expressive than any WFAs

46

Experiment for RQ2

m Extraction from RNNs learning languages more
expressive than any WFAs

m RNN learning target: wparen (balanced parentheses)

0 (if w contains
unbalanced parentheses)
wparen(w) =
B N (otherwise;
1 (1/ 2) N is the depth of deepest paren.)
Example:

wparen("((@)(h))") = 1 = (1/2)* wparen("((a)(h)") = 0

47

Extraction result

m The WFA extracted by RGR(5)

O Only largely weighted transitions by parentheses are shown
O Transition weights for letters other than parentheses are similar

@-256-01 / -5.2@ --> Py (¢

Jlr —_— by u)u
< q2/-1.11e-16/ 0.00e+00 State label “q/m/n”
J'f initial and final weights

' at g are m and n, resp.
< q3/-2.62e-01/851e-01 >
48

Extraction result

m The WFA extracted by RGR(5)

O Only largely weighted transitions by parentheses are shown
O Transition weights for letters other than parentheses are similar

wparen is learnt successfully at least up to depth 1

_ql/-425e-01/-526e-01

i
< q2/-1.11e-16/0.00e+00
15

@2.62&0.1 /851e01 >

48

- by “(“
— by “)“

State label “g/m/n”:
initial and final weights
at g are m and n, resp.

Extraction result

m The WFA extracted by RGR(1)5)

O Only largely weighted transitions by parentheses are shown
O Transition weights for letters other than parentheses are similar

ql / -8.04e-01 / -4.41e-01

| - by “(“
— by)

& 6/ -2.54e-02 / 2.32¢-01 :.

q5 / -5.36e-17 / 4.15e-16 q3 / 8.63e-18 / 1.99e-18

State label “g/m/n”:
initial and final weights
at g are m and n, resp.

49

Extraction result

m The WFA extracted by RGR(1)5)

O Only largely weighted transitions by parentheses are shown
O Transition weights for letters other than parentheses are similar

wparen is learnt successfully at least up to depth 2

ql / -8.04e-01 / -4.41e-01

| - by “(“
), — by 9
g —_ y

& o6 / -2.54e02 / 2.32e-01 :.

State label “g/m/n”:
initial and final weights
at g are m and n, resp.

a5 / -5.36e-17 / 4.15e-16 q3 / 8.63e-18 / 1.99e-18

49

Experiment for RQ3

m Comparison of efficiency of running f» and f,
for RNN R and the extracted WFA A

m Result: f, is 1,300 times faster than f; in average
The RNNs are the same as in RQ1

50

Conclusion

m Extracting WFAs from RNNs by L*(/5, €p)
I tells the output of an RNN for an input

€p Seeks a counterexample by regression
on internal state spaces of an RNN and a WFA

m Future work

More sophisticated search for counterexamples
Dealing with huge alphabet sets

Theoretical guarantee (in an ideal case)

51

