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Recurrent neural networks (RNNs)

Neural networks expandable according to 
input sequences with variable lengths

😄 Great success in learning sequential data, 

especially thanks to LSTMs/GRUs!
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Recurrent neural networks (RNNs)

Neural networks expandable according to 
input sequences with variable lengths

😄 Great success in learning sequential data, 

especially thanks to LSTMs/GRUs!

🤨 But there are drawbacks such that:

 ■Hard to interpret what they learnt

 ■Hard to verify their behavior

 ■Computationally costly (even for inference)
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Surrogate of RNNs
Finite automata (FAs) 
■More interpretable

■More verifiable

■More efficient
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Surrogate of RNNs
Finite automata (FAs) 
■More interpretable

■More verifiable

■More efficient
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Apparent state transition

Many analysis algorithms

Less operations

[Omlin+’96]

[Luis+’03]

[Wang+’17]

[Weiss+’18]} Extracting

deterministic FAs


from 

discrete-input,          d 
Boolean-output RNNs



Our work
Extracting weighted FAs (WFAs) 
from discrete-input, real-output RNNs 
■Based on a weighted extension of  [Angluin’87, Balle+’15]


□Technical contribution: 
Answering equivalence queries b/w WFAs and 
RNNs by regression on their state spaces


■Experiments to answer:

□How close the extracted WFAs are to the given RNNs

□How applicable our method is to expressive RNNs

□How efficient the extracted WFAs are

L*
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Outline
1. Introduction

2. Preliminaries


A. Abstract definitions of RNNs and WFAs

B. Weighted extension of Angluin’s 


3. Our work: extraction of WFAs from RNNs

4. Experiments

L*
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RNNs

8

Input

Output

Given input 
x1x2⋯xn ∈ Σ*

■Can be viewed as state-passing machines

□ States s1, s2, ⋯, sn ∈ ℝd

s1 s2 sn

x1 x2

…

xn

y ∈ ℝ



RNNs
■RNN  comprises

□ : initial state


□ : final function


□ : state transition function

R
αR ∈ ℝd

βR ∈ ℝd → ℝ
gR ∈ ℝd × Σ → ℝd
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RNNs
■RNN  comprises

□ : initial state


□ : final function


□ : state transition function


■Derived functions

□  

                     


□

R
αR ∈ ℝd

βR ∈ ℝd → ℝ
gR ∈ ℝd × Σ → ℝd

δR(x1x2⋯xn) = gR(⋯, gR(gR(αR, x1), x2), ⋯, xn)
= sn ∈ ℝd

fR(x1x2⋯xn) = βR(δR(x1x2⋯xn)) = y ∈ ℝ
10

x1 x2

…

xn

y ∈ ℝ

s1 s2 sn…
αR

βR
gR



WFAs
■Finite automata s.t.

□Each state has an initial and final weight

□Each transition is weighted
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■State label “q/m/n” means 
initial and final weights at q 
are m and n, respectively


■Transition label “a,n” means 
transition by letter "a" is 
weighted by n



WFAs
■WFA  with  states comprises

□ : initial vector (a collection of initial weights)


□ : final vector (a collection of final weights)


□ : transition function

□  is the weight of the transition by  from state  to 


■Derived functions


□  


□

A n
αA ∈ ℝn

βA ∈ ℝn

gA ∈ Σ → ℝn×n

gA(a)[i, j] a i j

δA(x1x2⋯xn) = αAgA(x1)gA(x2)⋯gA(xn) ∈ ℝn

fA(x1x2⋯xn) = δA(x1x2⋯xn) ⋅ βA ∈ ℝ
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Outline
1. Introduction

2. Preliminaries 

1. Abstract definitions of RNNs and WFAs

2. Weighted extension of Angluin’s   

3. Our method: extraction of WFAs from RNNs

4. Experiments

L*
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 algorithm for WFAs [Balle+’15]L*(m, e)

Learning a WFA from a black-box  by queries

■Input: answerers to two kinds of queries


□  for membership queries 
“What value does  output for input ?” 

□  for equivalence queries 

“Is a WFA being constructed equivalent to ?” 

• Returns counterexample  if not


■Output

□A (minimum) WFA

B

m ∈ Σ* → ℝ
B w ∈ Σ*

e ∈ {WFAs} → {Eq} ⊎ Σ*
B

w ∈ Σ*
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 Property of L*(m, e)
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For a WFA ,

   s.t.  


where 

A
L*( fA, eA) = A0 fA = fA0

eA(A′�) = {Eq (if fA = fA′ �)
w (if fA(w) ≠ fA′�(w))



Outline
1. Introduction

2. Preliminaries

3. Our work: extraction of WFAs from RNNs 
4. Experiments
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Our work
■Using  to obtain a WFA close to an RNNL*
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For a WFA ,

   s.t.  


where 

A
L*( fA, eA) = A0 fA = fA0

eA(A′�) = {Eq (if fA = fA′ �)
w (if fA(w) ≠ fA′�(w))

 Property of L*



Our work
■Using  to obtain a WFA close to an RNN


 

L*
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For an RNN ,

   s.t.  


where 

R
L*( fR, eR) = A0 fR ≃ fA0

eR(A′�) = {Eq (if fR ≃ fA′�)
w (if fR(w) ≄ fA′�(w))

Our expectation



Our work
■Using  to obtain a WFA close to an RNN


 


■Challenge: how do we implement  that 
answers if  and returns an evidence if not

L*

eR(A)
fR ≃ fA
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For an RNN ,

   s.t.  


where 

R
L*( fR, eR) = A0 fR ≃ fA0

eR(A′�) = {Eq (if fR ≃ fA′�)
w (if fR(w) ≄ fA′�(w))

Our expectation



Strategy for eR(A)
Goal: implement 


1.     Trying to find counterexample  s.t. 



2(a). Returning  if found

2(b). Returning “ ” if no counterexample is 

found even by sufficient search

eR(A) = {Eq (if fR ≃ fA)
w (if fR(w) ≄ fA(w))

w
fR(w) ≠ fA(w)

w
Eq
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Tree traversal for  
finding counterexamples

■Finding a node  s.t. w fR(w) ≠ fA(w)

21
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Tree traversal for  
finding counterexamples

■Finding a node  s.t. 

■Question: What order of traversal can find  

a counterexample effectively?

w fR(w) ≠ fA(w)

22

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Σ = {a, b, c}



Tree traversal for  
finding counterexamples

■Finding a node  s.t. 

■Question: What order of traversal can find  

a counterexample effectively?

w fR(w) ≠ fA(w)
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ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Σ = {a, b, c}

Our approach: guiding the traversal by 
a relationship between WFA  and RNN A R



Relationship b/t RNN  and WFA R A
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Relationship b/t RNN  and WFA R A
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Working hypothesis

= βR ∘ δR = w ↦ δA(w) ⋅ βA

fR ≃ fA



Relationship b/t RNN  and WFA R A

24

Working hypothesis

= βR ∘ δR = w ↦ δA(w) ⋅ βA

fR ≃ fA ⇔ Internal states obtained 
by  and  are relatedδR δA



Relationship b/t RNN  and WFA R A
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Working hypothesis

fR ≃ fA ⇔ Σ*

ℝd

ℝn

δR

δA

?

= βR ∘ δR = w ↦ δA(w) ⋅ βA



Relationship b/t RNN  and WFA R A

26

Working hypothesis

fR ≃ fA ⇔
for some 
 p ∈ ℝd → ℝnΣ*

ℝd

ℝn

δR

δA

p

= βR ∘ δR = w ↦ δA(w) ⋅ βA



Relationship b/t RNN  and WFA R A

■Utilizing  to find counterexamples effectively


■Approximating  by regression on state spaces
p

p
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Working hypothesis

fR ≃ fA ⇔
for some 
 p ∈ ℝd → ℝnΣ*

ℝd

ℝn

δR

δA

p

= βR ∘ δR = w ↦ δA(w) ⋅ βA



Traversal with p
■ Idea: 
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Σ*

ℝd

ℝn

δR

δA

p

fR(w) ≄ fA(w) ⇔ p(δR(w)) ≄ δA(w)



Traversal with p
■ Idea: 

 

27

Σ*

ℝd

ℝn

δR

δA

p

  
if approximation  is sufficiently 
close to 

Dw = ∥p0(δR(w)) − δA(w)∥ ≫ 0
p0

p

fR(w) ≄ fA(w) ⇔ p(δR(w)) ≄ δA(w)

⇐



Traversal with p
■ Idea: 

 

■ Traversal strategy:  

nodes  with larger  have higher priorities


□ If  is large but ,  is refined on 

w Dw
Dw fR(w) ≃ fA(w) p0 (δR(w), δA(w))

28

Σ*

ℝd

ℝn

δR

δA

p

  
if approximation  is sufficiently 
close to 

Dw = ∥p0(δR(w)) − δA(w)∥ ≫ 0
p0

p

fR(w) ≄ fA(w) ⇔ p(δR(w)) ≄ δA(w)

⇐



Running example
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ϵ
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aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✘

fR(b) ≃ fA(b)

fR(bb) ≄ fA(bb)



Strategy for eR(A)
Goal: implement 


1.     Trying to find counterexample  s.t. 



2(a). Returning  if found

2(b). Returning “ ” if no counterexample is 

found even by sufficient search

eR(A) = {Eq (if fR ≃ fA)
w (if fR(w) ≄ fA(w))

w
fR(w) ≠ fA(w)

w
Eq
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Running example
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for sufficiently many already visited  words  (  )

w
p(δR(w)) ≃ p(δR(w′�))

M w′� M ∈ ℕ

2(b). Returning “ ” if words to check run outEq



Summary
We use  to extract WFAs from RNNs


■  tells the output of an RNN for an input


■  seeks a counterexample by regression on 
internal state spaces of an RNN and a WFA

□Deeming them equivalent if counterexamples 

are not found by sufficient search


• "Sufficiency" is controlled by threshold 

L*( fR, eR)
fR
eR

M
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Outline
1. Introduction

2. Preliminaries

3. Our work: extraction of WFAs from RNNs

4. Experiments
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Research questions
RQ1. How well do the extracted WFAs 

approximate to original RNNs?

RQ2. How applicable is our method to RNNs 

that are more expressive than WFAs?

RQ3. How are efficient the extracted WFAs, 

compared with original RNNs?

41



Experiment for RQ1
Evaluating how well the WFAs extracted by our method 
approximate to original RNNs

■Ours: RGR(M)  (M is a threshold)

□Using Gaussian process regression

■Baseline: BFS(n) 
□By Breadth-First Search in tree traversal for finding 

counterexamples


□Returning “ ” if no counterexample is found in 
consecutive n  words (when the previous 
counterexample is the -th candidate word)

Eq
+m

m
42



Target RNNs
■Architecture: two-layer LSTM networks

■Training: performed so that the RNNs behave 

similarly to randomly generated WFAs 


■Training datasets: pairs 


□ For “WFA-like”:  is sampled from the uniform distrib. 

□ For “Realistic”:  is sampled from a non-uniform distrib.

• Restricted to words where the occurrences of the 

same letter have to be consecutive

• E.g., ✔ “aabccc"    ✘ “aabcca"

A
(w, fA(w))

w
w

43



Extraction from “WFA-like" RNNs
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Each cell shows “MSE ( ) / extraction time (sec)”× 104

Observation & discussion 
■MSEs are lower as extractions take longer times

■ (Conjecture) Because the RNNs behave well for any 

word and the amount of counterexamples 
investigated is more dominant than their “qualities”
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Extraction from “WFA-like" RNNs

44

Ours: RGR(M) Baseline: BFS(n)

Each cell shows “MSE ( ) / extraction time (sec)”× 104

Observation & discussion 
■MSEs are lower as extractions take longer times

■ (Conjecture) Because the RNNs behave well for any 

word and the amount of counterexamples 
investigated is more dominant than their “qualities”

Configurations
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Extraction from “Realistic” RNNs

45

Ours: RGR(M) Baseline: BFS(n)

Each cell shows “MSE ( ) / extraction time (sec)”× 104

Observation & discussion 
■RGR(2) performs the best

■ (Conjecture) BFS(n) investigates the input space on 

which the RNNs are NOT trained in more detail

■ (Conjecture) RGR(2) avoids it by early pruning



Experiment for RQ2
■Extraction from RNNs learning languages more 

expressive than any WFAs
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Experiment for RQ2
■Extraction from RNNs learning languages more 

expressive than any WFAs


■RNN learning target:  (balanced parentheses)𝗐𝗉𝖺𝗋𝖾𝗇

47

𝗐𝗉𝖺𝗋𝖾𝗇(w) =
0
0
1 − (1/2)N

(if  contains  
   unbalanced parentheses)

w

(otherwise; 
    is the depth of deepest paren.)N

Example: 
       𝗐𝗉𝖺𝗋𝖾𝗇(′�′ �((a)(b))′ �′�) = 1 − (1/2)2 𝗐𝗉𝖺𝗋𝖾𝗇(′�′�((a)(b)′�′ �) = 0



Extraction result
■The WFA extracted by RGR( ) 
□ Only largely weighted transitions by parentheses are shown

□ Transition weights for letters other than parentheses are similar

5

48

by “(“
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State label “q/m/n”: 
initial and final weights 
at q are m and n, resp.
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Extraction result
■The WFA extracted by RGR( ) 
□ Only largely weighted transitions by parentheses are shown

□ Transition weights for letters other than parentheses are similar

15
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by “(“
by “)“

State label “q/m/n”: 
initial and final weights 
at q are m and n, resp.

 is learnt successfully at least up to depth 2𝗐𝗉𝖺𝗋𝖾𝗇



Experiment for RQ3
■Comparison of efficiency of running  and   

for RNN  and the extracted WFA 


■Result:  is 1,300 times faster than  in average

□The RNNs are the same as in RQ1

fR fA
R A

fA fR
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Conclusion
■Extracting WFAs from RNNs by 


□  tells the output of an RNN for an input


□  seeks a counterexample by regression 
on internal state spaces of an RNN and a WFA


■Future work

□More sophisticated search for counterexamples

□Dealing with huge alphabet sets

□Theoretical guarantee (in an ideal case)

L*( fR, eR)
fR
eR
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