
Weighted Automata Extraction  
from Recurrent Neural Networks via Regression

回帰による再帰型ニューラルネットワークからの 
重み付きオートマトンの抽出

1

Takamasa Okudono Masaki Waga
Taro Sekiyama Ichiro Hasuo

{tokudono,mwaga,hasuo,sekiyama}@nii.ac.jp 
NII & SOKENDAI

To appear at AAAI 2020

()

Preprint: https://arxiv.org/abs/1904.02931

Recurrent neural networks (RNNs)

Neural networks expandable according to 
input sequences with variable lengths

😄 Great success in learning sequential data,

especially thanks to LSTMs/GRUs!

2

Recurrent neural networks (RNNs)

Neural networks expandable according to 
input sequences with variable lengths

😄 Great success in learning sequential data,

especially thanks to LSTMs/GRUs!

🤨 But there are drawbacks such that:

 ■Hard to interpret what they learnt

 ■Hard to verify their behavior

 ■Computationally costly (even for inference)

3

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Many analysis algorithms

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Many analysis algorithms

Less operations

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Many analysis algorithms

Less operations

} Extracting

FAs

from

discrete-input RNNs

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Many analysis algorithms

Less operations

[Omlin+’96] } Extracting

FAs

from

discrete-input RNNs

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Many analysis algorithms

Less operations

[Omlin+’96]

[Luis+’03] } Extracting

FAs

from

discrete-input RNNs

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Many analysis algorithms

Less operations

[Omlin+’96]

[Luis+’03]

[Wang+’17] } Extracting

FAs

from

discrete-input RNNs

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

4

Apparent state transition

Many analysis algorithms

Less operations

[Omlin+’96]

[Luis+’03]

[Wang+’17]

[Weiss+’18]} Extracting

FAs

from

discrete-input RNNs

Surrogate of RNNs
Finite automata (FAs)
■More interpretable

■More verifiable

■More efficient

5

Apparent state transition

Many analysis algorithms

Less operations

[Omlin+’96]

[Luis+’03]

[Wang+’17]

[Weiss+’18]} Extracting

deterministic FAs

from

discrete-input, d 
Boolean-output RNNs

Our work
Extracting weighted FAs (WFAs) 
from discrete-input, real-output RNNs
■Based on a weighted extension of [Angluin’87, Balle+’15]

□Technical contribution: 
Answering equivalence queries b/w WFAs and
RNNs by regression on their state spaces

■Experiments to answer:

□How close the extracted WFAs are to the given RNNs

□How applicable our method is to expressive RNNs

□How efficient the extracted WFAs are

L*

6

Outline
1. Introduction

2. Preliminaries

A. Abstract definitions of RNNs and WFAs

B. Weighted extension of Angluin’s

3. Our work: extraction of WFAs from RNNs

4. Experiments

L*

7

RNNs

8

Input

Output

RNNs

8

Input

Output

Given input 
x1x2⋯xn ∈ Σ*

x1 x2

…

xn

y ∈ ℝ

RNNs

8

Input

Output

Given input 
x1x2⋯xn ∈ Σ*

■Can be viewed as state-passing machines

□ States s1, s2, ⋯, sn ∈ ℝd

s1 s2 sn

x1 x2

…

xn

y ∈ ℝ

RNNs
■RNN comprises

□ : initial state

□ : final function

□ : state transition function

R
αR ∈ ℝd

βR ∈ ℝd → ℝ
gR ∈ ℝd × Σ → ℝd

9

x1 x2

…

xn

y ∈ ℝ

s1 s2 sn…
αR

βR
gR

RNNs
■RNN comprises

□ : initial state

□ : final function

□ : state transition function

■Derived functions

□  

□

R
αR ∈ ℝd

βR ∈ ℝd → ℝ
gR ∈ ℝd × Σ → ℝd

δR(x1x2⋯xn) = gR(⋯, gR(gR(αR, x1), x2), ⋯, xn)
= sn ∈ ℝd

fR(x1x2⋯xn) = βR(δR(x1x2⋯xn)) = y ∈ ℝ
10

x1 x2

…

xn

y ∈ ℝ

s1 s2 sn…
αR

βR
gR

WFAs
■Finite automata s.t.

□Each state has an initial and final weight

□Each transition is weighted

11

■State label “q/m/n” means
initial and final weights at q
are m and n, respectively

■Transition label “a,n” means
transition by letter "a" is
weighted by n

WFAs
■WFA with states comprises

□ : initial vector (a collection of initial weights)

□ : final vector (a collection of final weights)

□ : transition function

□ is the weight of the transition by from state to

■Derived functions

□

□

A n
αA ∈ ℝn

βA ∈ ℝn

gA ∈ Σ → ℝn×n

gA(a)[i, j] a i j

δA(x1x2⋯xn) = αAgA(x1)gA(x2)⋯gA(xn) ∈ ℝn

fA(x1x2⋯xn) = δA(x1x2⋯xn) ⋅ βA ∈ ℝ

12

Outline
1. Introduction

2. Preliminaries

1. Abstract definitions of RNNs and WFAs

2. Weighted extension of Angluin’s

3. Our method: extraction of WFAs from RNNs

4. Experiments

L*

13

 algorithm for WFAs [Balle+’15]L*(m, e)

Learning a WFA from a black-box by queries

■Input: answerers to two kinds of queries

□ for membership queries
“What value does output for input ?”

□ for equivalence queries

“Is a WFA being constructed equivalent to ?”

• Returns counterexample if not

■Output

□A (minimum) WFA

B

m ∈ Σ* → ℝ
B w ∈ Σ*

e ∈ {WFAs} → {Eq} ⊎ Σ*
B

w ∈ Σ*

14

 Property of L*(m, e)

15

For a WFA ,

 s.t.

where

A
L*(fA, eA) = A0 fA = fA0

eA(A′�) = {Eq (if fA = fA′ �)
w (if fA(w) ≠ fA′�(w))

Outline
1. Introduction

2. Preliminaries

3. Our work: extraction of WFAs from RNNs
4. Experiments

16

Our work
■Using to obtain a WFA close to an RNNL*

17

For a WFA ,

 s.t.

where

A
L*(fA, eA) = A0 fA = fA0

eA(A′�) = {Eq (if fA = fA′ �)
w (if fA(w) ≠ fA′�(w))

 Property of L*

Our work
■Using to obtain a WFA close to an RNN

L*

18

For an RNN ,

 s.t.

where

R
L*(fR, eR) = A0 fR ≃ fA0

eR(A′�) = {Eq (if fR ≃ fA′�)
w (if fR(w) ≄ fA′�(w))

Our expectation

Our work
■Using to obtain a WFA close to an RNN

■Challenge: how do we implement that
answers if and returns an evidence if not

L*

eR(A)
fR ≃ fA

19

For an RNN ,

 s.t.

where

R
L*(fR, eR) = A0 fR ≃ fA0

eR(A′�) = {Eq (if fR ≃ fA′�)
w (if fR(w) ≄ fA′�(w))

Our expectation

Strategy for eR(A)
Goal: implement

1. Trying to find counterexample s.t.

2(a). Returning if found

2(b). Returning “ ” if no counterexample is

found even by sufficient search

eR(A) = {Eq (if fR ≃ fA)
w (if fR(w) ≄ fA(w))

w
fR(w) ≠ fA(w)

w
Eq

20

Strategy for eR(A)
Goal: implement

1. Trying to find counterexample s.t.

2(a). Returning if found

2(b). Returning “ ” if no counterexample is

found even by sufficient search

eR(A) = {Eq (if fR ≃ fA)
w (if fR(w) ≄ fA(w))

w
fR(w) ≠ fA(w)

w
Eq

20

Tree traversal for  
finding counterexamples

■Finding a node s.t. w fR(w) ≠ fA(w)

21

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Σ = {a, b, c}

Tree traversal for  
finding counterexamples

■Finding a node s.t.

■Question: What order of traversal can find  

a counterexample effectively?

w fR(w) ≠ fA(w)

22

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Σ = {a, b, c}

Tree traversal for  
finding counterexamples

■Finding a node s.t.

■Question: What order of traversal can find  

a counterexample effectively?

w fR(w) ≠ fA(w)

23

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Σ = {a, b, c}

Our approach: guiding the traversal by 
a relationship between WFA and RNN A R

Relationship b/t RNN and WFA R A

24

Working hypothesis

fR ≃ fA

Relationship b/t RNN and WFA R A

24

Working hypothesis

= βR ∘ δR

fR ≃ fA

Relationship b/t RNN and WFA R A

24

Working hypothesis

= βR ∘ δR = w ↦ δA(w) ⋅ βA

fR ≃ fA

Relationship b/t RNN and WFA R A

24

Working hypothesis

= βR ∘ δR = w ↦ δA(w) ⋅ βA

fR ≃ fA ⇔ Internal states obtained
by and are relatedδR δA

Relationship b/t RNN and WFA R A

25

Working hypothesis

fR ≃ fA ⇔ Σ*

ℝd

ℝn

δR

δA

?

= βR ∘ δR = w ↦ δA(w) ⋅ βA

Relationship b/t RNN and WFA R A

26

Working hypothesis

fR ≃ fA ⇔
for some 
 p ∈ ℝd → ℝnΣ*

ℝd

ℝn

δR

δA

p

= βR ∘ δR = w ↦ δA(w) ⋅ βA

Relationship b/t RNN and WFA R A

■Utilizing to find counterexamples effectively

■Approximating by regression on state spaces
p

p

26

Working hypothesis

fR ≃ fA ⇔
for some 
 p ∈ ℝd → ℝnΣ*

ℝd

ℝn

δR

δA

p

= βR ∘ δR = w ↦ δA(w) ⋅ βA

Traversal with p
■ Idea:

27

Σ*

ℝd

ℝn

δR

δA

p

fR(w) ≄ fA(w) ⇔ p(δR(w)) ≄ δA(w)

Traversal with p
■ Idea:

27

Σ*

ℝd

ℝn

δR

δA

p

  
if approximation is sufficiently
close to

Dw = ∥p0(δR(w)) − δA(w)∥ ≫ 0
p0

p

fR(w) ≄ fA(w) ⇔ p(δR(w)) ≄ δA(w)

⇐

Traversal with p
■ Idea:

■ Traversal strategy:  

nodes with larger have higher priorities

□ If is large but , is refined on

w Dw
Dw fR(w) ≃ fA(w) p0 (δR(w), δA(w))

28

Σ*

ℝd

ℝn

δR

δA

p

  
if approximation is sufficiently
close to

Dw = ∥p0(δR(w)) − δA(w)∥ ≫ 0
p0

p

fR(w) ≄ fA(w) ⇔ p(δR(w)) ≄ δA(w)

⇐

Running example

29

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Running example

29

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Running example

29

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Db > Da > Dc

Running example

30

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Db > Da > Dc

Running example

30

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Db > Da > Dc

✔

fR(b) ≃ fA(b)

Running example

30

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Db > Da > Dc

✔

fR(b) ≃ fA(b)

Running example

31

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbc > Dbb > ⋯

✔

fR(b) ≃ fA(b)

Running example

32

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbc > Dbb > ⋯

✔

fR(b) ≃ fA(b)

Running example

32

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbc > Dbb > ⋯

✔

✔

fR(b) ≃ fA(b)

Running example

32

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbc > Dbb > ⋯

✔

✔

fR(b) ≃ fA(b)

Running example

33

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔

fR(b) ≃ fA(b)

Running example

34

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔

fR(b) ≃ fA(b)

Running example

34

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✘

fR(b) ≃ fA(b)

fR(bb) ≄ fA(bb)

Strategy for eR(A)
Goal: implement

1. Trying to find counterexample s.t.

2(a). Returning if found

2(b). Returning “ ” if no counterexample is

found even by sufficient search

eR(A) = {Eq (if fR ≃ fA)
w (if fR(w) ≄ fA(w))

w
fR(w) ≠ fA(w)

w
Eq

35

Running example

36

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔

Running example

36

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✔

Running example

36

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✔

Running example

36

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✔

Words (and their descendants) will not be checked if  
the “neighborhoods” of the WFA state for  

have been investigated sufficiently

w
w

Running example

37

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✔

Words (and their descendants) will not be checked if
  

for sufficiently many already visited words

w
p(δR(w)) ≃ p(δR(w′�))

w′ �

Running example

38

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✔

Words (and their descendants) will not be checked if
  

for sufficiently many already visited words ()

w
p(δR(w)) ≃ p(δR(w′�))

M w′� M ∈ ℕ

Running example

38

ϵ

a b c

aa ab ac

… … …

ba bb bc

… … …

ca cb cc

… … …

Da Db Dc

Dbb > Da > ⋯

✔

✔✔

Words (and their descendants) will not be checked if
  

for sufficiently many already visited words ()

w
p(δR(w)) ≃ p(δR(w′�))

M w′� M ∈ ℕ

2(b). Returning “ ” if words to check run outEq

Summary
We use to extract WFAs from RNNs

■ tells the output of an RNN for an input

■ seeks a counterexample by regression on
internal state spaces of an RNN and a WFA

□Deeming them equivalent if counterexamples

are not found by sufficient search

• "Sufficiency" is controlled by threshold

L*(fR, eR)
fR
eR

M

39

Outline
1. Introduction

2. Preliminaries

3. Our work: extraction of WFAs from RNNs

4. Experiments

40

Research questions
RQ1. How well do the extracted WFAs

approximate to original RNNs?

RQ2. How applicable is our method to RNNs

that are more expressive than WFAs?

RQ3. How are efficient the extracted WFAs,

compared with original RNNs?

41

Experiment for RQ1
Evaluating how well the WFAs extracted by our method
approximate to original RNNs

■Ours: RGR(M) (M is a threshold)

□Using Gaussian process regression

■Baseline: BFS(n)
□By Breadth-First Search in tree traversal for finding

counterexamples

□Returning “ ” if no counterexample is found in
consecutive n words (when the previous
counterexample is the -th candidate word)

Eq
+m

m
42

Target RNNs
■Architecture: two-layer LSTM networks

■Training: performed so that the RNNs behave

similarly to randomly generated WFAs

■Training datasets: pairs

□ For “WFA-like”: is sampled from the uniform distrib.

□ For “Realistic”: is sampled from a non-uniform distrib.

• Restricted to words where the occurrences of the

same letter have to be consecutive

• E.g., ✔ “aabccc" ✘ “aabcca"

A
(w, fA(w))

w
w

43

Extraction from “WFA-like" RNNs

44

Each cell shows “MSE () / extraction time (sec)”× 104

Observation & discussion
■MSEs are lower as extractions take longer times

■ (Conjecture) Because the RNNs behave well for any

word and the amount of counterexamples
investigated is more dominant than their “qualities”

Extraction from “WFA-like" RNNs

44

Each cell shows “MSE () / extraction time (sec)”× 104

Observation & discussion
■MSEs are lower as extractions take longer times

■ (Conjecture) Because the RNNs behave well for any

word and the amount of counterexamples
investigated is more dominant than their “qualities”

Configurations

■ : alphabet sizes

■ : state sizes of WFAs

used for training RNNs

|Σ |
|QA∙ |

Extraction from “WFA-like" RNNs

44

Ours: RGR(M)

Each cell shows “MSE () / extraction time (sec)”× 104

Observation & discussion
■MSEs are lower as extractions take longer times

■ (Conjecture) Because the RNNs behave well for any

word and the amount of counterexamples
investigated is more dominant than their “qualities”

Configurations

■ : alphabet sizes

■ : state sizes of WFAs

used for training RNNs

|Σ |
|QA∙ |

Extraction from “WFA-like" RNNs

44

Ours: RGR(M) Baseline: BFS(n)

Each cell shows “MSE () / extraction time (sec)”× 104

Observation & discussion
■MSEs are lower as extractions take longer times

■ (Conjecture) Because the RNNs behave well for any

word and the amount of counterexamples
investigated is more dominant than their “qualities”

Configurations

■ : alphabet sizes

■ : state sizes of WFAs

used for training RNNs

|Σ |
|QA∙ |

Extraction from “Realistic” RNNs

45

Ours: RGR(M) Baseline: BFS(n)

Each cell shows “MSE () / extraction time (sec)”× 104

Observation & discussion
■RGR(2) performs the best

■ (Conjecture) BFS(n) investigates the input space on

which the RNNs are NOT trained in more detail

■ (Conjecture) RGR(2) avoids it by early pruning

Experiment for RQ2
■Extraction from RNNs learning languages more

expressive than any WFAs

46

Experiment for RQ2
■Extraction from RNNs learning languages more

expressive than any WFAs

■RNN learning target: (balanced parentheses)𝗐𝗉𝖺𝗋𝖾𝗇

47

𝗐𝗉𝖺𝗋𝖾𝗇(w) =
0
0
1 − (1/2)N

(if contains  
 unbalanced parentheses)

w

(otherwise; 
 is the depth of deepest paren.)N

Example:
 𝗐𝗉𝖺𝗋𝖾𝗇(′�′ �((a)(b))′ �′�) = 1 − (1/2)2 𝗐𝗉𝖺𝗋𝖾𝗇(′�′�((a)(b)′�′ �) = 0

Extraction result
■The WFA extracted by RGR()
□ Only largely weighted transitions by parentheses are shown

□ Transition weights for letters other than parentheses are similar

5

48

by “(“
by “)“

State label “q/m/n”: 
initial and final weights 
at q are m and n, resp.

Extraction result
■The WFA extracted by RGR()
□ Only largely weighted transitions by parentheses are shown

□ Transition weights for letters other than parentheses are similar

5

48

by “(“
by “)“

State label “q/m/n”: 
initial and final weights 
at q are m and n, resp.

 is learnt successfully at least up to depth 1𝗐𝗉𝖺𝗋𝖾𝗇

Extraction result
■The WFA extracted by RGR()
□ Only largely weighted transitions by parentheses are shown

□ Transition weights for letters other than parentheses are similar

15

49

by “(“
by “)“

State label “q/m/n”: 
initial and final weights 
at q are m and n, resp.

Extraction result
■The WFA extracted by RGR()
□ Only largely weighted transitions by parentheses are shown

□ Transition weights for letters other than parentheses are similar

15

49

by “(“
by “)“

State label “q/m/n”: 
initial and final weights 
at q are m and n, resp.

 is learnt successfully at least up to depth 2𝗐𝗉𝖺𝗋𝖾𝗇

Experiment for RQ3
■Comparison of efficiency of running and  

for RNN and the extracted WFA

■Result: is 1,300 times faster than in average

□The RNNs are the same as in RQ1

fR fA
R A

fA fR

50

Conclusion
■Extracting WFAs from RNNs by

□ tells the output of an RNN for an input

□ seeks a counterexample by regression 
on internal state spaces of an RNN and a WFA

■Future work

□More sophisticated search for counterexamples

□Dealing with huge alphabet sets

□Theoretical guarantee (in an ideal case)

L*(fR, eR)
fR
eR

51

