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Why should we care about a formal language”
A molecular graph should satisfy some constraints to be valid

" |_eaming a generative model of a molecular graph
—Input: set of molecular graphs G = {g1, g2, .-, In }

—Qutput: probability distribution p(g) such that g,, ~ p

» Hard vs. soft constraints on p(g)'s support

—Hard constraint: valence condition N ] \/@
N
3 rule-based classifier that judges this constraint )

—Soft constraint; stability

A rule-based classifier, in general
Formal language

can help
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Why should we care about a formal language?

A formal language defines a set of strings with certain properties;
an assoclated grammar tells us how to generate them

» ~ormal language

Typically defined as a set of strings

—Language point of view

L={a"h":n>1}c{a, b} =%"

—Generative point of view

G = ({S},{a,b},S,{S = ab,S - aSh})

4 /52

All possible strings 2™

Language L

\

Grammar §

© 2019 IBM Corporation



Why should we care about a formal language?

A formal language defines a set of graphs satisfying hard constraints;
an assoclated grammar tells us how to generate them

» ~ormal language

Typically defined as a set of graphs

—Language point of view
I= { Molecules satisfying

the valence conditions
c {All possible graphs}
—Generative point of view

fale
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Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V. set of non-terminals -V ={S}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S > ab, S - aSh}
— § € V: the start symbol - S
S
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Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V. set of non-terminals -V ={S}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S > ab, |S - aSh}
— S € V: the start symbol )
S
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Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V. set of non-terminals -V ={S}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S > ab, S - aSh}
— § € V: the start symbol - S
aSb
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Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}

— X set of terminals — Y ={a, b}

— R: set of production rules — R ={S - ab, |S - aSb}
— § € V. the start symbol - S
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Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}

— X set of terminals — Y ={a, b}

— R: set of production rules — R ={S - ab, S - aSb}
— § € V. the start symbol - S

aaSbb
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Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S - ab| S - aSb}
— § € V. the start symbol - S
aaShb
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Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S - ab, S - aSb}
— § € V. the start symbol - S
aaabbb
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Hyperedge replacement grammar
Hypergraph is a generalization of a graph

= Hypergraph H = (V, E) consists of. ..
—Nodev eV

—Hyperedge e € E < 2VI'; Connect an arbitrary number of nodes

cf, An edge in a graph connects exactly two nodes

Node Hyperedge

i

15 /52 © 2019 IBM Corporation

0




Hyperedge replacement grammar

HRG generates a hypergraph by repeatedly replacing
non-terminal hyperedges with hypergraphs

» Hyperedge replacement grammar (HRG) G = (V,%, R, S)

—V' set of non-terminals }L I
aloels On nypereages

- set of terminals C

=S start symbol

—R: set of production rules

A rule replaces a non-terminal hyperedge with a hypergraph

o &% oo

16 /52 [Feder, 71], [Paviidis+, 72]
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Hyperedge replacement grammar
Start from start symbol S

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation
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Hyperedge replacement grammar
The left rule is applicable

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation
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Hyperedge replacement grammar
We obtain a hypergraph with three non-terminals

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation

19 /52



Hyperedge replacement grammar

Apply the right rule to one of the non-terminals

Production rules P

I —
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Hyperedge replacement grammar
Two non-terminals remain

Production rules P

- g—@?—» H O

O 0O =
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21 /52



Hyperedge replacement grammar
Repeat the procedure until there is no non-terminal

%
;
L

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation
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Hyperedge replacement grammar
Repeat the procedure until there is no non-terminal

i

i

T O OO O =

Production rules P

- g—@?—» H O
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Hyperedge replacement grammar
Repeat the procedure until there is no non-terminal

i

o

i

T O OO O =

Production rules P

- g—@?—» H —O—
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Hyperedge replacement grammar
Graph generation halts when there is no non-terminal

H
1] ¢
> o[of
] ¢
;/ “o{clo
W] <
Production rules P H

O 0O =

- g—®—> H —O—
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HRG inference algorithm
HRG inference algorithm outputs HRG that can reconstruct the input

= HRG inference algorithm [Aguifiaga+, 16]

—Input: Set of hypergraphs H
Language of the grammar

—Qutput: HRG such that H € L(HRG)

Minimum requirement of the grammar’'s expressiveness

—Idea: Infer production rules necessary to obtain each hypergraph

Decompose each hypergraph into a set of production rules
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HRG inference algorithm

Tree decomposition discovers a tree-like structure in a graph

" [ree decomposition

—All the nodes and edges must be included in the tree

—For each node, the tree nodes that contain it must be connected

28 /52

?

;

:

;

:

:

an] SO5 (@] mon (@] e (=

T FO1O OO O T

r 21\
H Cle
\_ o J
r 7 )
H g—G)
\___HI

* Digits represent the node correspondence

r Ig ~
o/Clo{H
\__ 0 Y
o ~
>-H(Co1H
Hl

© 2019 IBM Corporation



HRG inference algorithm
Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

s N s N
H H H H
¢ 9 ol 2 ol
Lo {Clo o-{C}o
H{%i%g{%H 'Yy . q’]_[@ /AN o
s 7 ) o N
H{}i%}i%}l H{}g@ — &g%}H
Hj H \____H] _Hd
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HRG inference algorithm

Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG

1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

:
HiFoqC E
Production rule

@%&”@
®
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HRG inference algorithm

Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG

1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

:
HiFoqC E
Production rule

@rﬁ@l*@
®
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HRG inference algorithm

Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG

1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

Production rule
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HRG inference algorithm

HRG can be inferred from tree decompositions of input hypergraphs.

» HRG inference algorithm [Aguifiaga+, 16]

—Algorithm:

\_

/1
2. Extract production rules
3. Compose HRG by taking their union

Compute tree decompositions of input hypergraphs

~

—Expressiveness: H < L(HRG)
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Molecular hypergraph grammar
We want a graph grammar that guarantees hard constraints

= Objective

Construct a graph grammar that never violates the valence condition

= Application: Generative model of a molecule
—Grammar-based generation guarantees the valence condition

—Probabilistic model could learn soft constraints
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Molecular hypergraph grammar
A simple application to molecular graphs doesn’t work

= A simple application to molecular graphs

—Input: Molecular graphs This rule increases

—Issue: Valence conditions can be violated the degree of carbon

Input Tree decomposition Extracted rules

g @ | e

NI N
BCl0CK10B @N _ @GN
NI N

8 6 ew . es
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Molecular hypergraph grammar
Our idea is to use a hypergraph representation of a molecule

= Conserved guantity
—HRG: # of nodes in a hyperedge

—QOur grammar: # of bonds connected to each atom (valence)

=~ Atom should be modeled as a hyperedge

» Molecular hypergraph

— Atom = hyperedge

<>
i

— Bond = node

?

= -0 a o0+ o o =

i
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Molecular hypergraph grammar
A language for molecular hypergraphs consists of two properties

» Molecular hypergraph as a language

A set of hypergraphs with the following properties:
{ 1. Each node has degree 2 (=2-regular)

2. Label on a hyperedge determines # of nodes it has (= valence)

236
T OO o O+ T
T O O 0O+ =
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Molecular hypergraph grammar

MHG, a grammar for the language, is defined as a subclass of HRG

= Molecular Hypergraph Grammar (MHG)

~ HRG______

(o)

—Definition: HRG that generates molecular hypergraphs only

This can be
avoided by
learning HRG from
data [Aguifiaga+, 16]

—Counterexamples:

i K
Valence @ = o e o [Eo-

o

Hf [H H

Hl |H

| 0 ?
2-regularity @ HTC%C%}

- 2 9
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MHG inference algorithm
A naive application of the existing algorithm doesn’t work

= Naive application of the HRG inference algorithm [Aguifaga+, 16]
—Input: Set of hypergraphs

—Qutput: HRG w/ the following properties:
e All the input hypergraphs are in the language &
e Guarantee the valence conditions &

e No guarantee on 2-regularity @

This cannot be transformed
iINnto a molecular graph

g

42 /52 © 2019 IBM Corporation
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MHG inference algorithm
Irredundant tree decomposition is a key to guarantee 2-regularity

= [rredundant tree decomposition
—The connected subgraph induced by a node must be a path

—Any tree decomposition can be made irredundant in poly-time

| o © ) s
| ® () ©
o=

®cC H
?
=

Irredundant Redundant
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MHG inference algorithm
MHG inference algorithm is different from the existing one by two steps

» MHG Inference algorithm kajino, 19]
—Input: Set of molecular graphs

—Qutput: MHG w/ the following properties:
¢ All the input hypergraphs are in the language &

- ,/ Thanks to HRG
e Guarantee the valence conditions &

e Guarantee 2-regularity &8 < Our contribution
/1 Convert molecular | A
. graphs into molecular hypergraphs
2. Compute tree decompositions of molecular hypergraphs
3. Convert each tree decomposition to be irredundant
4. Extract production rules
\5 Compose MHG by taking their union )
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Combination with VAE

We obtain (Enc, Dec) between molecule and latent vector
oy combining MHG and RNN-VAE

» MIHG-VAE: (Enc, Dec) between molecule & latent vector

MHG Enc of RNN-VAE
[ : \ {_A_
Molecular Molecular Parse Tree Latent vector
graph hypergraph according to MHG atent vecto

Hyuyg

z € RP

Youg
Noug

!

MHG-VAE encoder
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Combination with VAE

First, we learn (Enc, Dec) between a molecule and its vector
representation using MHG-VAE

—Find: Molecule that maximizes the target

—Method: VAE+BO

= Global molecular optimization [Gémez-Bombareli+, 16] ©
1. Obtain MHG from the input molecules

4
e

o

2. Train RNN-VAE on syntax trees

3. Obtain vector representations {z,, € RP}N_,

Some of which have target values {y, € R}

47 /52 Image from [Gomez-Bombarelli+, 16] ©2019 IBM Corporation



Combination with VAE

Given vector representations and their target values,
we use BO to obtain a vector that optimizes the target

= Global molecular optimization [Gomez-Bombare

—Find: Molecule that maximizes the target

—Method: VAE+BO
1,
2.
3.

Most Probable Decoding
argmax p(*Iz)

4. BO gives us candidates {z,, € RP}M _. that may maximize the target

5. Decode them to obtain molecules {G, 3% -4

48 /52 Image from [Gomez-Bombarelli+, 16] ©2019 IBM Corporation



Combination with VAE

We evaluate the benefit of our grammar-based representation,
compared with existing ones

= cmpirical study

—Purpose: How much does our representation facilitate VAE training”

(1) Ground truth molecule (2) Predicted Tree T

—Baselines: © s A i

¢ {C,G,SDIVAE use SMILES (text repr.)
e JT-VAE assembles molecular components
[t requires NNs other than VAE for scoring

—Tasks:

¢ \/AE reconstruction

e \/alid prior ratio

e (Global molecular optimization

Image from [Jin+, 18]
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Combination with VAE

Our grammar-based representation achieves better scores.
This result empirically supports the effectiveness of our approach.

= Result
Maximizing f(m)

Method % Reconst.  Valid prior st >nd 3rd 50th  Top 50 Avg.
CVAE 44.6% 0.7% 1.98 1.42 1.19 - -
GVAE 53.7% 7.2% 294 289 280 - -

SD-VAE 76.2% 43.5% 404 350 296 -~ -

JT-VAE 76.7% 100% 530 493 449 348 3.93
GCPN - - 798 785 7.80 - -
Ours 94.8% 100% 556 540 534 412 4.49

——

f(m) =10gP(m) — SA(m) — cycle(m)

T

Penalty to a ring larger than six

Synthetic accessibility score

© 2019 IBM Corporation
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Takeaways
A graph grammar can be a building block for a graph generative model

= Classify constraints into hard ones and soft ones

ML for the soft ones, rules for the hard ones

» Define a language by encoding hard constraints

£.9., valence conditions

» Design a grammar for the language

Sometime, w/ an inference algorithm

Code is now public on Github

https://github.com/ibm-research-tokyo/graph_grammar
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