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I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE
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A molecular graph should satisfy some constraints to be valid

§Learning a generative model of a molecular graph
–Input: set of molecular graphs ! = {$%, $', … , $)}

–Output: probability distribution +($) such that $. ∼ +

§Hard vs. soft constraints on +($)’s support
–Hard constraint: valence condition

∃ rule-based classifier that judges this constraint

–Soft constraint: stability
∄ rule-based classifier, in general

3

Why should we care about a formal language?

!"

Formal language 
can help
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A formal language defines a set of strings with certain properties;
an associated grammar tells us how to generate them

§Formal language
Typically defined as a set of strings

–Language point of view
= a set of strings with certain properties

(= a subset of all possible strings)

–Generative point of view
A grammar is often associated with a language

= how to generate strings in ℒ
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Why should we care about a formal language?

All possible strings Σ∗

Language ℒ

Grammar 5

ℒ = 6.7. ∶ 9 ≥ 1 ⊂ 6, 7 ∗ = Σ∗

5 = = , 6, 7 , =, = → 67, = → 6=7
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A formal language defines a set of graphs satisfying hard constraints;
an associated grammar tells us how to generate them

§Formal language
Typically defined as a set of graphs

–Language point of view
= a set of graphs satisfying the hard constraints

(= a subset of all possible graphs)

–Generative point of view
A grammar is often associated with a language

= how to generate graphs in ℒ

5

Why should we care about a formal language?

All possible graphs Σ∗

Language ℒ

Grammar 5

ℒ = Molecules satisfying
the valence conditions

⊂ {All possible graphs}

???
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I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE
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CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol
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Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

=
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CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol
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Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

66=77
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CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol
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CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol
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Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

666777
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I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE
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Hypergraph is a generalization of a graph

§Hypergraph W = (T, X) consists of…
–Node Y ∈ T

–Hyperedge Z ∈ X ⊆ 2 ] : Connect an arbitrary number of nodes
cf, An edge in a graph connects exactly two nodes

15

Hyperedge replacement grammar

HyperedgeNode
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HRG generates a hypergraph by repeatedly replacing 
non-terminal hyperedges with hypergraphs

§Hyperedge replacement grammar (HRG) 5 = (T, Σ, U, =)

–T: set of non-terminals

–Σ: set of terminals
–=: start symbol

–U: set of production rules
– A rule replaces a non-terminal hyperedge with a hypergraph
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Hyperedge replacement grammar
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Labels on hyperedges
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[Feder, 71], [Pavlidis+, 72]
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Start from start symbol S
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Hyperedge replacement grammar
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The left rule is applicable
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Hyperedge replacement grammar

S
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We obtain a hypergraph with three non-terminals
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Hyperedge replacement grammar
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Apply the right rule to one of the non-terminals
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Hyperedge replacement grammar
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Two non-terminals remain
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Hyperedge replacement grammar
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Repeat the procedure until there is no non-terminal
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Hyperedge replacement grammar
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Repeat the procedure until there is no non-terminal
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Hyperedge replacement grammar
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Repeat the procedure until there is no non-terminal
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Hyperedge replacement grammar
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Graph generation halts when there is no non-terminal
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Hyperedge replacement grammar
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HRG inference algorithm outputs HRG that can reconstruct the input

§HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs ℋ

–Output: HRG such that ℋ ⊆ ℒ(HRG)
Minimum requirement of the grammar’s expressiveness

–Idea: Infer production rules necessary to obtain each hypergraph
Decompose each hypergraph into a set of production rules

27

HRG inference algorithm

Language of the grammar
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Tree decomposition discovers a tree-like structure in a graph

§Tree decomposition
–All the nodes and edges must be included in the tree

–For each node, the tree nodes that contain it must be connected
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HRG inference algorithm

* Digits represent the node correspondence
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement
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HRG inference algorithm
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement
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HRG inference algorithm
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement
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HRG inference algorithm
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Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

33

HRG inference algorithm
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HRG can be inferred from tree decompositions of input hypergraphs.

§HRG inference algorithm [Aguiñaga+, 16]

–Algorithm:

–Expressiveness: ℋ ⊆ ℒ(HRG)
The resultant HRG can generate all input hypergraphs.

(∵ clear from its algorithm)

34

HRG inference algorithm

1. Compute tree decompositions of input hypergraphs
2. Extract production rules
3. Compose HRG by taking their union
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We want a graph grammar that guarantees hard constraints

§Objective
Construct a graph grammar that never violates the valence condition

§Application: Generative model of a molecule
–Grammar-based generation guarantees the valence condition

–Probabilistic model could learn soft constraints

36

Molecular hypergraph grammar

!"
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A simple application to molecular graphs doesn’t work

§A simple application to molecular graphs
–Input: Molecular graphs

–Issue: Valence conditions can be violated
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Molecular hypergraph grammar
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Our idea is to use a hypergraph representation of a molecule

§Conserved quantity
–HRG: # of nodes in a hyperedge

–Our grammar: # of bonds connected to each atom (valence)
∴ Atom should be modeled as a hyperedge

§Molecular hypergraph
– Atom = hyperedge

– Bond = node
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Molecular hypergraph grammar
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A language for molecular hypergraphs consists of two properties

§Molecular hypergraph as a language
A set of hypergraphs with the following properties:

1. Each node has degree 2 (=2-regular)
2. Label on a hyperedge determines # of nodes it has (= valence)
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Molecular hypergraph grammar
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MHG, a grammar for the language, is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples: 
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Molecular hypergraph grammar
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This can be 
avoided by 
learning HRG from 
data [Aguiñaga+, 16]

Use an irredundant 
tree decomposition
(our contribution)
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A naive application of the existing algorithm doesn’t work

§Naive application of the HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs

–Output: HRG w/ the following properties:
• All the input hypergraphs are in the language $

• Guarantee the valence conditions $

• No guarantee on 2-regularity%
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MHG inference algorithm
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Irredundant tree decomposition is a key to guarantee 2-regularity

§ Irredundant tree decomposition
–The connected subgraph induced by a node must be a path

–Any tree decomposition can be made irredundant in poly-time
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MHG inference algorithm
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MHG inference algorithm is different from the existing one by two steps

§MHG Inference algorithm [Kajino, 19]

–Input: Set of molecular graphs

–Output: MHG w/ the following properties:
• All the input hypergraphs are in the language $

• Guarantee the valence conditions $

• Guarantee 2-regularity &

44

MHG inference algorithm

1. Convert molecular graphs into molecular hypergraphs
2. Compute tree decompositions of molecular hypergraphs
3. Convert each tree decomposition to be irredundant
4. Extract production rules
5. Compose MHG by taking their union

Thanks to HRG

Our contribution
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We obtain (Enc, Dec) between molecule and latent vector 
by combining MHG and RNN-VAE

§MHG-VAE: (Enc, Dec) between molecule & latent vector

46

Combination with VAE

Enc
G
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Molecular
graph

Molecular
hypergraph

Parse Tree
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First, we learn (Enc, Dec) between a molecule and its vector 
representation using MHG-VAE

§Global molecular optimization [Gómez-Bombarelli+, 16]

–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations f. ∈ ℝh .i%
)

1. Some of which have target values {j. ∈ ℝ}

4. BO gives us candidates fk ∈ ℝh ki%
l that may maximize the target

5. Decode them to obtain molecules !k ki%
l

47

Combination with VAE

Image from [Gómez-Bombarelli+, 16]
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Given vector representations and their target values,
we use BO to obtain a vector that optimizes the target

§Global molecular optimization [Gómez-Bombarelli+, 16]

–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations f. ∈ ℝh .i%
)

1. Some of which have target values {j. ∈ ℝ}

4. BO gives us candidates fk ∈ ℝh ki%
l that may maximize the target

5. Decode them to obtain molecules !k ki%
l
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Combination with VAE

Image from [Gómez-Bombarelli+, 16]
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We evaluate the benefit of our grammar-based representation, 
compared with existing ones

§Empirical study
–Purpose: How much does our representation facilitate VAE training?

–Baselines:
• {C,G,SD}VAE use SMILES (text repr.)

• JT-VAE assembles molecular components
– It requires NNs other than VAE for scoring

–Tasks:
• VAE reconstruction

• Valid prior ratio

• Global molecular optimization

49

Combination with VAE

Image from [Jin+, 18]
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Our grammar-based representation achieves better scores.
This result empirically supports the effectiveness of our approach.

§Result

50

Combination with VAE

Synthetic accessibility score

Penalty to a ring larger than six

Water solubility

Maximizing m(n)
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A graph grammar can be a building block for a graph generative model

§Classify constraints into hard ones and soft ones
ML for the soft ones, rules for the hard ones

§Define a language by encoding hard constraints
E.g., valence conditions

§Design a grammar for the language
Sometime, w/ an inference algorithm

Code is now public on Github
https://github.com/ibm-research-tokyo/graph_grammar
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