Graph generation using a graph grammar

Hiroshi Kajino

IBM Research - Tokyo

Contents

| will talk albbout an application of formal language to a graph generation
oroblem

» ~ormal language
—Context-free grammar

—Hyperedge replacement grammar (HRG)

—HRG inference algorithm

= Application to molecular graph generation

—Molecular hypergraph grammar (a special case of HRG)
—MHG inference algorithm 5
—Combination with VAE N

2 /b2 © 2019 IBM Corporation

Why should we care about a formal language”
A molecular graph should satisfy some constraints to be valid

" |_eaming a generative model of a molecular graph
—Input: set of molecular graphs G = {g1, g2, .-, In }

—Qutput: probability distribution p(g) such that g,, ~ p

» Hard vs. soft constraints on p(g)'s support

—Hard constraint: valence condition N] \/@
N
3 rule-based classifier that judges this constraint)

—Soft constraint; stability

A rule-based classifier, in general
Formal language

can help

3 /52 © 2019 IBM Corporation

Why should we care about a formal language?

A formal language defines a set of strings with certain properties;
an assoclated grammar tells us how to generate them

» ~ormal language

Typically defined as a set of strings

—Language point of view

L={a"h":n>1}c{a, b} =%"

—Generative point of view

G = ({S},{a,b},S,{S = ab,S - aSh})

4 /52

All possible strings 2™

Language L

\

Grammar §

© 2019 IBM Corporation

Why should we care about a formal language?

A formal language defines a set of graphs satisfying hard constraints;
an assoclated grammar tells us how to generate them

» ~ormal language

Typically defined as a set of graphs

—Language point of view
I= { Molecules satisfying

the valence conditions
c {All possible graphs}
—Generative point of view

fale

5 /52

}

All possible graphs X*

Language L

\

Grammar ¢

© 2019 IBM Corporation

Contents

| will talk albbout an application of formal language to a graph generation
oroblem

» ~ormal language
—Context-free grammar

—Hyperedge replacement grammar (HRG)

—HRG inference algorithm

= Application to molecular graph generation

—Molecular hypergraph grammar (a special case of HRG)
—MHG inference algorithm 5
—Combination with VAE N

6 /52 © 2019 IBM Corporation

Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V. set of non-terminals -V ={S}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S > ab, S - aSh}
— § € V: the start symbol - S
S

7 /52 © 2019 IBM Corporation

Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V. set of non-terminals -V ={S}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S > ab, |S - aSh}
— S € V: the start symbol)
S

8 /52 © 2019 IBM Corporation

Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V. set of non-terminals -V ={S}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S > ab, S - aSh}
— § € V: the start symbol - S
aSb

9 /52 © 2019 IBM Corporation

Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}

— X set of terminals — Y ={a, b}

— R: set of production rules — R ={S - ab, |S - aSb}
— § € V. the start symbol - S

10 /52 © 2019 IBM Corporation

Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}

— X set of terminals — Y ={a, b}

— R: set of production rules — R ={S - ab, S - aSb}
— § € V. the start symbol - S

aaSbb

11 /52 © 2019 IBM Corporation

Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S - ab| S - aSb}
— § € V. the start symbol - S
aaShb

12 /52 © 2019 IBM Corporation

Context-free grammar

CFG generates a string by repeatedly applying a production rule to a
non-terminal, until there exists Nno non-terminal

» Context-free grammar G = (V,%,R,S) = Example

— V' set of non-terminals —V = {5}
— X set of terminals — Y ={a, b}
— R: set of production rules — R ={S - ab, S - aSb}
— § € V. the start symbol - S
aaabbb

13 /52 © 2019 IBM Corporation

Contents

| will talk albbout an application of formal language to a graph generation
oroblem

» ~ormal language
—Context-iree-grammar

—Hyperedge replacement grammar (HRG)

—HRG inference algorithm

= Application to molecular graph generation

—Molecular hypergraph grammar (a special case of HRG)
—MHG inference algorithm 5
—Combination with VAE N

14 /52 © 2019 IBM Corporation

T
i
"

Hyperedge replacement grammar
Hypergraph is a generalization of a graph

= Hypergraph H = (V, E) consists of. ..
—Nodev eV

—Hyperedge e € E < 2VI'; Connect an arbitrary number of nodes

cf, An edge in a graph connects exactly two nodes

Node Hyperedge

i

15 /52 © 2019 IBM Corporation

0

Hyperedge replacement grammar

HRG generates a hypergraph by repeatedly replacing
non-terminal hyperedges with hypergraphs

» Hyperedge replacement grammar (HRG) G = (V,%, R, S)

—V' set of non-terminals }L I
aloels On nypereages

- set of terminals C

=S start symbol

—R: set of production rules

A rule replaces a non-terminal hyperedge with a hypergraph

o &% oo

16 /52 [Feder, 71], [Paviidis+, 72]

oo RFO+q =

© 2019 IBM Corporation

Hyperedge replacement grammar
Start from start symbol S

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation

17 /52

Hyperedge replacement grammar
The left rule is applicable

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation

18 /52

Hyperedge replacement grammar
We obtain a hypergraph with three non-terminals

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation

19 /52

Hyperedge replacement grammar

Apply the right rule to one of the non-terminals

Production rules P

I —

20 /52

o

OO+ =

© 2019 IBM Corporation

Hyperedge replacement grammar
Two non-terminals remain

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation

21 /52

Hyperedge replacement grammar
Repeat the procedure until there is no non-terminal

%
;
L

Production rules P

- g—@?—» H O

O 0O =

© 2019 IBM Corporation

22 /52

[jun]
n
il
n

THIH]

Hyperedge replacement grammar
Repeat the procedure until there is no non-terminal

i

i

T O OO O =

Production rules P

- g—@?—» H O

23 /52 © 2019 IBM Corporation

O 0O =

L
Tl

Hyperedge replacement grammar
Repeat the procedure until there is no non-terminal

i

o

i

T O OO O =

Production rules P

- g—@?—» H —O—

24 |52 © 2019 IBM Corporation

O 0O =

Hyperedge replacement grammar
Graph generation halts when there is no non-terminal

H
1] ¢
> o[of
] ¢
;/ “o{clo
W] <
Production rules P H

O 0O =

- g—®—> H —O—

25 /52 © 2019 IBM Corporation

Contents

| will talk albbout an application of formal language to a graph generation
oroblem

» ~ormal language

—Context-free-grammar
—Hyperedge-replacermentgrammarHRS)

—HRG inference algorithm

= Application to molecular graph generation

—Molecular hypergraph grammar (a special case of HRG)
—MHG inference algorithm 5
—Combination with VAE N

26 /52 © 2019 IBM Corporation

HRG inference algorithm
HRG inference algorithm outputs HRG that can reconstruct the input

= HRG inference algorithm [Aguifiaga+, 16]

—Input: Set of hypergraphs H
Language of the grammar

—Qutput: HRG such that H € L(HRG)

Minimum requirement of the grammar’'s expressiveness

—Idea: Infer production rules necessary to obtain each hypergraph

Decompose each hypergraph into a set of production rules

27 /52 © 2019 IBM Corporation

HRG inference algorithm

Tree decomposition discovers a tree-like structure in a graph

" [ree decomposition

—All the nodes and edges must be included in the tree

—For each node, the tree nodes that contain it must be connected

28 /52

?

;

:

;

:

:

an] SO5 (@] mon (@] e (=

T FO1O OO O T

r 21\
H Cle
_ o J
r 7)
H g—G)
___HI

* Digits represent the node correspondence

r Ig ~
o/Clo{H
__ 0 Y
o ~
>-H(Co1H
Hl

© 2019 IBM Corporation

HRG inference algorithm
Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

s N s N
H H H H
¢ 9 ol 2 ol
Lo {Clo o-{C}o
H{%i%g{%H 'Yy . q’]_[@ /AN o
s 7) o N
H{}i%}i%}l H{}g@ — &g%}H
Hj H ____H] _Hd

29 /52 © 2019 IBM Corporation

HRG inference algorithm

Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG

1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

:
HiFoqC E
Production rule

@%&”@
®

31 /52

r $\
H Clo
_ o)
r 7)
H g—G)
___HI

<Naﬁach

r Ig ~
o{Clo{H
__ 0 Y
o ~
>-H(Co1H
Hl

© 2019 IBM Corporation

HRG inference algorithm

Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG

1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

:
HiFoqC E
Production rule

@rﬁ@l*@
®

32 /52

4 Ig\
Hl-o{Clo
_ o J
SR
H g@
Hl

<\attach

S\ Children

(

\

o

_

-
o

H
J
~N

H

_

T o 9| [T

J

© 2019 IBM Corporation

HRG inference algorithm

Tree decomposition and (a syntax tree of) HRG are equivalent

= Relationship between tree decomposition and HRG

1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection & Hyperedge replacement

Production rule

H
gy

r 21\
H Clo
_ o)
r 7)
H g—G)
___HI)

<\attach

(

\

o

_

-
o

H
J
~N

H

_

T o 9| [T

J

© 2019 IBM Corporation

HRG inference algorithm

HRG can be inferred from tree decompositions of input hypergraphs.

» HRG inference algorithm [Aguifiaga+, 16]

—Algorithm:

_

/1
2. Extract production rules
3. Compose HRG by taking their union

Compute tree decompositions of input hypergraphs

~

—Expressiveness: H < L(HRG)

34 /52

The resultant HRG can generate all input hypergraphs.

(~+ clear from its algorithm)

© 2019 IBM Corporation

Contents

| will talk albbout an application of formal language to a graph generation
oroblem

» ~ormal language

—Context-free-grammar

—Hyperedge-replacermentgrammarHRS)
e 4

= Application to molecular graph generation

—Molecular hypergraph grammar (a special case of HRG)
—MHG inference algorithm 5
—Combination with VAE N

35 /52 © 2019 IBM Corporation

Molecular hypergraph grammar
We want a graph grammar that guarantees hard constraints

= Objective

Construct a graph grammar that never violates the valence condition

= Application: Generative model of a molecule
—Grammar-based generation guarantees the valence condition

—Probabilistic model could learn soft constraints

36 /52 © 2019 IBM Corporation

Molecular hypergraph grammar
A simple application to molecular graphs doesn’t work

= A simple application to molecular graphs

—Input: Molecular graphs This rule increases

—Issue: Valence conditions can be violated the degree of carbon

Input Tree decomposition Extracted rules

g @ | e

NI N
BCl0CK10B @N _ @GN
NI N

8 6 ew . es

© 2019 IBM Corporation

37 /52

n
il
1]

Molecular hypergraph grammar
Our idea is to use a hypergraph representation of a molecule

= Conserved guantity
—HRG: # of nodes in a hyperedge

—QOur grammar: # of bonds connected to each atom (valence)

=~ Atom should be modeled as a hyperedge

» Molecular hypergraph

— Atom = hyperedge

<>
i

— Bond = node

?

= -0 a o0+ o o =

i

38 /52 © 2019 IBM Corporation

[lvm]]
n
i
i

Molecular hypergraph grammar
A language for molecular hypergraphs consists of two properties

» Molecular hypergraph as a language

A set of hypergraphs with the following properties:
{ 1. Each node has degree 2 (=2-regular)

2. Label on a hyperedge determines # of nodes it has (= valence)

236
T OO o O+ T
T O O 0O+ =

39 /52 © 2019 1BM Corporation

Molecular hypergraph grammar

MHG, a grammar for the language, is defined as a subclass of HRG

= Molecular Hypergraph Grammar (MHG)

~ HRG______

(o)

—Definition: HRG that generates molecular hypergraphs only

This can be
avoided by
learning HRG from
data [Aguifiaga+, 16]

—Counterexamples:

i K
Valence @ = o e o [Eo-

o

Hf [H H

Hl |H

| 0 ?
2-regularity @ HTC%C%}

- 2 9

40 /52 HH H

Use an iredundant

tree decomposition
(our contribution)

© 2019 IBM Corporation

Contents

| will talk albbout an application of formal language to a graph generation
oroblem

» ~ormal language

—Context-free-grammar

—Hyperedge-replacermentgrammarHRS)
Iou 4

= Application to molecular graph generation

—MeleedlarRypergraphgrarmrmar{aspectatcase-of-HHRS)
—MHG inference algorithm 5
—Combination with VAE N

41 /52 © 2019 IBM Corporation

MHG inference algorithm
A naive application of the existing algorithm doesn’t work

= Naive application of the HRG inference algorithm [Aguifaga+, 16]
—Input: Set of hypergraphs

—Qutput: HRG w/ the following properties:
e All the input hypergraphs are in the language &
e Guarantee the valence conditions &

e No guarantee on 2-regularity @

This cannot be transformed
iINnto a molecular graph

g

42 /52 © 2019 IBM Corporation

m%((;{%m
L OO0
;

T

MHG inference algorithm
Irredundant tree decomposition is a key to guarantee 2-regularity

= [rredundant tree decomposition
—The connected subgraph induced by a node must be a path

—Any tree decomposition can be made irredundant in poly-time

| o ©) s
| ® () ©
o=

®cC H
?
=

Irredundant Redundant

43 /52 © 2019 IBM Corporation

MHG inference algorithm
MHG inference algorithm is different from the existing one by two steps

» MHG Inference algorithm kajino, 19]
—Input: Set of molecular graphs

—Qutput: MHG w/ the following properties:
¢ All the input hypergraphs are in the language &

- ,/ Thanks to HRG
e Guarantee the valence conditions &

e Guarantee 2-regularity &8 < Our contribution
/1 Convert molecular | A
. graphs into molecular hypergraphs
2. Compute tree decompositions of molecular hypergraphs
3. Convert each tree decomposition to be irredundant
4. Extract production rules
\5 Compose MHG by taking their union)

44 /52 © 2019 IBM Corporation

Contents

| will talk albbout an application of formal language to a graph generation
oroblem

» ~ormal language

—Context-free-grammar

—Hyperedge-replacermentgrammarHRS)
Iou 4

= Application to molecular graph generation

—MeleedlarRypergraphgrarmrmar{aspectatcase-of-HHRS)

| @ | O
—Combination with VAE N

45 /52 © 2019 IBM Corporation

Combination with VAE

We obtain (Enc, Dec) between molecule and latent vector
oy combining MHG and RNN-VAE

» MIHG-VAE: (Enc, Dec) between molecule & latent vector

MHG Enc of RNN-VAE
[: \ {_A_
Molecular Molecular Parse Tree Latent vector
graph hypergraph according to MHG atent vecto

Hyuyg

z € RP

Youg
Noug

!

MHG-VAE encoder

46 /52 © 2019 IBM Corporation

Combination with VAE

First, we learn (Enc, Dec) between a molecule and its vector
representation using MHG-VAE

—Find: Molecule that maximizes the target

—Method: VAE+BO

= Global molecular optimization [Gémez-Bombareli+, 16] ©
1. Obtain MHG from the input molecules

4
e

o

2. Train RNN-VAE on syntax trees

3. Obtain vector representations {z,, € RP}N_,

Some of which have target values {y, € R}

47 /52 Image from [Gomez-Bombarelli+, 16] ©2019 IBM Corporation

Combination with VAE

Given vector representations and their target values,
we use BO to obtain a vector that optimizes the target

= Global molecular optimization [Gomez-Bombare

—Find: Molecule that maximizes the target

—Method: VAE+BO
1,
2.
3.

Most Probable Decoding
argmax p(*Iz)

4. BO gives us candidates {z,, € RP}M _. that may maximize the target

5. Decode them to obtain molecules {G, 3% -4

48 /52 Image from [Gomez-Bombarelli+, 16] ©2019 IBM Corporation

Combination with VAE

We evaluate the benefit of our grammar-based representation,
compared with existing ones

= cmpirical study

—Purpose: How much does our representation facilitate VAE training”

(1) Ground truth molecule (2) Predicted Tree T

—Baselines: © s A i

¢ {C,G,SDIVAE use SMILES (text repr.)
e JT-VAE assembles molecular components
[t requires NNs other than VAE for scoring

—Tasks:

¢ \/AE reconstruction

e \/alid prior ratio

e (Global molecular optimization

Image from [Jin+, 18]
49 /52 © 2019 IBM Corporation

Combination with VAE

Our grammar-based representation achieves better scores.
This result empirically supports the effectiveness of our approach.

= Result
Maximizing f(m)

Method % Reconst. Valid prior st >nd 3rd 50th Top 50 Avg.
CVAE 44.6% 0.7% 1.98 1.42 1.19 - -
GVAE 53.7% 7.2% 294 289 280 - -

SD-VAE 76.2% 43.5% 404 350 296 -~ -

JT-VAE 76.7% 100% 530 493 449 348 3.93
GCPN - - 798 785 7.80 - -
Ours 94.8% 100% 556 540 534 412 4.49

——

f(m) =10gP(m) — SA(m) — cycle(m)

T

Penalty to a ring larger than six

Synthetic accessibility score

© 2019 IBM Corporation

50 /52 \Water solubility

Takeaways
A graph grammar can be a building block for a graph generative model

= Classify constraints into hard ones and soft ones

ML for the soft ones, rules for the hard ones

» Define a language by encoding hard constraints

£.9., valence conditions

» Design a grammar for the language

Sometime, w/ an inference algorithm

Code is now public on Github

https://github.com/ibm-research-tokyo/graph_grammar

51 /52 © 2019 IBM Corporation

References

[Aguinaga+, 16] Aguinaga, S., Palacios, R., Chiang, D., and Weninger, T.. Growing graphs from hyperedge
replacement graph grammars. In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pp. 469-4/8, 2016.

[Feder, 71] Feder, J: Plex languages. Information Sciences, 3, pp. 225-241, 1971,

[Gomez-Bombarelli+, 16] Gomez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernandez-Lobato, J. M., Sanchez-
Lengeling, B., Sheberla, D., Aguilera-lparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik, A.. Automatic
chemical design using a data-driven continuous representation of molecules. ACS Central Science, 2018. (ArXiv ver.

appears in 20106)

[Jin+, 18] Jin, W., Barzilay, R., and Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation.

In Proceedings of the Thirty-fifth International Conference on Machine Learmning, 2018.

[Kajino, 19] Kajino, H.: Molecular hypergraph gramsmmar with its application to molecular optimization. In Proceedings of

the Thirty-sixth International Conference on Machine Learning, 2019.
[Pavlidis, 72] Pavlidis, T.: Linear and context-free graph grammars. Journal of the ACM, 19(1), pp.11-23, 1972,
[You+, 18] You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J.: Graph convolutional policy network for goal-directed

molecular graph generation. In Advances in Neural Information Processing Systems 31, pp. 6412-6422, 2018.

52 /52 © 2019 IBM Corporation

