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情報科学に至った経緯
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1–3
Distances bet. the electrode, bet. the nearest

electrode atoms and the molecular ones

4–49 Distances

50–53 Distances

54–55 Angles

56–60 Energies

60–72 Charge amounts of molecular atoms

73–144 Charge amounts of electrode atoms

145–180 Molecular orbits

TABLE I. Explanatory variables: The first 55 variables are structural variables and the ones for > 55 are derived by quantum
mechanical computations from the structural variables.

FIG. 2. Multiple plots of {yµ(E)}µ against E for different clusters. The upper leftmost plot is the one for all µ = 1, · · · ,M0

and they are separately plotted in the other panels according to the clustering result. The 7th cluster’s one, the lower rightmost
panel, shows rather large deviations in the different curves.

the minimum of eq. (6) with respect to λ as λ̂(k)(E),
we finally adopt β̂(k)(E) ≡ β̂(k)(E, λ̂(k)(E)) as the best
representation for a given cluster of structures k and an
energy E. Below, we show the properties of β̂(k)(E) when
changing the clusters and the energy E.

III. RESULT

A. Approximation accuracy, fit quality, and related

Let us start from checking the validity of our proce-
dures and approximation. For this, in this subsection we
show the fitting and some related quantities.
Figure 3 shows the plots of CV errors against the den-

sity of the non-zero component, ρ = K/N , at E = 0 ob-
tained by our approximation and by the standard 10-fold
CV. Due to the applicable limit of the approximation, the
two curves deviate if ρ ≈ α, but this region is irrelevant
because the minimums of the CVEs, which determine
the optimal values of ρ (λ), appear when ρ is sufficiently

smaller than α. We plot the locations of the minimums
by vertical lines in Fig. 3 and actually the curves coin-
cide well around them, as well as the those minimums.
We have checked this is the case for some other values
of E. These observations validate the use of the approx-
imation (6). Note that the approximation formula has a
slight instability and the corresponding CVE has some
local minima; the smallest value of ρ among those local
minima is chosen in Fig. 3, which is reasonable in a sense
of statistical inference.

The minimum of the CVE gives the optimal value of ρ.
We plot this in Fig. 4 against the energy E. This shows
that the values of ρ is reasonably smaller than α for all
E and clusters, and thus reasonably sparse representa-
tions are obtained, though the values largely deviate as
E varies. This implies that the sparse representations
frequently change in different regions of E, which will be
reconsidered later.

Figure 5 is the plot of the reconstructed values of the
spectra, {Xµ∗β̂(k)(E)}µ∈Sk , against the observed ones,
{yµ(E)}µ∈Sk , for the clusters k = 1, · · · , 6. These figures

その他 約10万本のスペクトル処理など

効率的な解析技術の習得が必須

600本… 一体どうすれば。。
MDの結果をひたすら”観察”
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情報科学ブームの火付け役
Materials Genome Initiative（MGI from 2011）

7Materials Genome Initiative for Global Competitiveness

Materials Deployment
The Challenge 

To achieve faster materials development, the materials 
community must embrace open innovation. Rapid 
advances in computational modeling and data 
exchange and more advanced algorithms for modeling 
materials behavior must be developed to supplement 
physical experiments; and a data exchange system 
that will allow researchers to index, search, and 
compare data must be implemented to allow greater 
integration and collaboration.

Later parts of the continuum are necessarily linear 
(i.e. certification cannot occur before systems design), 
but all stages would benefit from increased data 
transparency and communication. Currently, no 
infrastructure exists to allow 
different engineering teams 
to share data or models. 
Data transparency may 
have the largest impact 
after the material has been 
deployed, due to the fact 
that every industry relies on 
materials as components of 
product design. A product 
designer who needs a 
material of certain 
specifications may not be 
aware that the material has 
already been designed 
because there is no 
standard method to search for it. Data transparency 
encourages cross-industry and multidisciplinary 
applications.

The life cycle of a material does not end with 
deployment. An issue that is coming more to the 
attention of industry and consumers is the recyclability 
and sustainability of materials. Materials engineers 
must design for the ever-changing parameters and 
uses of materials after their initial intended purpose; 
for example, recyclability must become a design 
parameter.

The Materials Genome Initiative will develop the 
toolsets necessary for a new research paradigm in 
which powerful computational analysis will decrease 

the reliance on physical experimentation. Improved 
data sharing systems and more integrated engineering 
teams will allow design, systems engineering, and 
manufacturing activities to overlap and interact  
(see Figure 2).

This new integrated design continuum — incorporating 
greater use of computing and information technologies 
coupled with advances in characterization and 
experiment — will significantly accelerate the time and 
number of materials deployed by replacing lengthy 
and costly empirical studies with mathematical models 
and computational simulations. Now is the ideal time 
to enact this initiative; the computing capacity 

necessary to achieve these 
advances exists and related 
technologies such as 
nanotechnology and bio-
technology have matured to 
enable us to make great 
progress in reducing time 
to market at a very low cost.

Multiple international entities 
have recognized these 
issues and a number of 
foreign countries have 
already embarked on 
programs to address them.6 
The National Research 

Council of the National Academies of Sciences, in its 
report on Integrated Computational Materials 
Engineering, describes the potential outcome:

 Integrating materials computational tools and 
information with sophisticated computational and 
analytical tools already in use in engineering 
fields… [promises] to shorten the materials 
development cycle from its current 10-20 years to 
2 or 3 years.7

While it is difficult to anticipate the actual reduction 
in development time that will result from this initiative, 
our goal is to achieve a time reduction of greater 
than 50 percent.

Time

Future Materials
Continuum

Materials Continuum
Today

Number of 
New Materials
to Market

Figure 2: Initiative acceleration of the materials continuum1. 材料イノベーションのインフラ整備

2. 先端材料開発に関する国家目標達成

3. 次世代の研究従事者育成

戦略目標

データベース・機械学習の活用を掲げる
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物質・材料科学？？？



工業製品をもっと 
よくするような原材料
についての研究

6

シリコン  インゴット

製品の”原材料”を研究する仕事

電池, CPU, モニター等
工業製品の大事なパーツ
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情報的な視点から見た物質科学
ビッグデータというよりスモールデータ

✓   典型的な実験：高々100,  ようやく1,000サンプル出せることも
✓   他の実験室の結果とも直接比較が困難（環境・装置・人）

汎用的な物質表現・処理方法の不在
✓  対象：高分子・半導体・金属 etc. 

✓  スケール：1 nm ～ 1 m（９桁！！）
✓  構造やシステムの表現方法の多様性

ゲノム情報

シーケンサー

物質科学の強みである「制御性（再現性）」「理論（事前知
識）」を生かした中規模な情報処理スタイルの開発が必要

事例の蓄積が鍵
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ハイスループット計測データ解析
Appl. Phys. Rev. 4, 011105 (2017).

industrial sector consumes approximately one third of all
energy, roughly 32 ! 1015 (quadrillion) Btu per year. Of this
amount, between 5 and 13 quadrillion Btu per year are lost
as waste heat via streams of hot exhaust liquids and gases, as
well as through heat conduction, convection, and radiation
from manufacturing equipment and processes.46 Indeed,
“…the United States is the Saudi Arabia of waste heat.”47

Recent studies have shown that for the United States alone,
annual potential for electrical energy recovery from waste
heat could be in the multi-terawatt range.48 Although ther-
moelectric devices have significant potential to recover
waste heat from industrial processes, commercially available
devices are only about 5% efficient. Therefore, discovery of
higher efficiency thermoelectric materials using HTE is criti-
cal to enabling the practical recovery of waste heat.
Materials that exhibit a large Seebeck coefficient, high

electrical conductivity, and low thermal conductivity are
considered candidates for use in thermoelectric applica-
tions;49,50 optimizing these transport properties improves the
energy conversion efficiency. The efficiency and perfor-
mance of thermoelectric power generation are proportional
to the dimensionless figure of merit, ZT, of the material.
ZT¼ S2rT/k, where T is the absolute temperature, S is the
Seebeck coefficient, r is the electrical conductivity, and k is
the thermal conductivity. High-throughput instruments capa-
ble of locally and rapidly measuring Seebeck coefficients at
room51,52 and elevated temperatures53 have been con-
structed. Further, high-throughput measurements of thermal
effusivity, from which thermal conductivity can be derived,
have also been carried out, using either time domain54 or fre-
quency domain thermoreflectance.55 Thus, ZT can be
obtained through HTE techniques; however, the power fac-
tor, equal to S2r, is also a suitable figure of merit and can be
obtained more readily because it does not require measuring
thermal conductivity. Figure 2, illustrating research per-
formed on the Ca3Co4O9 system,56 shows the compositions
on the library film that exhibit the highest power factors.
HTE approaches have been applied in the search for new
thermoelectric materials by diffusion annealing of bulk materi-
als,57 unidirectional solidification,58 and the use of composi-
tionally graded thin films.51,53,55,59 Thus far, only a limited
number of pseudo-binary and -ternary thermoelectric systems
have been investigated using HTE: (Zn,Al)O,51 Ca3Co4O9,

56

Co-Ce-Sn,55 PbTe–Ag2Te–Sb2Te3,58 MgxSiyGe1-y,59

CoSb3–LaFe4Sb12–CeFe4Sb12 and Sb2Te3–Bi2Te3.53

Energy storage: Battery materials

Energy storage materials such as in Li ion batteries rep-
resent another opportunity for the HTE approach. The expo-
nential growth of computer processing power, combined
with the laws of physics expressed through quantum
mechanics, has made it possible to design new materials
from first principle physics using supercomputers. In the
mid-2000s, the development of high-throughput computa-
tional methods and software infrastructure was pioneered
and applied to the discovery of novel energy storage materi-
als.60,61 Importantly, HTE synthesis and measurement

FIG. 1. (a) Schematic of a combinatorial heater for achieving continuous
temperature gradients orthogonal to composition gradients. A small piece of
metal is inserted between the heater plate and the glass substrate and (b)
combinatorial photovoltaic device library with mutually orthogonal gra-
dients in thickness and composition of the absorber. Each solar cell on the
library has an individual front contact and a common back contact.

FIG. 2. (a) Electrical conductivity, (b) Seebeck coefficient, and (c) power factor of the composition-spread (Ca1#x#ySrxLay)3Co4O9 film (0< x< 1/3 and
0< y< 1/3). Reproduced with permission from Appl. Phys. Lett. 91, 3 (2007). Copyright 2007 AIP Publishing LLC.56

011105-5 Green et al. Appl. Phys. Rev. 4, 011105 (2017)

High-Throughput Experimental (HTE) methodologies

Materials “Library” :  単一シートに複数の組成を連続的に散布
物質空間を一気に観測、最適な組成を高速に発見する

Appl. Phys. Lett. 91, 132102 (2007).

（観測に~6 h）
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pixels is 360 ! 180, namely, M ¼ 64800. There is a QPI
pattern on the surface. The FT of this dI=dV map obtained by
the conventional method is shown in Fig. 1(b). The q-space
region of interest is discretized into 128 ! 128 pixels,
namely, N ¼ 16384. In this case, the amount of data is
sufficient compared with the number of unknown variables
(M > N). Then, we can see two rings centered at the origin in
the q space as reported by Sessi et al.30) The outer ring
corresponds to the conventional surface electronic states and
the inner one is due to the acoustic surface plasmon. The
region occupied by the two rings is small in the q space, and
thus the sparseness assumption holds in this case.

Let us examine whether the double circle can be recovered
from a reduced amount of data. Figure 2 shows FTs of N ¼
16384, which are estimated from partial data ofM ¼ 7200. It
is stressed that the number of unknown variables is larger
than that of the measured variables. The top and middle rows
show the results of the conventional method and those of
LASSO, respectively. LASSO is carried out on the basis
of approximate message passing.27,28) The regularization
parameter λ of LASSO is set so as to minimize the CVE
calculated by 10-fold CV. The analysis with LASSO
outperforms that by the conventional method in reducing
background noise, and the expected pattern is more clearly
seen. In the ill-posed situation, LASSO provides a sparse
solution; most of the noise components are automatically
estimated to be zero and the signal components remain
nonzero.

Figures 2(a) and 2(d) show the case of randomly chosen
data points. In this case, LASSO succeeds in recovering the
double-circle pattern, whereas the conventional method fails.
Figures 2(b) and 2(e) show the case of every third data point
in both the horizontal and vertical directions. In both of these
figures, we find phantom patterns around the true pattern.

These patterns are attributed to the aliasing effect that makes
some different wavenumber components indistinguishable
owing to the periodicity of sampling. Figures 2(c) and 2(f )
show the case of data points in a small central region
of Fig. 1(a). As shown in the figures, the QPI pattern is
considerably deteriorated. The inner ring disappears because
long-wavelength components can hardly be detected in the
small region. In addition, the intensity of the outer ring is
very weak because the region is too distant from defects to
form the QPI pattern. On the basis of the above results, we
conclude that CS performs well with random sampling in a
broad region.

To quantitatively evaluate the effects of LASSO, we
examine line sections of the FTs. Figures 2(g) and 2(h) show
the radially averaged line sections of Figs. 2(a) and 2(d),
respectively. Each of the fitting curves is obtained by the
least-squares method, where, in the same way as Sessi
et al.,30) the following model function is employed:

fðqÞ ¼
X

k¼1;2
ak exp % 1

2!2k
ðq % "kÞ2

! "
þ c; ð7Þ

where f"1; "2; !1; !2; a1; a2; cg is a set of model parameters.
Assume without loss of generality that "1 < "2. Note that the
peak of the outer ring has a delta-function-like shape when
the phase noise that arises from the random distribution of
scatterers is removed. The results show that LASSO provides
a much higher signal-to-noise ratio (ak=c) and determines the
peak locations with less uncertainty (!k). Overall, the synergy
between measurement and analysis, namely, random sam-
pling and LASSO, is indispensable for compressed sensing.

Next, we discuss the performance of LASSO when it is
applied to different amounts of data. The top row of Fig. 3
shows the FTs estimated from randomly reduced amounts of
data. In the cases of (a)–(c), the ring pattern is clearly seen as
is expected, but in the last case of (d), we see that the ring
pattern breaks at many places. The data set of M ¼ 4050
is considered to be insufficient in quantity. This situation
indicates that LASSO fails in the case of too scarce data.
However, it is difficult to judge whether the result in
Fig. 3(d) is reliable when we do not know the true pattern in
practice. We argue that the CVE is a good criterion for
evaluating the sufficiency of data. Figure 3(e) shows the CVE
of the conventional method, LASSO, and a naive method by
which one blindly accepts the sparseness assumption and
estimates that f̂ ¼ 0 without any concern about data fitting.
In the case of M ¼ 64800, LASSO gives a much smaller
CVE than the conventional method. The large CVE of the
conventional method is attributed to overfitting to noise
components in the data. Although the naive method has a
lower CVE than the conventional method, the naive method
is still inferior to LASSO because it corresponds to applying
LASSO with an infinitely large λ. Here, let us focus on the
fact that the difference in the CVE between the naive method
and LASSO becomes smaller as the amount of data
decreases. To investigate the significance of the performance
difference, we use an orthodox method of hypothesis testing
called the t-test. When the t-test is used in natural science, the
significance level is often set to # ¼ 0:01. According to the t-
test at # ¼ 0:01, a significant difference in the CVE remains
when M ' 7200 but not when M ¼ 4050. This means,
conversely, that the dataset of M ¼ 4050 is insufficient
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Fig. 1. (a) dI=dV map of Ag(111) surface. (b) FT of (a) obtained by
conventional method.

J. Phys. Soc. Jpn. 85, 093702 (2016) Letters Y. Nakanishi-Ohno et al.

093702-3 ©2016 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by  on 10/26/17

準粒子干渉測定のダウンサンプリング

Y. N.-Ohno, M. Haze, Y. Yoshida, K. Hukushima, Y. Hasegawa, and M. Okada, J. Phys. Soc. Jpn. 85, 093702 (2016). 
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Fig. 2. (a)–(f ) FTs estimated from different parts of Fig. 1(a). Subsets of data are composed of 7200 pixels. Results of the conventional method and LASSO
are shown in the top and middle rows, respectively. (a) and (d) are obtained by using randomly chosen pixels. (b) and (e) are obtained by using every third
pixel in both the horizontal and vertical directions. (c) and (f ) are obtained by using only the central region in the r space. (g) and (h) are radially averaged line
sections corresponding to (a) and (d), respectively. Each of the fitting curves is composed of two Gaussian functions and a background constant.
(g) !1 ¼ 1:3 nm−1, !2 ¼ 3:2 nm−1, "1 ¼ 0:91 nm−1, "2 ¼ 0:18 nm−1, a1=c ¼ 0:92, a2=c ¼ 0:96. (h) !1 ¼ 1:2 nm−1, !2 ¼ 3:2 nm−1, "1 ¼ 0:84 nm−1, "2 ¼
0:15 nm−1, a1=c ¼ 14, a2=c ¼ 18.
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Fig. 3. (a)–(d) FTs estimated from randomly reduced data with LASSO. The number of pixels is M ¼ 64800, 16200, 7200, and 4050 from the left.
(e) Cross-validation error of conventional method, naive method, and LASSO. The length of the error bars shows the standard deviation among 10 trials of 10-
fold CV. (f )–(h) Parameters of curve fitting to radially averaged line sections. (f ) Wavenumber of peak positions: (f1) !1 and (f2) !2. The length of the error
bars is the FWHM of the Gaussian functions shown in (g): (g1) 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
"1 and (g2) 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
"2. (h) Signal-to-noise ratio (SNR): (h1) a1=c and (h2) a2=c.

J. Phys. Soc. Jpn. 85, 093702 (2016) Letters Y. Nakanishi-Ohno et al.

093702-4 ©2016 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by  on 10/26/17
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課題：『短い観測時間でも正しい結果を得たい』
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安定構造探索

統計サンプリング(自由エネルギー・エントロピー)

振動モード・反応座標

LiTi2O4 samples range from 3.5 to 4.0 in point-contact
spectroscopy33,34 and Andreev reflection36. A recent report using
epitaxial LiTi2O4 thin films claims 2D/kBTc¼ 4.07 from point-
contact spectroscopy22, and thus the obtained value of 3.0 is much
smaller than that of all the previous reports. Furthermore, the
present value is even smaller than that for the weak coupling limit
for s-wave BCS superconductivity of 3.52. We discuss later the
possible origins of this unexpectedly small 2D/kBTc.

Coherence length on the surface. To further study the super-
conductivity on the surface, we investigated the value of x from
the electronic structures around a magnetic vortex core. We first
analysed the Vs dependent conductance (dI/dV) map around a

single vortex core by applying an external magnetic field of 1.5 T
perpendicular to the surface at 4.2 K (Fig. 4a–e). At Vs¼ " 8 mV
and þ 8 mV, we observed uniform conductance over the scanned
region (Fig. 4a,e), whereas conductance values were depressed
around the centre of images at Vs¼ " 4 mV and þ 4 mV
(Fig. 4b,d). This depressed conductance is a consequence of
suppressed coherence peaks. In contrast, the conductance map at
Vs¼ 0 mV clearly represents enhanced conductance in the centre
region (Fig. 4c). This enhanced zero-bias conductance around the
centre region is because of pair breaking. These energy evolutions
of conductance map indicate signatures of a vortex core (Fig. 4a–e),
and the evolution of tunnelling spectra along line A–B in Fig. 4a
clearly shows a typical spatial evolution of spectral shape across a
vortex core (Fig. 4f).
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Figure 1 | Surface topographies and superconducting critical temperatures. (a,b) STM topographic images of as-deposited thin film at substrate
temperature of 600 !C (a) and 400 !C (b). (c,d) STM images after post-deposition annealing (PDA) for films deposited at 400 !C (c) and 300 !C (d).
Note that b,c are taken with using the same film. a–c are obtained at 77 K and d is obtained at 4.2 K (all the STM images were observed at a sample-bias
voltage of þ 300 mV and a tunnelling current is about 10 pA). Scale bar, 80 nm (a–d). (e) Growth temperature dependence of root mean square of surface
roughness (RRMS) values: as-grown samples (blue symbols) and after PDA (red symbols). The value of RRMS is evaluated from topographic images
observed at a sample-bias voltage of þ 300 mV and a tunnelling current of 10 pA (scan area of 400 nm). (f) Temperature dependence of the field-cooled
dc magnetic susceptibility for the LiTi2O4 films in a magnetic field of 50 Oe, which was applied parallel to the (111) plane. Clear diamagnetism is observed.
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Figure 2 | Typical topographic images on a terrace. (a) Filled-state STM image of LiTi2O4(111) surface (11.6 nm$ 11.6 nm, sample-bias voltage Vs of
" 900 mV, tunnelling current Iset of 30 pA). (b) Empty-state STM image (4 nm$4 nm, Vs¼ þ 30 mV, Iset¼ 30 pA). (c) Zoomed-up image
(1.7 nm$ 1.7 nm, Vs¼ þ 30 mV, Iset¼ 30 pA) of b. The image shows three-fold symmetry representing the spinel crystal structure. Scale bars, 2 nm (a),
0.8 nm (b) and 0.3 nm (c).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15975 ARTICLE

NATURE COMMUNICATIONS | 8:15975 | DOI: 10.1038/ncomms15975 | www.nature.com/naturecommunications 3

LTO表面構造の同定 
(Nat. Commun. 8, 15975 (2017))

障壁計算 NEB

!19

vinyl alcohol to acetaldehyde (NEB method)

DMol3   TS search (LST/QST)  51.473 cal/mol, -10.851 cal/mol (PBE)

52.14 kcal/mol

Phys. Chem. Chem. Phys., 2018, 20, 11586-11591

• 静的な安定状態から動的な挙動まで

• 構造と特性・観測データを結びつけるキー

• ナノスケール物理では必須のツール

https://doi.org/10.1039/1463-9084/1999
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1.電子状態変化が取り扱えること

2.エネルギー超曲面上でのダイナミクス

3.ダイナミクスの統計性

Pd表面でのH2分解反応

方法論に求められること

• 電子状態変化を伴うため、DFT計算が必須

• DFTのみでは計算が大変で統計が集まらない

NNによるモデリングの試みは
1995年, 2004年にすでに報告あり

表面化学反応のシミュレーション

J. Chem. Phys. 103 (10), 8 (1995) . 
Chem. Phys. Lett. 395, 210 (2004).
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[1] J. Behler, S. Lorenz, and K. Reuter, J. Chem. Phys. 127, 014705(2007).

表面構造の特徴量設計

３次元配置を入力にしたNNの問題

fcc(111)の表面形状に合わせてフーリエ変換を元に構成する方法を提案[1]

ただし問題に合わせて複雑な関数を設計することは決して
容易ではなくもっと簡便な表現が必要に。

• 入力層が原子数に依存するため、異なる系には適用できない（汎用性）

• 同種粒子の入れ替えに対する対称性が破れてしまう

• 同様にポテンシャルが満たすべき対称性が保証されない

入力表現・汎用性・対称性がキーワード

NNフィッティングの諸問題
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1

4

2

3

原子配置

DFT計算

全エネルギーE

Symmetry function vector Gk={Gk1,Gk2,…}
で原子の周辺環境を記述

G1

G2

G3

G4

NN1

NN1

NN1

NN2

E1

E2

E3

E4

E

• 正味のINPUTは、サブネットの入力 x 原子数 


• 学習すべきNNのパラメータは、原子種ごとに共通。


• また入力ベクトルGの次元は固定できるので原子数を増やすことは容易

Behler - Parrinelloの方法
Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007). 
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機械学習ポテンシャル作成の構成技術

機械学習ポテンシャルは（１）構造の記述（２）モデリングの違いで大別

使用するメリット・目的で手法を使い分ける必要がある

生データ

Nα

構造の記述

前処理

予測
サンプ
リング

モデリング

解析

データ予測

DFT計算結果

（説明変数）原子の配置

（目的変数）エネルギー

　　　　　（またはforce）

説明変数の低次元化

• Symmetry Function

• Structural fingerprint

• SOAP

• Coulomb Matrix

• MBTR

回帰モデル

Neural network

多項式展開

ガウス過程回帰

Kernel ridge回帰

High-Throuput MD

• 安定構造探索

• 材料スクリーニング

• MDからの拡散係数計算

• 網羅的NEB計算
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拡散ネットワークの全体図

大問題：高精度に計算できるDFTではコストがかかりすぎる
（N3 回の構造最適化 x 計算時間 T)   N~50, T~1 hour以上 > 10 year 
  さらに拡散障壁の計算も必要…

Etot = Eamorph +�ECu +�Eopt

Cu挿入による
エネルギー変化

構造緩和による
エネルギー変化

Behler-Parrinelloの方法でポテンシャル作成
✓  アモルファス母体を「場」として取り扱う
✓  学習対象は拡散粒子（Cu）のみ
✓３元系でありながら小規模なネットワークで記述可能
✓  事実上１粒子の計算なので、エネルギー評価も容易
✓  アモルファスは動かせないのでMDはできない

W. Li, Y. Ando, and S. Watanabe, J. Phys. Soc. Jpn. 86, 104004 (2017).

アモルファス中のイオン安定配置の全探索
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W. Li, and Y. Ando, J. Chem. Phys. 151, 114101 (2019).

焼きなまし法の冷却速度依存性

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Finally, we collected 49 544 silicon structures from the repeated
runs of adaptive learning MD simulations, and they were used to
construct the NN potential using the Behler–Parrinello NN potential
scheme.18 The details can be found elsewhere.14 The NN potential
contains 48 symmetry functions to describe the local chemical envi-
ronments of Si atoms up to a cutoff radius of 6.5 Å. The atomic NN
consists of three hidden layers with 40 nodes each. The root mean
squared error (RMSE) of the energy prediction is 5.9 meV/atom in
the training set (90% of reference data) and 6.2 meV/atom in the
testing set (10% of reference data). The details of the NN potential,
including formula and parameters of symmetry functions, NN archi-
tecture, and energy prediction accuracy can be found in Sec. II of the
supplementary material. The accuracy of the NN potential is com-
parable with that in a previous study.18 We included a lot of high-
temperature liquid phase Si structures in the reference database. This
compromises the energy prediction accuracy to a certain extent, but
it is necessary for the reliability of the high-temperature MD simu-
lations. The trained NN potential is used for large-scale a-Si models.
Although many studies have proved that the NN potential trained
with small reference structures can be applied for a large structure,14
a simple test was performed to validate the transferability of NN
potential for a large supercell (see Sec. III A of the supplementary
material for details). The RMSE of energy prediction for 216 atom
structures (much larger than reference structures) is 5.3 meV/atom,
which is comparable with the value in the training and testing
sets.

B. MD simulations
The temperature variation during the melt-quenching simula-

tion is shown in Fig. 1. Five different cooling rates were used: 1011,
1012, 1013, 1014, and 1015 K/s. When cooling the system with the
slowest cooling rate, the total simulation time is 10 ns, which is very
difficult for existing ab initiomethods. The NVT ensemble was used
for the MD. The density was fixed at 2.28 g/cm3 during the process,

FIG. 1. Schematic illustration of the temperature variation during the melt-
quenching simulation with the NN potential. Five different cooling rates (1011–1015

K/s) are used for the simulated quenching process. The longest simulation time is
10 ns.

which is consistent with experiments. A time step of 1 fs was used.
Owing to the fast computation speed of the NN potential, we were
able to use a large supercell containing 512 Si atoms.

After the quenching process, 20 ps MD simulations were
then performed at 300 K to calculate the structural properties at
room temperature. The structure factors, coordination numbers,
and radial distribution were averaged over the final 10 ps of the
MD trajectories. Finally, the stable atomic model was obtained by
optimizing both the atomic positions and supercell lattices with the
conjugate gradient descent method using the NN potential. The
final amorphous models are given in Sec. IV of the supplementary
material.

To validate the accuracy of important properties obtained by
the NN potential, the melt-quenching simulations were performed
with both ab initio method and NN potential using the small sili-
con supercell (64 atoms), and the cooling rates were set to 1013, 1014,
and 1015 K/s. The results, as shown in Sec. III of the supplementary
material, proved that NN potential simulations precisely reproduced
the various properties. To confirm the size effect, the even larger
supercell that contains 4096 atoms was generated with 1011 K/s.
We found that all the structural and vibrational properties are con-
verged with 512 atoms (see Sec. V of the supplementary material for
details).

C. Vibrational properties
The vibrational properties of a-Si models were calculated based

on the NN potential-optimized structures, and the force constant
was also evaluated from the NN potential. Here, we briefly outline
the method used to calculate the phonon density of state (DOS) and
Raman spectrum. The atomic vibration model can be calculated by
diagonalizing the dynamic matrix D, which is expressed as

Dαi,βj(q) = 1�
MαMβ

@E
@rα,i@rβ,j

eiqrα , (1)

whereMα andMβ are the atomic masses of α and β, and rα,i and rβ,j
are the positions of atoms α and β in the i and j directions, respec-
tively. For a given phonon wavefactor q, the 3N frequencies ωn and
corresponding eigenmodes νnαi can be calculated by

Dνn = ωn
2νn. (2)

The atomic displacement of the ith atom associated with the nth
vibrational model �nαi can be expressed as

�nαi = 1√
Mα

vnαi. (3)

The phonon DOS can be expressed as

g(ω) = 1
3N �3N

j=1 δ(ω − ωn), (4)

where N is the number of atoms and ωn are the eigenvalues of
the dynamical matrix. The atomic simulation environment Python
toolkit was used for the phonon calculation.44

Calculation of the Raman intensity requires not only vibra-
tion information but also the Raman susceptibility tensor α. In this
study, we used the mean bond polarizability approximation, which

J. Chem. Phys. 151, 114101 (2019); doi: 10.1063/1.5114652 151, 114101-3

© Author(s) 2019

計算コストが10倍ずつ増加

機械学習ポテンシャル
で克服

• DFTで実現できる範囲で
は冷却が早すぎる 

• Classical MDのポテン
シャルが妥当か怪しい

4 
 

II. Details of NN potential parameters 

 

FIG. S3. Comparison between the density functional theory (DFT) and NN potential on the total energies of the training (90%) and 
testing (10%) sets. 

 

Table SII. The RMSEs of energy prediction obtained for the training and testing sets with different NN configurations. 

NN configuration RMSE (meV/atom) 
Training Testing 

48-10-10-10-1 6.6 6.5 
48-20-20-20-1 6.3 6.4 
48-30-30-30-1 6.1 6.2 
48-40-40-40-1 5.9 6.2 
48-50-50-50-1 5.8 6.2 

 

Table SIII. Parameters of the symmetry functions used to describe the local atomic environments. 

(1) Radial symmetry function 

𝐺ௗ =𝑒ିఎோ𝑓(𝑅)


 

No. η (Å-2) Rc (Å) 
1 0.003 6.5 
2 0.030 6.5 
3 0.070 6.5 
4 0.100 6.5 
5 0.250 6.5 
6 0.400 6.5 
7 0.700 6.5 
8 1.400 6.5 
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自明なマップ上の類似度による分類

3

1–3
Distances bet. the electrode, bet. the nearest

electrode atoms and the molecular ones

4–49 Distances

50–53 Distances

54–55 Angles

56–60 Energies

60–72 Charge amounts of molecular atoms

73–144 Charge amounts of electrode atoms

145–180 Molecular orbits

TABLE I. Explanatory variables: The first 55 variables are structural variables and the ones for > 55 are derived by quantum
mechanical computations from the structural variables.

FIG. 2. Multiple plots of {yµ(E)}µ against E for different clusters. The upper leftmost plot is the one for all µ = 1, · · · ,M0

and they are separately plotted in the other panels according to the clustering result. The 7th cluster’s one, the lower rightmost
panel, shows rather large deviations in the different curves.

the minimum of eq. (6) with respect to λ as λ̂(k)(E),
we finally adopt β̂(k)(E) ≡ β̂(k)(E, λ̂(k)(E)) as the best
representation for a given cluster of structures k and an
energy E. Below, we show the properties of β̂(k)(E) when
changing the clusters and the energy E.

III. RESULT

A. Approximation accuracy, fit quality, and related

Let us start from checking the validity of our proce-
dures and approximation. For this, in this subsection we
show the fitting and some related quantities.
Figure 3 shows the plots of CV errors against the den-

sity of the non-zero component, ρ = K/N , at E = 0 ob-
tained by our approximation and by the standard 10-fold
CV. Due to the applicable limit of the approximation, the
two curves deviate if ρ ≈ α, but this region is irrelevant
because the minimums of the CVEs, which determine
the optimal values of ρ (λ), appear when ρ is sufficiently

smaller than α. We plot the locations of the minimums
by vertical lines in Fig. 3 and actually the curves coin-
cide well around them, as well as the those minimums.
We have checked this is the case for some other values
of E. These observations validate the use of the approx-
imation (6). Note that the approximation formula has a
slight instability and the corresponding CVE has some
local minima; the smallest value of ρ among those local
minima is chosen in Fig. 3, which is reasonable in a sense
of statistical inference.

The minimum of the CVE gives the optimal value of ρ.
We plot this in Fig. 4 against the energy E. This shows
that the values of ρ is reasonably smaller than α for all
E and clusters, and thus reasonably sparse representa-
tions are obtained, though the values largely deviate as
E varies. This implies that the sparse representations
frequently change in different regions of E, which will be
reconsidered later.

Figure 5 is the plot of the reconstructed values of the
spectra, {Xµ∗β̂(k)(E)}µ∈Sk , against the observed ones,
{yµ(E)}µ∈Sk , for the clusters k = 1, · · · , 6. These figures

単分子電気伝導スペクトル

挟み込む分子の
配置で形状が非自明に変化
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50–53 Distances

54–55 Angles

56–60 Energies

60–72 Charge amounts of molecular atoms

73–144 Charge amounts of electrode atoms

145–180 Molecular orbits

TABLE I. Explanatory variables: The first 55 variables are structural variables and the ones for > 55 are derived by quantum
mechanical computations from the structural variables.

FIG. 2. Multiple plots of {yµ(E)}µ against E for different clusters. The upper leftmost plot is the one for all µ = 1, · · · ,M0

and they are separately plotted in the other panels according to the clustering result. The 7th cluster’s one, the lower rightmost
panel, shows rather large deviations in the different curves.

the minimum of eq. (6) with respect to λ as λ̂(k)(E),
we finally adopt β̂(k)(E) ≡ β̂(k)(E, λ̂(k)(E)) as the best
representation for a given cluster of structures k and an
energy E. Below, we show the properties of β̂(k)(E) when
changing the clusters and the energy E.

III. RESULT

A. Approximation accuracy, fit quality, and related

Let us start from checking the validity of our proce-
dures and approximation. For this, in this subsection we
show the fitting and some related quantities.
Figure 3 shows the plots of CV errors against the den-

sity of the non-zero component, ρ = K/N , at E = 0 ob-
tained by our approximation and by the standard 10-fold
CV. Due to the applicable limit of the approximation, the
two curves deviate if ρ ≈ α, but this region is irrelevant
because the minimums of the CVEs, which determine
the optimal values of ρ (λ), appear when ρ is sufficiently

smaller than α. We plot the locations of the minimums
by vertical lines in Fig. 3 and actually the curves coin-
cide well around them, as well as the those minimums.
We have checked this is the case for some other values
of E. These observations validate the use of the approx-
imation (6). Note that the approximation formula has a
slight instability and the corresponding CVE has some
local minima; the smallest value of ρ among those local
minima is chosen in Fig. 3, which is reasonable in a sense
of statistical inference.

The minimum of the CVE gives the optimal value of ρ.
We plot this in Fig. 4 against the energy E. This shows
that the values of ρ is reasonably smaller than α for all
E and clusters, and thus reasonably sparse representa-
tions are obtained, though the values largely deviate as
E varies. This implies that the sparse representations
frequently change in different regions of E, which will be
reconsidered later.

Figure 5 is the plot of the reconstructed values of the
spectra, {Xµ∗β̂(k)(E)}µ∈Sk , against the observed ones,
{yµ(E)}µ∈Sk , for the clusters k = 1, · · · , 6. These figures

クラスター解析

類似スペクトルが持つ共通構造を解析

安藤, 藤掛, 渡邉, 表面科学 36, 515-520 (2015). 

課題：『たくさんあるデータを自動で分類したい』



他の「スペクトルが多すぎる」問題
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解析データセット(86×86セット)
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全てのデータからピーク位置を抽出する必要あり
複数のガウス関数でフィット？

課題：『ピークの位置を大まかにでも自動抽出したい』
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特徴画像化

Collaborated with 永村直佳（NIMS）, 松村太郎次郎（PD）, 永田賢二(NIMS), 赤穂昭太郎(AIST)

ピーク位置の自動推定
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非線形最小二乗フィットはしんどい

ノイズなしデータでも、初期値が悪いと
明らかにフィットしてない

y = A sin(Bx + C) + D

　非線形最小二乗フィット = いい感じの初期値探し　

データを見て、”経験と勘”でいい感じの初期値を探す

データそれぞれを研究者が見て処理する必要あり　　

取得データ数が増えると、とてもこなせない！！！　

パラメータを効率的に改善（EMアルゴリズム） 
試行錯誤を自動化（モンテカルロ法）

解決策

実験研究者の悩み



推定対象

1. 分布の平均 μk と分散σ2k, 混合率πk


2. データ点n の潜在変数  rnk

混合ガウスモデル推定

図３-１ 混合ガウス分布の例

(1)

(2)
E (Expectation)-step：（１）をもとに（２）を推定

M (Maximization)-step：（２）をもとに（１）を推定

μnew
k =

1
Nk

N

∑
n=1

γ(znk)xn, σ2 new
k =

1
Nk

N

∑
n=1

γ(znk)(xn − μnew
k )2, πnew

k =
Nk

N

E[znk] =
πkN(xn, θk)

∑j πkN(xn |θk)
= γ(znk)

データxnに関する潜在変数rnkの期待値（負担率 γ(znk)）

(1)とxnに依存

完全データ（データxnと潜在変数rnk の組）から対数尤度の期待値を計算して最大化

24

Nk =
N

∑
n=1

γ(znk)

繰り返すと尤度が単調増加！

T. Matsumura, N. Nagamura, S. Akaho, K. Nagata, and Y. Ando, Sci. Tech. Adv. Mater. 20, 733 (2019).

EMアルゴリズムの適用
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T. Matsumura, N. Nagamura, S. Akaho, K. Nagata, and Y. Ando, Sci. Tech. Adv. Mater. 20, 733 (2019).

放射光スペクトルはイベント数が膨大（~107 events）

p(x) =
K

∑
k=1

πkN(x |μk, σk)

ln p({x1, ⋯, xN}) =
N

∑
n=1

ln (
K

∑
k=1

πkN(xn |μk, σk))

混合ガウス分布のモデルと対数尤度

データ数に関する和
データ数が少ないと精度がでないが、
データ数が多いと計算が重くなる

放射光スペクトルのイベント数を適切に生かし 
かつ高速に動作するように改良が必要

実データへの適用上の課題
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通常のEMアルゴリズムの入力: X1D = {x1, x2, x3, ⋯, xN}

改良型EMアルゴリズムの入力: X2D = { ̂x1, ̂x2, ̂x3, ⋯, ̂xM
w1, w2, w3, ⋯, wM}

ヒストグラム形式

イベント列

ln p({x1, ⋯, xN}) =
N

∑
n=1

ln (
K

∑
k=1

πkN(xn |μk, σk))
=

M

∑
n=1

wn ln (
K

∑
k=1

πkN( ̂xn |μk, σk))

改良型EMアルゴリズムの対数尤度
ヒストグラムのビン数に関する和

• ビン数はイベント総数より
圧倒的に小さい


• イベント数が増えても 
演算回数が変わらない

（ポイント: N >> M）

T. Matsumura, N. Nagamura, S. Akaho, K. Nagata, and Y. Ando, Sci. Tech. Adv. Mater. 20, 733 (2019).

1 2 3 1 2 2 2 1

1 2 3

1
2
2
2

1w1 = 3

スペクトル解析に適したEMアルゴリズム
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時間[s] 0.8 481.0 19748.5
RMSE 8707.4 933.8 66086.0

通常のEMアルゴリズム：計算負荷が測定イベント数に依存　⇦    改善！

• ランダムな初期値でも安定して動作、極めて低コストでモデル推定（ピーク抽出）が可能 
• 初期値を振って最良のモデルを探せばさらに精度をあげられる 
• 高ノイズデータ・埋もれたピークに関してはモデリングが困難（事前知識が必要）

T. Matsumura, N. Nagamura, S. Akaho, K. Nagata, and Y. Ando, Sci. Tech. Adv. Mater. 20, 733 (2019).

計算速度と精度に関する性能評価
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光学顕微鏡像と比較
231.5 231.0 230.5 230.0 229.5 229.0 234.0 233.5 233.0 232.5 232.0 231.5

Binding Energy (eV) Binding Energy (eV)

▪光学顕微鏡像で黒くなっている領域(貼り重ねた時に入り込んだバブル？)
とMo3dのピーク位置マッピングの模様が対応しているように見える箇所がある

この辺りのピーク位置の違いは光学顕微鏡像に現れていない

光学顕微鏡の観測結果
EMアルゴリズムによるピーク位置推定結果 

（~12 h程度）

やりたかったこと
解析データセット(86×86セット)

354 )8�873*�66$�,30�1*���6$�'30�
���4)�(�)�4257�0.4#13/&

225 230 235 240 245

0
20
0

40
0

60
0

80
0

1730

Energy

sp
ec

t_
da

ta
[, 

i]

225 230 235 240 245

0
20
0

40
0

60
0

80
0

10
00

3483

Energy

sp
ec

t_
da

ta
[, 

i]

225 230 235 240 245

0
10
0

20
0

30
0

40
0

6470

Energy

sp
ec

t_
da

ta
[, 

i]

225 230 235 240 245

0
50

10
0

15
0

6956

Energy

sp
ec

t_
da

ta
[, 

i]�	��

��
�

��	�

�(��

4)4,4-+�%49!8�"�)�4-+3/&



まとめ：今後、物質科学者として目指したいこと
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分子・原子 
シミュレーション

計算

計測 情報

機械学習ポテンシャル

スペクトルの自動・高精度解析

マテリアルズ・ロボティクス

近代的な物質科学研究

高次元物質データ空間の理解と制御


