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代理ベイズ学習と隠れマルコフモデルへの応用
Vicarious Bayes Learning and its Application to HMMs
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Keisuke Yamazaki

Abstract: Hierarchical parametric models, such as Gaussian mixture models, Bayesian
networks, and hidden Markov models, are widely used in the information engineering fields.
These models are generally expressed as probability functions of the given data space, and
there are a number of learning algorithms for each model. However, it is still unknown
whether the space is suitable and effective for learning of the function. Therefore, the
present paper considers a feature map to a different domain space, and investigates how
the map changes the generalization error. Then, we proposed the vicarious learning in
the Bayes estimation, which preserves the error value of the original space in a different
space. This new learning framework reduces the computational learning and evaluation
costs because a simpler space makes the calculation of the likelihood faster. As one of its
applications, we can derive a necessary length of training data for HMMs.
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1 Introduction

Hierarchical parametric models, such as Gaus-
sian mixture models, Bayesian networks and hidden
Markov models, are used in a number of practical en-
gineering fields. The parameter space of such models
can have singularities due to the hierarchical structure
or the latent variables. Then, these models are referred
to as singular. Models are regular when the parameter
space does not include any singularity.

The conventional statistical analysis is established
on the basis of unique probabilities of the regular
model. The analysis is not available for singular mod-
els. More statistically, the inverse of the Fisher infor-
mation matrix is required to describe the convergence
of the optimal parameter. The matrices are not posi-
tive definite on the singularities, which means that the
inverse matrices do not exist. Therefore, the algebraic
geometrical method has been developed to reveal the
Bayesian generalization error of singular models [6].
Based on the method, the errors of the hierarchical
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models are revealed (e.g. [8, 7]).
The present paper focuses on a relation between the

data space and the generalization error. To project
the given data to a different space is a common tech-
nique in feature extraction and dimensionality reduc-
tion. Models dealing with sequential data have large
computational cost for learning and evaluation even
though they have effective algorithms [4, 3, 2]. A fea-
ture map actually seems to reduce the cost because the
models can be simplified in the feature space. However,
effect of the map on the error has not been studied yet.

The feature space has to be designed properly. Let
us consider the following simple example: Discrete
data x are assumed to be D dimensional binary vec-
tors. Then, the dimension of the data space is 2D.
The most naive modeling is to provide parameters as
probability variables of each x. In this case, 2D − 1
variables are required to represent all x. For exam-
ple, three variables p1, p2, p3 are sufficient for D = 2,
i.e. P (00) = p1, P (01) = p2, P (10) = p3. Note that
P (11) = 1− p1 − p2 − p3. A parametric model p(x|w),
where w is the parameter, generally has to have less
number of parameters than 2D−1. Now, a feature map
projects the data to 2d dimensional space. The feature



space is assumed to be much smaller than the original
one, d ¿ D. It is easy to prove that the parameter
w cannot be correctly identified when 2d − 1 < dimw.
Thus, a theoretical evaluation of a feature map is re-
quired to clarify if the feature space is suitable for the
parameter learning.

Based on the algebraic geometrical method, the
present paper proposes an evaluation method the fea-
ture map. The main purpose is to design the model
p(x|w) through the feature space. Therefore, one of
the expected applications is the model selection with
the cross-validation [5]. The selected model will be fi-
nally used in the original space. Our task is to design
the optimal model available not for the feature space,
but for the original one. Then, the feature space pre-
serving the generalization error is desired because the
parameters can be completely estimated. The present
paper defines training and test procedures in such fea-
ture space as the vicarious Bayes learning, and the
feature map as the vicarious feature map. As for the
demonstration, the vicarious feature map will be found
for hidden Markov models, and a necessary length of
data sequences is derived for the complete learning.

The remainder of the paper is organized as follows.
Section 2 formalizes the Bayes learning and summa-
rizes important results of the algebraic geometrical
method. Section 3 proposes the vicarious Bayes learn-
ing. Section 4 shows an application to hidden Markov
models (HMMs). Sections 5 and 6 present discussions
and our conclusion, respectively.

2 The Bayes Learning and

the Algebraic Geometrical

Method

Let us formally define the generalization error. A set
of training data Xn = {X1, . . . , Xn} is independently
and identically distributed from the true model q(x).
The learning model with its parameter w is generative
and is represented as p(x|w). The generalization error
is the average Kullback divergence from q(x) to the
predictive distribution p(x|Xn),

G(n) = EXn

[∫
q(x) ln

q(x)
p(x|Xn)

dx

]
, (1)

where n is the number of the training data and EXn [·]
represents the expectation value over all training sam-

ples. The predictive distribution is constructed by
p(x|w). For example, the maximum likelihood method
gives

p(x|Xn) = p(x|ŵ) (2)

where ŵ is the maximum likelihood estimator:

ŵ =arg max
w

L(w,Xn), (3)

L(w,Xn) =
n∏

i=1

p(Xi|w). (4)

The Bayes estimation yields the predictive distribution

p(x|Xn) =
∫

p(x|w)p(w|Xn)dw, (5)

where the posterior p(w|Xn) is defined by

p(w|Xn) =
1

Z(Xn)
L(w,Xn)ϕ(w) (6)

using a prior ϕ(w) and the normalization factor
Z(Xn).

The asymptotic form of Eq.(1) is expressed as

G(n) =
λ

n
− m − 1

n ln n
+ o

( 1
n lnn

)
(7)

when Wt ≡ {w : p(x|w) = q(x)} 6= ∅, i.e. p(x|w) can
attain q(x) [6]. The coefficients are defined as follows:
All poles of the zeta function

J(z) =
∫

H(w)zϕ(w)dw (8)

are real negative and rational, where the Kullback di-
vergence

H(w) =
∫

q(x) ln
q(x)

p(x|w)
dx (9)

is analytic. Then, z = −λ is the largest pole and m is
its order.

Eqs (7)-(9) shows that the generalization error is de-
termined by the relation between q(x) and p(x|w). Be-
havior of H(w) in the neighborhood of Wt directly af-
fects λ and m. For example, J(z) =

∫
w2jzdw (j =

1, 2, . . .) when H(w) = w2j and ϕ(w) is closed to uni-
form around Wt = {0}. It is easily found that J(z)
has a factor 1/(2jz + 1) by integrating over w, which
implies λ = 1/2j.

3 Proposed Learning Frame-

work

In this section, we propose the vicarious Bayes learn-
ing.



3.1 Mapping to a Feature Space

As can be noticed in Eqs (7)-(9), the error G(n) de-
pends on the probabilities p(x|w) and q(x). Herein, we
consider the error value over a different domain space.

Let Φ : x 7→ y be a feature map. Based on the map,
the models on y are defined by

qΦ(y) =
∫

q(x)δ(y − Φ(x))dx, (10)

pΦ(y|w) =
∫

p(x|w)δ(y − Φ(x))dx, (11)

where δ(·) is the Dirac’s delta function. The likelihood
function Eq (4) is given by

LΦ(w, Y n) =
n∏

i=1

pΦ(Yi|w), (12)

where Y n = {Y1, . . . , Yn} = {Φ(X1), . . . , Φ(Xn)}.
The Bayes estimation yields the posterior pΦ(w|Y n)
and the predictive distribution pΦ(y|Y n) by replacing
p(x|w) of Eqs (5) and (6) with pΦ(y|w). Then, the
generalization error defined as

GΦ(n) = EY n

[∫
qΦ(y) ln

qΦ(y)
pΦ(y|Y n)

dy

]
, (13)

has the asymptotic form, whose coefficients are deter-
mined by the zeta function of

HΦ(w) =
∫

qΦ(y) ln
qΦ(y)

pΦ(y|w)
dy. (14)

∑
x and/or

∑
y should be substituted for

∫
dx and/or∫

dy in the discrete space, respectively.

3.2 Vicarious Bayes Learning

Comparing Eq (13) with Eq (1), let us determine
how the data space affects the parameter learning.
It is known that the generalization error implicitly
expresses the tuning cost of all essential parameters.
For example, the regular model has the coefficients
λ = dimw/2 and m = 1. In singular models, λ also
depends on the number of parameters to be tuned
[6, 8]. The learning process is preserved if a feature
map Φ does not change the error. Observing the error
change, we can theoretically investigate which factor of
the data space is necessary for the parameter learning.

We propose the following learning framework:

Definition 1 (Vicarious Bayes Learning) The
Bayesian parameter learning and its evaluation of the

generalization error over a feature space are referred
to as the vicarious Bayes learning when G(n) and
GΦ(n) have the common asymptotic form.

In the present paper, we refer to this preserving map as
the vicarious feature map. Herein we are not interested
in the case G(n) > GΦ(n) because our purpose is to
investigate model properties on the given space x. The
smaller error implies that not all parameters have to
be estimated in the feature space, which means that
the proper form of p(x|w) cannot be obtained.

3.3 A Theory of the Feature Map on

the Error

A novelty of the proposed learning is to restrict the
feature map Φ to the vicarious one in the asymptotic
manner. Therefore, we study a condition, under which
Φ becomes vicarious.

The coefficients of the asymptotic error is deter-
mined by behavior of the Kullback divergence H(w)
or HΦ(w) in the neighborhood of Wt. The divergence
is expressed as a polynomial form of w because it is
analytic. Based on the Noetherian property of polyno-
mial ring, the divergence consists of bases. For exam-
ple, if polynomials f1(w) and f2(w) are bases, the non-
negative function H(w) can have the following form,

H(w) = f1(w)2 + f2(w)2 + f3(w), (15)

where f3 is a sum of squared polynomials with respect
to f1 and f2, and is higher order than f2

1 and f2
2 . More

precisely, f3 consists of terms, such as (f1f2)2, (f1 +
f2
2 )2 and (f2

1 +f2)2, with coefficients. It naturally holds
that f1(w) = f2(w) = 0 on Wt. The error GΦ(n) will
have the same asymptotic form if HΦ(w) is given by

HΦ(w) = f1(w)2 + f2(w)2 + f4(w), (16)

where f4 consists of the same terms as f3 with differ-
ent coefficients. Based on this example, we derive a
condition:

Theorem 1 A feature map Φ becomes vicarious if
H(w) and HΦ(w) have the same essential terms for
λ and m.

This theorem is easily proved according to the relation
of Eqs (7)-(9). Note that Theorem 1 shows a sufficient
condition: The largest poles in the zeta functions of



H(w) and HΦ(w) can be at the same position even if
the essential parts are different from each other.

A general feature map provides insight of the gener-
alization error even when it is not straightforward to
find the vicarious one.

Theorem 2 For a feature map Φ, it holds that

G(n) ≥ GΦ(n). (17)

The proof is in Appendix.
Theorem 2 intuitively shows that the learning in a

feature space is more accurate than in the original
space because the domain space y is generally simpli-
fied based on the definition of pΦ(y|w). For example,
let us divide elements of vector x into two sets x1 and
x2, i.e. x = (x1, x2), and define two feature maps as
πi : (x1, x2) 7→ xi for i = 1, 2. The map πi selects
the attribute xi. The original model p(x|w) is a joint
probability of x1 and x2. According to the definition,
pπi(xi|w) is a marginal probability of xi. Then, G(n)
measures the error over x1 and x2 whereas Gπi(n) is
about only xi. This derives that Gπi(n) should be
smaller than G(n). Theorem 2 claims this fact mathe-
matically.

A vicarious feature map purifies the domain space
when the dimension of the feature space is less than
the original one. If π1 is a vicarious feature map, the
attributes in x1 are essential for the parameter learning
and x2 is nuisance dimension. Considering the map
πi, we can regard the vicarious learning as a feature
selection in a Bayes scenario.

4 An Application to HMMs

In this section, we apply the vicarious Bayes learning
to HMMs. We show that a restriction map of a data
length can be a vicarious feature map, which derives a
necessary length for the parameter learning.

4.1 Model Setting

The present paper focuses on the ergodic HMMs,
in which the transition connections among the hid-
den states construct a complete graph. The number
of output alphabets and the length of data are M + 1
and L0, respectively, i.e. x ∈ {1, . . . ,M + 1}L0 . The
numbers of the hidden states are K + 1 and K0 + 1
in the learning and true models. For simplicity, the

initial state is always the first one in both models.
The parameter w includes the transition probability
aij , indicating the probability of transition from the
ith state to the jth state, and the output probability
bim, indicating the probability of generating alphabet
m at the ith hidden state. These probabilities satisfy
the conditions, aii = 1 −

∑K+1
i 6=j aij for ∀aij ≥ 0 and

biM+1 = 1 −
∑M

m=1 bim for ∀bim ≥ 0.

4.2 Restriction Maps on the Length

We consider the following map of the data space,

ΦL : {1, . . . ,M + 1}L0 → {1, . . . ,M + 1}L (18)

for L ≤ L0, which cuts off the data sequences to change
the length into L. For example, Φ3(8145924518) = 484
when L0 = 10, L = 3 and M = 8. In the similar way
to πi, pΦ3(814|w) is the marginal probability over joint
probabilities p(814 ∗ ∗ ∗ ∗ ∗ ∗ ∗ |w), where ‘∗’ means any
number from {1, . . . , 9}.

4.3 Necessary Length for the Vicarious

Bayes Learning

Using the restriction map, we consider a necessary
length for the parameter learning.

It can be conjectured that L = 3 is sufficient for the
learning according to the following reason: The process
to generate data with L = 3 includes two transitions.
All transition parameters aij are used for two transi-
tions in the complete graph. All output parameters
bim are used for generating data at all hidden states.
Therefore, the information of all parameters w can be
extracted from the output sequences when infinitely
large number of sequences are given as training data.

We hereinafter prove that L = 3 is not enough even
when n → ∞ and derive a necessary length.

Lemma 1 The Kullback divergence HΦL
(w) is ex-

pressed as a sum of squared terms, which follows the
rules:

1. The squared terms monotonically increase with
growth of the data length. More precisely,
HΦL2(w) includes all the terms of HΦL1(w) for
L1 ≤ L2.

2. The significant number of the squared terms
NST (L,M) can be expressed as

NST (L,M) = (M + 1)L−1 + M − 1. (19)



The proof is in Appendix.

Theorem 3 For sufficiently large L0, vicarious fea-
ture maps exist in the series of ΦL.

Proof: Based on Lemma 1, NST (L,M) monotoni-
cally increases and all squared terms in HΦL1(w) are in-
cluded by those in HΦL2(w) for L1 < L2. We consider
the series of the squared terms of H(w) = HΦL0

(w).
Let SL be a set of the squared terms f(w)2 defined by

SL = {f(w)2 : f(w)2 ∈ HΦL(w), f(w)2 6∈ HΦL−1(w)},
(20)

where S0 = ∅. The order of the series is given by

S1, S2, . . . , SL, . . . SL0 . (21)

The Noetherian property on H(w) shows that there is
a constant Le < L0, which is the number of the essen-
tial squared terms for HΦL(w) = 0, since L0 is suffi-
ciently large for the parameter learning. More math-
ematically, Le is the minimum number, such that SLe

includes all generating elements for H(w) = 0 in terms
of the ideal theory on polynomial ring. Then ΦL for
Le ≤ L < L0 is vicarious. (End of Proof)

Let dimw be the dimension of the parameter in the
learning model. In the present HMMs,

dim w = (K + 1)(K + M). (22)

Comparing Eq (22) with Eq (19), the following theo-
rem indicates a necessary length:

Theorem 4 A necessary length Lm for the vicarious
Bayes learning of HMMs are represented by

Lm = arg minL{NST (M,L) ≥ dim w}. (23)

Proof: The maximum number of the parameters to
be tuned is dim w. According to Eqs (7)-(9), we focus
on the case pΦL

(y|w) = qΦL
(y), i.e., HΦL

(w) = 0. In
the case, the squared terms are all zero, where each
term is a polynomial of w. To identify all elements of
w, the number of the polynomials NST (M,L) should
not be less than dim w based on the relation between
the number of variables and that of equations. (End

of Proof)

Theorem 4 shows that L = 3 can not attain the
vicarious Bayes learning. For example, let us assume

that L = 3, M = 1 and K = 1.

NST (1, 3) = (1 + 1)2 + 1 − 1 = 4

< dimw = (1 + 1)(2 + 1) = 6, (24)

which does not satisfy the condition of Lm. The nec-
essary length is derived as

Lm = arg minL{(1 + 1)L−1 + 1 − 1 ≥ 6} = 4. (25)

Note that this length could not be sufficient, i.e. the vi-
carious Bayes learning requires longer sequences. Let
us assume that HΦL(w) consists of the square terms
f1(w)2, f2(w)2 and f3(w)2, and that dimw = 3.
If f3(w) is a polynomial with respect to f1 and f2,
f1(w) = f2(w) = 0 automatically satisfies f3(w) = 0.
Then the actual number of the equations to identify
w decreases to two, which is less than dim w. In such
case, L should be larger to obtain more squared terms
in HΦL(w).

4.4 Experimental Validation of the

Minimum Length

As seen in the previous part, Lm is a necessary
length, which implies that longer sequences are re-
quired for the vicarious Bayes learning. In this part,
we experimentally verify the minimum (necessary and
sufficient) length.

We suppose that (K,M) = (2, 2) and investigate the
generalization error when L = 1, . . . , 10. The original
length is L0 = 10. The dimension of parameters is
dimw = 12 and the number of the squared terms is
NST (L, 2) = 3L−1+1. According to Theorem 4, Lm =
4. The number of training data sequences is n = 500.
We used the MCMC method to construct the posterior
pΦL

(w|Y n) [1]. The number of parameters to construct
the predictive model pΦL

(y|Y n) is Nw = 500, i.e.

pΦL
(y|Y n) ' 1

Nw

500∑
i=1

pΦL
(y|wi), (26)

where wi is taken from the posterior. In the evaluation,
the number of the test data sequences is N = 5000 and
the average EY n [·] is taken by 100 training sets.

Figure 1 shows the results. The horizontal axis in-
dicates the lengths L of training and test data. The
vertical one does the generalization error. There are
three curves for the true model sizes K0 = 0, 1, 2. It is
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図 1: The generalization error w.r.t. the sequence
length.

derived that

G(n) =
dimw

2n
+ O

( 1
n2

)
(27)

when K = K0 [6]. The horizontal line described as
’(dimw)/(2n)’ is the theoretical asymptotic value of
the error, dim w/(2n) = 12/(2 × 500) = 0.012. The
error on K0 = 2 has to reach the line for G(n) =
GΦL

(n). As can be seen in the graph, the curve of
K0 = 2 has a gap between L = 3 and L = 4, and
almost reaches the horizontal line at L = 4, which
implies that Lm = 4 will be the minimum length of
the vicarious learning.

5 Discussions

The vicarious learning on HMMs reduces the com-
putational cost in both training and test sessions.
It is known that the time complexity of p(x|w) is
O((K + 1)2L) in HMMs. Then, the complexity of the
likelihood L(w,Xn) is O(n(K + 1)2L0) for a given w,
which shows the cost O(n(K + 1)2L) of LΦL(w, Y n)
is much less than that of L(w,Xn) when a number of
data exist. The MCMC method requires the calcula-
tion of L(w,Xn) in each update of the parameter for
training. The computation of p(x|w) is frequently used
for the generalization error in the test session. There-
fore, to shorten the length of the data sequences saves
a number of computational complexity.

The reduction of the computational cost is also ef-
fective for cross-validation [5]. In the validation, the
given data is divided into training data and validation
data. These data sets are used for training and testing

respectively. This procedure is then repeated after re-
versing the roles of the sets, and the generalization er-
ror is estimated. This validation method is commonly
used for selecting the optimal size of a model, so called
the model selection problem. To change the domain
space by the vicarious feature map ΦL for L ≥ Lm

is a powerful method for the model selection because
both the training and testing sessions are enormously
repeated in the cross-validation and GΦL

(n) has the
same value as G(n) in any size.

6 Conclusion

We proposed the vicarious Bayes learning. It is re-
garded as a feature selection preserving the Bayes gen-
eralization error in an asymptotic manner. We also
demonstrated its availability in HMMs. The length re-
striction is a theoretically guaranteed feature selection
on the basis of the vicarious learning framework.
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Appendix

Proof of Theorem 2

First, let us state the following lemmas without their
proofs:

Lemma 2 Let λ1,m1 and λ2,m2 be the largest poles
and the orders in the zeta functions of H1(w) and
H2(w), respectively. Then, the following relation holds
if H1(w) ≤ H2(w) for all w [8],

λ1

n
− m1 − 1

n ln n
≤ λ2

n
− m2 − 1

n lnn
. (28)

Lemma 3 (Continuous Log-Sum Inequality)

For
∫ ∫

q(x, y)p(y) ln q(x,y)
p(x,y)dxdy < ∞,∫ ∫

q(x, y)p(y) ln
q(x, y)
p(x, y)

dxdy

≥
∫ (∫

q(x, y)p(y)dy
)

ln
∫

q(x, y)p(y)dy∫
p(x, y)p(y)dy

dx, (29)

where p(y), q(x, y), p(x, y) are all probability density
functions.



Eq (9) is rewritten as

H(w) =
∫

Hy(w)dy, (30)

Hy(w) =
∫

q(x)δ(y − Φ(x)) ln
q(x)

p(x|w)
dx. (31)

Based on Lemma 3,

H(w) ≥ HΦ(w). (32)

Lemma 2 indicates that

G(n) ≥ GΦ(n), (33)

which proves the theorem. (End of Proof)

Proof of Lemma 1

First, we focus on L = 3, then generalize the result.
We use the following notation:

H(w) ≷ K(w), (34)

where there are positive constants C1, C2 such that

C1K(w) ≤ H(w) ≤ C2(w) (35)

in the neighborhood of H(w) = 0. The true model has
the true parameter w∗ = {{a∗

ij}, {b∗im}} for 1 ≤ i, j ≤
K0 + 1 and 1 ≤ m ≤ M + 1. It is known that the
largest poles in the zeta functions of H(w) and K(w)
are the same [8]. It holds that

HΦ3(w) ≷
∑

y

{pΦ3(y|w) − qΦ3(y)}2 (36)

because y is discrete [7]. To simplify the descriptions,
we use the notation,∑
alph

∑
path

b1abab

=
∑

i,j,k∈{1,...,M+1}3

∑
l,m∈{1,...,K+1}2

b1ia1lbljalmbmk,

(37)

which represents that
∑

alph and
∑

path is the
marginalization over all generation of alphabets and
all paths of transitions among the hidden states. For
the true parameters {{a∗

ij}, {b∗im}},∑
path

≡
∑

l,m∈{1,...,K0+1}2

. (38)

Then, Eq (36) is rewritten as

HΦ3(w) ≷
∑
alph

{∑
path

b1abab −
∑
path

b∗1a
∗b∗a∗b∗

}2

. (39)

Using biM+1 = 1 −
∑M

m=1 bim,{ ∑
path

b1abab·M+1 −
∑
path

b∗1a
∗b∗a∗b∗·M+1

}2

=
{∑

path

b1aba(1 −
M∑

m=1

b·m)

−
∑
path

b∗1a
∗b∗a∗(1 −

M∑
m=1

b∗·m)
}2

. (40)

Note that the right-hand side of Eq (39) includes terms{∑
path

b1abab·m −
∑
path

b∗1a
∗b∗a∗b∗·m

}2

(41)

for 1 ≤ m ≤ M . For any constant c, it holds that

h1(w)2 + {ch1(w) + h2(w)}2 ≷ h1(w)2 + h2(w)2.
(42)

Combining Eq (42) and the presence of the terms in
Eq (41), the term in Eq (40) is rewritten as{ ∑

path

b1abab·M+1 −
∑
path

b∗1a
∗b∗a∗b∗·M+1

}2

+
M∑

m=1

{∑
path

b1abab·m −
∑
path

b∗1a
∗b∗a∗b∗·m

}2

≷
{∑

path

b1aba −
∑
path

b∗1a
∗b∗a∗

}2

+
M∑

m=1

{∑
path

b1abab·m −
∑
path

b∗1a
∗b∗a∗b∗·m

}2

. (43)

Based on
∑K+1

i=1 a·i = 1,
∑

path b1aba =
∑

path b1ab.
Then the term in Eq (43) is rewritten as{ ∑

path

b1aba −
∑
path

b∗1a
∗b∗a∗

}2

=
{∑

path

b1ab −
∑
path

b∗1a
∗b∗

}2

. (44)

Applying this procedure to biM+1 of the last factor
recursively, we can eliminate the biM+1, i.e.

HΦ3(w) ≷
M∑

alph

(b1 − b∗1)
2 +

M∑
alph

{
∑
path

b1ab −
∑
path

b∗1a
∗b∗}2

+
M∑

alph

{
∑
path

b1aab −
∑
path

b∗1a
∗a∗b∗}2

+
M∑

alph

{
∑
path

b1abab −
∑
path

b∗1a
∗b∗a∗b∗}2,

(45)



where
∑M

alpha means the marginalization over all gen-
eration of alphabets except for M +1. We apply a map
b1m = b′1m−b∗1m to HΦ3(w). For simplicity, we use the
same symbol b1m for b′1m.

HΦ3(w) ≷
M∑

alph

b2
1 +

M∑
alph

{
∑
path

(b1 + b∗1)ab −
∑
path

b∗1a
∗b∗}2

+
M∑

alph

{
∑
path

(b1 + b∗1)aab −
∑
path

b∗1a
∗a∗b∗}2

+
M∑

alph

{
∑
path

(b1 + b∗1)abab −
∑
path

b∗1a
∗b∗a∗b∗}2.

(46)

According to Eq (42),

HΦ3(w) ≷
M∑

alph

b2
1 +

M∑
alph

{
∑
path

b∗1ab −
∑
path

b∗1a
∗b∗}2

+
M∑

alph

{
∑
path

b∗1aab −
∑
path

b∗1a
∗a∗b∗}2

+
M∑

alph

{
∑
path

b∗1abab −
∑
path

b∗1a
∗b∗a∗b∗}2.

(47)

Since b∗1m is a constant,

HΦ3(w) ≷
M∑

alph

b2
1 +

M∑
alph

{
∑
path

ab −
∑
path

a∗b∗}2

+
M∑

alph

{
∑
path

aab −
∑
path

a∗a∗b∗}2

+
M∑

alph

{
∑
path

abab −
∑
path

a∗b∗a∗b∗}2. (48)

The number of terms in
∑M

alph{·}2 is M#b, where #b is
the number of bim because only the output probability
bim is counted in

∑M
alph. Then NST (M, 3) = M +M +

M + M2 = (M + 1)3−1 + M − 1.
Hereinafter, let us generalize the proof for any L.

Because of the reduction procedure, the right-hand side
of Eq (48) includes the terms

M∑
alph

b2
1, and

M∑
alph

{
∑
path

ab −
∑
path

a∗b∗}2, (49)

which are the term of L = 2. Moreover, the first term
appears when L = 1. This shows that the squared
terms of L = l includes those of L < l, which proves
Lemma 1-1.

We count the squared terms. We define that the
squared terms in Eqs (39) and Eq (48) are ST1L and
ST2L, respectively. Let #(·) be a function to indicate
the number of squared terms. Obviously #(ST1L) =
(M + 1)L. The suffix on the summation

∑
path does

not affect the number of the terms, which implies that
the number of the squared terms is determined by the
number of bim in

∑
alph. Let us assume that b·M+1 = 1

in Eq (39) in order not to count it as a parameter. Un-
der this assumption, #(ST1L) = (M +1)L−1 because
the term for the alphabet y = (M +1)(M +1)(M +1)
in Eq (39) vanishes i.e. {

∑
path aa−

∑
path a∗a∗}2 = 0.

Then, the numbers of
∑

alph and bim in ST1L−1 are
completely the same as those of

∑M
alph and bim in ST2L

except for the first term
∑M

alph b2
1. Therefore it is easy

to confirm that

#(ST2L) = #(ST1L−1) + #(
M∑

alph

b2
1)

= (M + 1)L−1 − 1 + M, (50)

which proves Lemma 1-2. (End of Proof)
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