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Matching between Piecewise Similar Curve Images

Kazunori Iwata ∗ Akira Hayashi †

Abstract: Matching between curve images in two dimensions is frequently performed in shape

analysis. We concentrate on a specific but meaningful deformation of curve images defined by a

piecewise similar relation. We present a curve matching algorithm for dealing with the deformation,

together with a way of sampling points from each curve image. Our algorithm is unique in that

it considers not only matching between curve images, but also sampling points. Using several

experiments, we explain how to implement the algorithm for digital images of line drawings, and

show that it is effective even when the number of sample points is relatively small.
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1 Introduction
Matching between curve images in two dimensions is of-

ten performed in shape analysis for digital image process-

ing, line drawing interpretation, and character handwrit-

ing recognition. A curve image is represented as a set of

points. The number of points in the set can be very large,

and hence, to reduce the computational cost of process-

ing the image, a curve image is usually re-parameterized

as a reduced set of sampled points [1–7]. In this case,

curve matching involves finding correspondences between

the sampled points of two curve images. Shape analysis

relies on these correspondences.

A number of curve (or shape) matching algorithms have

been proposed [1–9]. The difference between these algo-

rithms lies in their choice of matching cost function (MCF)

for matching curve images. The MCF for curve images

is used to quantify dissimilarities between the images by

exploiting some of their geometric attributes. Almost all

the MCFs used in the curve matching algorithms are de-

signed to be somewhat effective for certain kinds of de-

formations. However, which MCF to select for a particu-

lar application of curve matching remains a puzzle, since

the MCFs are neither optimal nor have theoretical guaran-

tees for all the kinds of deformations with respect to curve

matching. Although the MCFs will be practically meaning-

ful, here we are not concerned with considering certain of
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the kinds of deformations concurrently. In this paper, we

concentrate on a specific but meaningful deformation de-

fined by a piecewise similar relation. We present a curve

matching algorithm with a novel MCF, together with a way

of sampling points from each curve image. Unlike most

algorithms with sample points, such as [1–6, 10], our algo-

rithm is also unique in that it considers not only matching

between curve images, but also sampling points. The al-

gorithm has an asymptotic guarantee for finding correspon-

dences from the sample points of a curve image to those

of a piecewise similar deformation thereof. The guaran-

tee will act as a useful guide in judging whether or not the

algorithm is appropriate for an application. Using several

experiments, we explain concretely how to implement the

algorithm for digital images, and show that it is effective

even when the number of sample points is relatively small.

The organization of this paper is as follows. We introduce

the piecewise similar relation, and formulate curve match-

ing in Section 2. We describe our curve matching algorithm

in Section 3. The experimental results of the algorithm are

shown in Section 4. We conclude with a summary in Sec-

tion 5.

2 Preliminaries
Let Z be the integers and R the real numbers. The non-

negative and positive elements in Z are denoted by Z
+
0 and

Z
+, respectively. For any i, j ∈ Z, Z

j
i denotes the integers

from i to j. The nonnegative and positive elements in R

are denoted by R
+
0 and R

+, respectively. � (·) represents

the number of elements in a finite set, and ‖ · ‖ denotes the



norm of a vector in Euclidean space.

2.1 Piecewise Similar Relation

We define a curve, curve segment, and piecewise regular

curve to introduce a similarity of curve images.

Definition 1 (Curve). Let I = [a, b] ⊂ R be a closed in-

terval, where a < b. A plane curve is a continuous map

CI : I → R
2, with

CI(t) � (xI(t), yI(t)). (1)

When a time-parameter t ∈ I increases from a to b, we

obtain the directed trajectory of CI(t),

CI(I) � {CI(t) | t ∈ I } , (2)

where the ordering of points in the curve image CI(I) pre-

serves that of t in I , that is, for all t, t′ ∈ I where t < t′,
CI(t) precedes CI (t′) in CI(I). The curve image which is

an ordered set of points with respect to t is simply called an

image. A plane curve CI that

1. is twice differentiable on (a, b) ⊂ I , and

2. satisfies dCI(t)/dt �= 0 for all t ∈ (a, b),

is said to be regular, and its image is called a regular image.

Definition 2 (Curve Segment). For any interval [a, b] ⊆ I ,

the segment of curve CI with respect to [a, b] is described

as a continuous map CI |[a, b] : [a, b] → R
2. The image of

a segment is also called an image.

Definition 3 (Piecewise Regular Curve). Let CI be a curve

for any I = [a, b]. If there exists a partition of I ,

a = k0 < k1 < · · · < kN−1 < kN = b, (3)

such that

1. N is a finite integer, and

2. segment CI |[ki, ki+1] is regular for all i ∈ Z
N−1
0 ,

then CI is called a piecewise regular curve and CI(I) is

called a piecewise regular image.

The total length of a piecewise regular image is calcu-

lated as the sum of all the segment image lengths.

Definition 4 (Image Set). The set of piecewise regular im-

ages with positive length is denoted as S.

When an image is uniformly magnified or reduced, the

resulting image is similar to the original image in the fol-

lowing sense.

Definition 5 (Similarity). Let CI(I) and C ′
J (J) be any im-

ages in S. If there exist a map ζ : CI(I) → C ′
J (J) and a

constant λ ∈ R
+ such that, for all c1, c2 ∈ CI(I),

‖ ζ(c1) − ζ(c2) ‖ = λ ‖ c1 − c2 ‖ , (4)

then CI(I) and C ′
J(J) are similar images and we write

CI(I) ∼ C ′
J (J).

Similarity plays an important role in human recognition

of images, because similar images appear to have the same

shape, even though they may differ in scale. For example,

a small image of the letter “S” and a large image thereof

are recognized as the same letter. Analogous to similarity

is piecewise similarity according to Definition 6. It plays

the same role as similarity in human recognition.

Definition 6 (Piecewise Similarity). Let CI(I) and C ′
J (J)

be images in S, where I = [a, b] and J = [a′, b′]. If there

exist partitions of I and J ,

a = k0 < k1 < · · · < kN−1 < kN = b, (5)

a′ = l0 < l1 < · · · < lN−1 < lN = b′, (6)

such that

1. N is a finite integer,

2. for all i ∈ Z
N−1
0 , CI |[ki, ki+1] ([ki, ki+1]) and

C ′
J |[li, li+1] ([li, li+1]) are regular images in S, and

3. for all i ∈ Z
N−1
0 ,

CI |[ki, ki+1] ([ki, ki+1]) ∼ C ′
J |[li, li+1] ([li, li+1]) ,

(7)

then CI(I) and C ′
J(J) are piecewise similar and we write

CI(I) P∼ C ′
J (J). The points CI(k0), . . . , CI(kN ) are called

segment endpoints on CI(I).

Example 1 (Piecewise Similarity). On the left in Fig. 1

is an image of the letter “S”. In the center of the figure,

the original image has been deformed by uniformly making

the upper part of the letter smaller, while on the right, the

image has been further deformed by uniformly making the

lower part larger. Accordingly, these images are piecewise

similar to each other and can be recognized by humans as

representing the same letter “S”.



Fig. 1: Piecewise similar deformation of images.

Most of the raw data available from a database of shapes,

line drawings, and characters are not drawn to scale. If

some of the raw data in the same classes have a similar

relation, it is relatively easy to make them the same size

by preprocessing and then to find the correspondences be-

tween them. However, we have rarely seen such data in

practice. Most of the data have a piecewise similar relation,

since they appear to represent the same shape. In general, it

is difficult to find correspondences between them. Accord-

ingly, in this paper, we concentrate on the piecewise similar

deformation of images.

2.2 Curve Matching

A curve image is often re-parameterized as a reduced set

of sampled points. This is described with Definitions 7 and

8.

Definition 7 (Sample Points). For any interval I = [a, b]
and any N ∈ Z

+, let

γN (I) �
{{ t0, t1, . . . , tN−1, tN } ∈ IN+1

| a = t0 < t1 < · · · < tN−1 < tN = b} . (8)

For any sequence TN = { t0, . . . , tN } ∈ γN (I),

CI(TN ) �
{

CI(ti) ∈ CI(I)
∣∣ i ∈ Z

N
0

}
, (9)

are called the sample points of CI(I). The ordering of the

sample points in CI(TN ) preserves the ordering of ti ∈ I .

Definition 8 (Re-parameterization). We define

ΓN (CI(I)) �
{

CI(TN ) ∈ CI(I)N+1 |TN ∈ γN (I)
}

.

(10)

For any sequence TN = { t0, . . . , tN } ∈ γN (I), the sam-

ple points on the image are simply denoted as

PN � CI(TN ). (11)

For all i ∈ Z
N
0 , the i-th element of PN is denoted by

pi � CI(ti), (12)

and the components of the i-th element are expressed as

(xi, yi) � pi. (13)

For all i ∈ Z
N−1
0 , the finite difference at pi is defined as

Δpi = (Δxi,Δyi) , (14)

� (xi+1 − xi, yi+1 − yi) . (15)

For all i ∈ Z
N−2
0 , the second-order finite difference at pi is

expressed as

Δ2pi =
(
Δ2xi,Δ2yi

)
, (16)

� (Δxi+1 − Δxi,Δyi+1 − Δyi) . (17)

For all i ∈ Z
N−1
0 , the unit tangent and unit normal vectors

at pi are defined as

e
(1)
PN

(pi) �
(

Δxi

‖Δpi ‖ ,
Δyi

‖Δpi ‖
)

, (18)

e
(2)
PN

(pi) �
(
− Δyi

‖Δpi ‖ ,
Δxi

‖Δpi ‖
)

, (19)

respectively. For all i ∈ Z
N−2
0 , the curvature at pi is de-

fined as

κPN
(pi) � ΔxiΔ2yi − Δ2xiΔyi

‖Δpi ‖3 . (20)

For simplicity, an image CI(I) is denoted by C. Also, we

sometimes describe the unit vectors using angles.

Definition 9 (Angle). Let C be an image in S. For any

PN ∈ ΓN (C), we define θPN
such that for all i ∈ Z

N−1
0 ,

the unit tangent and unit normal vectors at pi ∈ PN are

e
(1)
PN

(pi) = (cos θPN
(pi), sin θPN

(pi)) , (21)

e
(2)
PN

(pi) = (− sin θPN
(pi), cos θPN

(pi)) . (22)

For all i ∈ Z
N−1
0 , the finite difference at pi is defined as

ΔθPN
(pi) � θPN

(pi+1) − θPN
(pi). (23)

Now, curve matching is formulated using sample points.

Definition 10 (Curve Matching). Let C and C′ be images

in S. We say that C matches C′ with PN ∈ ΓN (C) and

QM ∈ ΓM (C′), respectively, if there is a correspondence

from each element in PN to an element in QM . A corre-

spondence is represented by a many-to-one map f : Z
N
0 →

Z
M
0 that satisfies the following two conditions:

1. f(0) = 0 and f(N) = M , and
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Fig. 2: Matching map f .

2. f(i) ≤ f(i + 1) for all i ∈ Z
N−1
0 ,

where f(i) = j denotes the correspondence from pi ∈ PN

to qj ∈ QM . This is called a matching map.

Example 2 (Matching Map). Fig. 2 illustrates a matching

map. Let C and C′ denote the upper and lower curve images

in Fig. 2, respectively. The points on the curve images rep-

resent the sample points on the images. The arrows depict

correspondences from the sample points on C to those on

C′, which are expressed as f(0) = 0, f(1) = 0, f(2) = 2,

and f(3) = 3.

3 Curve Matching Algorithm
We start with a definition for equipartition sample points.

Definition 11 (Equipartition Sample Points). Let C be an

image in S. Let pi denote the i-th element of PN ∈ ΓN (C).
If for all i ∈ Z

N−1
0 , the finite difference at pi satisfies

‖Δpi ‖ = rN > 0, (24)

then PN is referred to as the equipartition sample points on

C. For any N ∈ Z
+, the set of such sample points on C is

simply denoted as

Γ∗
N (C) �

{
PN ∈ CN+1

∣∣ ‖Δpi ‖ = rN , i ∈ Z
N−1
0

}
.

(25)

Note that rN depends only on N , and not on i. The

following curvature-based measure plays an important role

in quantifying the difference between images in terms of

piecewise similarity.

Definition 12 (Curvature-based Measure). Let C be an im-

age in S. Let C ⊆ C denote a part of the image in S. For

any PN ∈ ΓN (C), the measure αPN
: S → R is defined as

αPN
(C) �

∑
pi∈C∩PN , i∈Z

N−2
0

κPN
(pi), (26)

where κPN
is the curvature defined in (20).

C

C

p0 p1

p2

pN−2

pN−1

pN

Fig. 3: Part of an image and sample points.

Example 3 (Curvature-based Measure). Fig. 3 depicts a

part C of an image C and sample points PN according to

Definition 12. In this case, because

C ∩ PN = { p2, . . . , pN−2 } , (27)

the measure αPN
(C) is calculated as

αPN
(C) = κPN

(p2) + · · · + κPN
(pN−2). (28)

We introduce a convenient notation to indicate a part of

an image together with its sample points.

Definition 13 (Image with Sample Points). Let C be an im-

age in S. For any pi and pi′ in PN ∈ ΓN (C), C |[pi, pi′ ]
denotes a part of C such that

1. it exists in S,

2. it contains all sample points between pi and pi′ , but

does not include the other elements of PN .

We should note that C |[pi, pi] contains a single sample

point pi, but its length is positive because it is in S, and that

for all images with the same sample points, the curvature-

based measure gives the same value.

Example 4 (Image with Sample Points). The part C of C in

Fig. 3 can be expressed as C |[p2, pN−2] .

Definition 14 (Dissimilarity Measure). Let C and C′ be im-

ages in S. Let C ⊆ C and C′ ⊆ C′ denote their parts in S.

For any PN ∈ ΓN (C) and QM ∈ ΓM (C′), their dissimi-

larity measure μPN ,QM
: S × S → R

+
0 is defined as

μPN ,QM

(C, C′) �
∣∣αPN

(C) − αQM

(C′)∣∣ . (29)

It is simple to compute the dissimilarity measure, since it

requires only the curvatures. The dissimilarity measure is

invariant for all translations, reflections, and rotations, since

the curvatures in αPN
and αQM

are invariant for these. Us-

ing the dissimilarity measure, we describe an MCF that

computes the cost of obtaining correspondences from the

sample points of one image to those of another.



Definition 15 (Matching Cost Function). Let C and C′ be

images in S. For any N, M ∈ Z
+, let PN ∈ ΓN (C) and

QM ∈ ΓM (C′) denote the respective sample points. For

any matching map f : Z
N
0 → Z

M
0 , let

If �
N⋃

i=0

{
min

i′∈If (i)
i′

}
, If �

N⋃
i=0

{
max

i′∈If (i)
i′

}
,

(30)

where for all i ∈ Z
N
0 ,

If (i) �
{

i′ ∈ Z
N
0 | f(i) = f (i′)

}
. (31)

Since �
(If

)
= �

(If

)
holds, let L = �

(If

)
= �

(If

)
.

For all n ∈ Z
L−1
0 , let in and in be the (n + 1)-th smallest

elements in If and If , respectively. Given a matching map

f : Z
N
0 → Z

M
0 , the matching cost function (MCF) for C and

C′ under PN and QM is described as

dPN ,QM
(C, C′ | f) �

L−1∑
n=0

μPN ,QM

(C ∣∣[pin
, pin

]
, C′ ∣∣[qjn−1+1, qjn

])
, (32)

where index jn is defined as

jn �

⎧⎨
⎩
−1, if n = −1,

f
(
in

)
, otherwise.

(33)

The best matching maps are described as

f∗ � argmin
f

dPN ,QM
(C, C′ | f) . (34)

Example 5 (Matching Cost Function). Consider the match-

ing map f given in Example 2. According to (31), we have

If (0) = { 0, 1 }, If (1) = { 0, 1 }, If (2) = { 2 } and

If (3) = { 3 }. Hence, If = { 0, 2, 3 } and If = { 1, 2, 3 }.

The matching cost for the matching map f is written as

dP3,Q3 (C, C′ | f) = μP3,Q3 (C |[p0, p1] , C′ |[q0, q0] )

+ μP3,Q3 (C |[p2, p2] , C′ |[q1, q2] )

+ μP3,Q3 (C |[p3, p3] , C′ |[q3, q3] ) . (35)

We now describe our algorithm incorporating the MCF.

Algorithm 1 (Curve Matching). Perform the steps given

below.

1. Extract sample points PN and QM from images C
and C′, respectively, such that constraints 1a, 1b, and

1c given below hold:

(a) PN = { p0, . . . , pN } ∈ Γ∗
N (C),

(b) QM = { q0, . . . , qM } ∈ Γ∗
M (C′), and

(c) for any ε ∈ R
+, there exist N0 ∈ Z

+ and M0 ∈
Z

+ such that for all i ∈ Z
N−1
0 , all j ∈ Z

M−1
0 ,

all N ≥ N0 and all M ≥ M0,∣∣∣∣ 1
‖Δpi ‖ − 1

‖Δqj ‖
∣∣∣∣ < ε. (36)

2. Using PN and QM obtained in the previous step, find

the best matching maps f∗ that give the minimum

cost, using a search algorithm.

3. Express correspondences from PN to QM , according

to f∗.

Although the MCF is simple, it is sufficient for our al-

gorithm to find correspondences between piecewise similar

curve images as shown in Theorem 1 and Corollary 1.

Theorem 1. Let C and C′ be images in S. Let C ⊆ C
and C′ ⊆ C′ denote the respective parts which are regular

images in S. If

1. C ∼ C′,

2. sample points PN and QM are extracted from C and

C′, respectively, such that they satisfy constraints 1a,

1b, and 1c of the algorithm, and

3. N and M go to infinity such that for all i ∈ Z
N−1
0 ,

lim
N, M→∞

∣∣∣∣∣
νPN

(C) − νQM

(C′)
‖Δpi ‖

∣∣∣∣∣ = 0, (37)

where pi denotes the i-th point of PN , and νPN
:

S → R is defined by

νPN
(C) �

∑
pi∈C∩PN , i∈Z

N−2
0

ΔθPN
(pi), (38)

then

lim
N, M→∞

μPN ,QM

(C, C′) = 0. (39)

The proof sketch is given in [11]. This theorem states

that there is an asymptotic guarantee for coping with par-

tially similar deformations of images under the constraints,

because if two image parts are similar, then their dissimilar-

ity measure tends asymptotically to zero. The dissimilarity

measure confirms whether or not images can be similar by

verifying the equation in (39).

From Theorem 1, we readily obtain an asymptotic guar-

antee of the algorithm in Corollary 1. Interestingly, the al-

gorithm finds the matching maps that give the minimum

cost without knowing the segment endpoints or the scale of

piecewise similar images in advance.



Corollary 1. Let C and C′ be any images in S. If C P∼
C′, then the algorithm finds a matching map for which the

matching cost from C to C′ tends to zero as N → ∞ and

M → ∞.

Proof. From Theorem 1, because C P∼ C′, there exists a

matching map f : Z
N
0 → Z

M
0 for which the matching cost

described in (32) tends to zero as N → ∞ and M → ∞.

Hence, the minimum cost given by f∗ tends to zero as N →
∞ and M → ∞.

Recall that
P∼ denotes the piecewise similar relation (see

Definition 6). Proposition 1 implies that we can simplify

constraint 1c of the algorithm when images are digitized.

Proposition 1. Let C and C′ be images in S. Let pi and

qj be the i-th and j-th sample points of PN ∈ ΓN (C) and

QM ∈ ΓM (C′), respectively. If for all i ∈ Z
N−1
0 and all

j ∈ Z
M−1
0 ,

1. ‖Δpi ‖ ≥ 1 and ‖Δqj ‖ ≥ 1, and

2. for a given ε ∈ R
+,

|‖Δpi ‖ − ‖Δqj ‖| < ε, (40)

then (36) holds.

The proof is routine. Note that digital images embedded

in the pixel points of
(
Z

+
0

)2
always satisfy the first con-

dition of Proposition 1 if the same pixel point is not sam-

pled more than once. In this case, Proposition 1 indicates

that minimizing |‖Δpi ‖ − ‖Δqj ‖| is sufficient to mini-

mize |1/ ‖Δpi ‖ − 1/ ‖Δqj ‖|. For the same reason, we do

not need to take care the third condition (37) of Theorem 1

in implementation when images are digitized.

4 Experiments
In this section, we show experimental results of the al-

gorithm to explain concretely how the algorithm is imple-

mented for digital images. This is because digital images

are embedded in the pixel points of
(
Z

+
0

)2
, but not R

2 [12].

Line Drawing Images We have implemented the algo-

rithm for digital images of line drawings, examples of which

are shown in Figs. 4 and 5. The images in the figures were

drawn by hand with a pen on a touch panel1. Hence, they

1A drawing software is available at http://www.prl.info.hiroshima-
cu.ac.jp/˜kiwata/panel/.

are affected by hand oscillation and are a little distorted.

Each example consists of three images of the same class.

The center and right images in each example have been

drawn so as to be piecewise similar to the left image. In

Fig. 4, the center image has been deformed by uniformly

reducing the upper part of the left image, while the right

image has been further deformed by uniformly magnifying

the lower part. The example shown in Fig. 5 is much more

complicated in shape. In Fig. 5, the center image has been

deformed by uniformly reducing the middle part of the left

image, while the right image has been deformed by uni-

formly magnifying the starting spiral part of the left image.

The left image in each example is called the query image.

The center and right images, which are deformations of the

query image, are called database images. For each of the

examples, we use our algorithm to obtain correspondences

from the sample points of the query image to those of a

database image.

In this section, let C be the query image and C′ a database

image. These digital images are expressed as

C =
{

c0, . . . , cN−1

}
, C′ =

{
c′0, . . . , c

′
M−1

}
, (41)

where cn and c′m denote the n-th and m-th elements of C
and C′ in the pixel points, respectively, and N and M de-

note the number of elements in C and C′, respectively. For

all n ∈ Z
N−1
0 , the length of a subset of a digital image C is

given by

σn (C) =
n−1∑
n′=0

‖ cn′ − cn′+1 ‖ , (42)

where σ0 (C) = 0.

Implementation of Step 1 According to Proposition 1,

we replace (36) with (40) in implementing step 1 of the

algorithm. This results in the following procedure. For

any N ≤ N − 1, when segmenting a query image C with

equipartition sample points PN on C, the i-th equipartition

sample point pi of PN is the ni-th point cni of C such that

for all i ∈ Z
N
0 ,

ni = argmin
n∈Z

N−1
0

∣∣∣∣ σn (C)
σN−1 (C)

− i

N

∣∣∣∣ . (43)

Thus, we extract N + 1 equipartition sample points from

C. In this case, because of constraint 1c rewritten as (40),

the number of equipartition sample points QM on the other

image C′ is meant to be

M = argmin
z∈Z+

∣∣∣∣ z

N
− σM−1 (C′)

σN−1 (C)

∣∣∣∣ . (44)



Then, QM is obtained from C′ in the same way. Thus, we

obtain PN and QM which approximately satisfy the con-

straints in step 1 of the algorithm.

Implementation of Step 2 In step 2 of the algorithm,

there appear to be some matching maps with the same cost,

because the curvatures at pN−1 and pN are ignored in (26).

This would ordinarily be a problem for relatively small val-

ues of N . However, to avoid such a problem, we use instead

αPN
(C) �

∑
pi∈C∩PN , i∈Z

N
0

κPN
(pi), (45)

in computing the curvature-based measure in (32). Here the

curvatures at pN−1 and pN are computed additionally using

the pseudo finite differences,

ΔpN =
1
3

(2ΔpN−1 + ΔpN−2) , (46)

ΔpN+1 =
1
5

(4ΔpN−1 + ΔpN−2) . (47)

The second-order finite difference in (17) can be defined

additionally for i = N −1, N using these finite differences.

Results We set N = 24 in all the examples. This means

that there are 25 equipartition sample points on the query

image in each example. Recall that the number of equipar-

tition sample points on each database image is determined

according to (44) when N is given. The resulting corre-

spondences obtained by the algorithm are shown in Figs. 4

and 5. In cases where there were several best matchings

providing the minimum cost, we have shown only one of

these. In the figures, an x on the image represents an equipar-

tition sample point. In each example, the sample points on

the query image are labeled with successive numbers from

0 to 24. The numbering of sample points on the database

images indicates correspondences from sample points with

the same numbers on the query image. For example, the

sample point labeled 0 in Fig. 4(a) corresponds to the sam-

ple points labeled 0 in Figs. 4(b) and 4(c). Unnumbered

sample points on a database image have no correspondence

from sample points on the query image. The figures confirm

that the algorithm consistently provides correct correspon-

dences from the sample points on a query image to those on

an almost piecewise similar database image. It is somewhat

surprising that correct correspondences are given even for

such complicated images as in Fig. 5. The results also sug-

gest that the algorithm performs well even with a relatively

small number of sample points.
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Fig. 4: Best matching map from the query image “S 1” to

the database images “S 2” and “S 3”.
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Fig. 5: Best matching map from the query image “G-clef

1” to the database images “G-clef 2” and “G-clef 3”.

Next, we examine the effect of the constraints of the al-

gorithm. Instead of using equipartition sample points, we

employed sample points randomly extracted from the re-

spective images in executing the algorithm. Clearly, such

samples points do not adhere to the constraints. The results

of the correspondences on the same example of images as

Fig. 4 are shown in Fig. 6. In the figure, an x on an im-

age denotes a randomly extracted sample point. Compar-

ing Figs. 4 and 6, we confirm that the algorithm failed to

find the correct correspondences. It follows that the con-

straints provide an outstanding method for using sampling

points in the algorithm. Thus, it is effective to consider both

sampling points and matching.

5 Conclusion
We explained that our algorithm gives the best matchings

between piecewise similar images without knowing the seg-

ment endpoints or the scale of the images in advance. The

most important use for the best matchings is as a founda-

tion for shape analysis. It may be necessary to select a few
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Fig. 6: Best matching map from the query image “S 1” to

the database images “S 2” and “S 3” using randomly ex-

tracted sample points.

of the best matchings according to application dependent

properties. For example, in character handwriting recog-

nition, we sometimes need to select matchings by examin-

ing the difference between left and right derivatives at each

segment endpoint, because not all piecewise similar images

represent the same character. However, even in such a case,

the algorithm is still effective in retrieving a possible small

set of correspondences before embarking on more accurate

matching.

In this paper, we discussed a piecewise deformation given

by a similarity relation. We presented a curve matching

algorithm for coping with the deformation of images, to-

gether with a way of distributing sample points on the re-

spective images. We confirmed through several experimen-

tal results that the algorithm is effective even with a rela-

tively small number of sample points.
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