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Observational Reinforcement Learning
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Abstract: We introduce an extension to standard reinforcement learning setting called
observational RL (ORL) where additional observational information is available to the
agent. This allows the agent to learn the system dynamics with fewer data samples, which
is an essential feature for practical applications of RL methods. We show that ORL can
be formulated as a multitask learning problem. A similarity-based and a component-based
multitask learning methods are proposed for learning the transition probabilities of the
ORL problem. The effectiveness of the proposed methods is evaluated in experiments of
grid world.

1 Introduction

Recently, there is an increasing interest for methods
of planning and learning in unknown and stochastic
environments. These methods are investigated in the
field of Reinforcement Learning (RL) and have been
applied to various domains, including robotics, AI for
computer games, such as tetris, racing games and fight-
ing games. However, one of the main limiting factors
for RL methods has been their scalability to large en-
vironments, where finding good policies requires too
many samples, making most RL methods impractical.

1.1 Transfer Learning in RL

One of the approaches for solving the scalability
problem is to reuse the data from similar RL tasks
by transferring data or previously found solutions to
the new RL task. These methods have been a focus
of the research lately and are called transfer learning
methods. The transfer learning methods can be sepa-
rated into value-based and model-based transfer learn-
ing methods, depending on what is being transferred
between the RL tasks.

In value-based transfer learning the value functions
of previously solved RL tasks are transferred to the
new task at hand. A popular approach for trans-
ferring value functions is to use the previously found
value functions as initial solutions for value function of
the new RL task. These methods are called starting-
point methods, for example see the temporal-difference
learning based approach by Tanaka and Yamamura [4]
and a comparative study of these methods by Taylor
et al. [5]. For successful transfer, a good mapping of
states and actions between the RL tasks is required.
When a poor mapping is used the transfer can result
in worse performance than doing the standard rein-
forcement learning without a transfer.
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On the other hand, model-based transfer learning
methods transfer the transition models and reward
models from the solved RL tasks to new RL tasks. Sim-
ilarly to the value-based transfer, the mapping between
states and actions of the learned RL tasks and the tar-
get RL task is required. However, the requirements
for the mapping are weaker than those in the case of
value-based transfer and, thus, the transfer is also pos-
sible between less similar tasks. The reason is that the
transition model and reward model only depend on a
single transition from the current state whereas the
value function depends on a sequence of rewards (and
thus transitions) starting from the current state. This
difference can be seen from an example of transferring
knowledge from a previous task where the agent is able
to obtain a big positive reward after opening the door
and moving around in the room behind the door. How-
ever, if the new RL task gives a negative reward after
the agent enters the room, the value-based transfer is
not useful, probably even worsening the performance.
On the other hand, model-based transfer could trans-
fer the knowledge that the opening of the door allows
to enter the room and if the agent has already learned
that the room contain negative rewards in the new task
it can infer the negative value of the actions that open
the door and enter that room. In summary, the advan-
tage of model-based transfer over value-based transfer
is in cases where actions in different tasks have similar
results, e.g., the same action opens the door, but the
value of the action is different between the tasks.

A model-based transfer method called was proposed
by Wilson et al. [6] that successfully estimates the
probabilistic prior of tasks. If the model of the new
task is similar to previously encountered tasks, the
data from the previous tasks can be used to estimate
the transition and reward model for the new task.
Thus, the new task can be learned with fewer samples.
A similar approach has also been applied to partially
observable environments [2].

However, these model-based and value-based trans-
fer approaches still require almost full learning of at



least one initial task. That is “previous tasks”, which
are used in transfer learning of new tasks, should have
been learned with sufficient accuracy. If the tasks have
large state spaces, then the initial learning will require
a huge amount of data, which is not realistic. This
kind of setting where the tasks are ordered is called
transfer learning. In contrast, multitask learning is a
setting where there is no initial task and all tasks are
solved simultaneously. Another issue with the above
reviewed methods is that the advantage of transferring
between large RL tasks is problematic because a good
mapping between them is usually not available.

1.2 Proposed Observational Idea

To tackle the above mentioned problems we propose
a setting where the sharing does not occur between dif-
ferent RL tasks but between different regions (parts)
of the same RL task. This is accomplished by allowing
the agent to access additional observational data about
the regions of state-action space of the RL task. The
usefulness of the observational data is that it identifies
the regions of the task that participate in the multi-
task learning. Moreover, the strength of the sharing
between different regions depends on the similarity of
their observations. The more similar the observations
are, the stronger the sharing is. This kind of obser-
vational data is often available in practice, e.g., in the
form of camera data or sensor measurements.

A motivating example for our observational frame-
work is a mobile robot moving around on a ground,
where there are two types of ground conditions: slip-
pery and non-slippery. The robot knows its current
location and thus, can model the environment using a
standard Markov decision formulation, predicting the
next location from the current location and the move-
ment action (e.g., forward and backward). However, if
the robot has access to additional sensory information
about the ground conditions at each state, it could use
that additional observation to share the data between
similar regions and models of the environment more
efficiently even when only a small amount of transi-
tion data is available. We call this kind of RL setting
Observational RL.

In our observational setting there is no order for solv-
ing the tasks, meaning that all regions are solved simul-
taneously, i.e., as a multitask learning setup. Addition-
ally, since the sharing takes place between regions of
the whole problem, the mapping is essentially between
smaller parts of the problem. Therefore, the problem
of finding a good mapping is often mitigated.

In our proposed setting, the model-based sharing is
more natural than the value-based sharing, as the value
of the states often depends on the global location of
the region, and thus the value of similar regions is not
expected to be same. In the mobile robot example
described above, the probabilities of moving forward

would be similar in locations with similar ground con-
ditions, but the value of going forward in these loca-
tions depends on where the robot makes a transition
to after executing the forward action. For this reason,
from here we only focus on the model-based multitask
learning in the setting of ORL.

1.3 Outline

In the next section we formally introduce the setting
of ordinary RL. The notions of observations and sim-
ilarity will be formalized in Section 3. After that we
propose two methods for solving the Observational RL
problem in Section 4. Their performance is evaluated
experimentally in Section 5. Finally, we conclude in
Section 6.

2 Ordinary RL

The goal of reinforcement learning is to learn optimal
actions in unknown and stochastic environment. The
environment is specified as a Markov Decision Problem
(MDP), which is a state-space-based planning problem
defined by S, PI , A, PT , R and γ. Here S denotes the
set of states, PI(s) defines the initial state probability,
A is the set of actions, and 0 ≤ γ < 1 is the discount
factor. The state transition function PT (s

′|s, a) defines
the conditional probability of the next state s′ given
the current state s and action a. At each step the agent
receives rewards defined by function R(s, a, s′) ∈ R.
The goal of RL is to find a policy π : S → A that

maximizes the expected discounted sum of future re-
wards when the transition probabilities PT and/or the
reward function R is unknown. The discounted sum
of future rewards is

∑∞
t=0 γ

trt, where rt is the reward
received at step t. In this paper we focus on the case
where the transition probabilities are unknown, but
the reward function is known, due to space constraints.
The extension of the proposed methods to an unknown
reward function is straight-forward.

3 Observational RL

In this section we formulate the setting of Observa-
tional RL (ORL). For better understandability, we first
start with a simpler framework that already includes
the main idea. Then, later extend it to a more general
setting.

3.1 Basic Idea

The Observational RL setting extends the ordinary
RL setting by allowing the agent to access additional
observational information about the state-action space.
For the basic case, consider that the agent has obser-
vations about each state 1. This means that for each

1Observations are separated from the state information be-
cause they do not necessarily satisfy the Markov property.



state s ∈ S the agent has some observation o ∈ O,
where O is the set of observations. Thus, formally the
observational information can be defined as a function
ϕ(s) ∈ O mapping each state to its observation. For
example, in the case of the mobile robot these obser-
vations could be sensor measurements about ground
conditions at each location.

The general idea of ORL is to use these additional
observations for speeding up the learning, thus, requir-
ing fewer samples to find good policies. ORL will be ef-
fective if the states that have similar observations have
similar transition structure. If the transition structure
has nothing in common applying ORL-based methods
will not be able to improve the performance. On the
other hand, if similar observations imply similar transi-
tion structure, then ORL-methods should have strong
advantages.

The current paper focuses on the model-based RL
approach [3], which consists of following two steps:

1. Estimate the transition probabilities PT (s
′|s, a)

using transition data.

2. Find an optimal policy for the estimated tran-
sition model by using a dynamic programming
method, such as value iteration.

More specifically, the transition data consists of, pos-
sibly non-episodic2, samples {(st, at, s′t)}Tt=1, where st
and at correspond to the current state and action of
the t-th transition and s′t is the the next state. Thus,
the idea is to use observational data expressed by ϕ to
have more accurate estimates of the transition proba-
bilities PT .

To take advantage of observational information we
have to require that the agent assumes a common pa-
rameterization for the transition models for all states.
In other words, transition probabilities for all states are
modelled with the same parametric form PT (s

′|s, a;βs)
where βs is the parameter for the transition model for
state s. For example, in the case of discrete MDPs,
we can use a multinomial parameterization. This com-
mon parameterization implicitly defines the mapping
between the actions and next states of different states.
Thus, it is similar to the mappings used in other trans-
fer learning methods discussed in Section 1.1.

Similarly to other transfer learning methods the
choice of mapping (in the case of ORL the choice of
the parameterization) greatly affects the performance.
Use of improper parameterization will negate all ad-
vantages of data sharing and could even worsen the
performance, depending on what method is used for
solving the ORL problem.

Next we formalize the ORL framework that extends
the described basic idea.

2Non-episodic means that there is no requirement that the
next state of the t-th transition sample (i.e., s′t) has to equal to
the starting state of the (t+1)-th transition sample (i.e., sn+1).

3.2 Formulation of ORL

In the previous formulation the observations were
just connected to single states. It is useful to extend
the formulation by connecting the observations to re-
gions (i.e., subsets) of the state-action space S×A. Let
u denote a region an observation is connected to. We
call u an observed region and as it is a subset of state-
action space u ⊂ S × A. Thus, the basic ORL idea
described above was just a special case when u ∈ S.
There are two motivations for this extension. Firstly,
it allows us to work with structural problems where
one observation is connected to several states, e.g., a
manipulation task of various objects by a robotic arm,
where an observation is connected to an object, and
thus to all states involved in the manipulation of that
object. Secondly, this extension means that the obser-
vations are now also connected to actions. This allows
one to have different observations for different actions
and the sharing can depend on actions. For example,
in the mobile robot case the movement actions (for-
ward and backward) could participate in the sharing,
whereas some other actions, such as picking up an ob-
ject, could be left out from the sharing.

Now the observations function ϕ : U → O where U
contains all observed regions. If there are N obser-
vations then, the observational data is {(un, on)}Nn=1

where observation on ∈ O corresponds to region un ⊂
S × A. In this case the set of observed regions is
U = {un}Nn=1.

Additionally, we require that states can belong at
most to a single observed region, this means that
ui ∩ uj = ∅, for i ̸= j. However, there is no require-
ment that all state-action pairs belong to an observed
region. The state-action pairs that do not belong to
any observed region do not benefit from the observa-
tional information. This extension allows the agent to
consider models where all regions of the state-action
space are not equipped with observations or certain
parts of the state space are different, e.g., there is a
maze with corridors and rooms and the agent only has
observations about the rooms.

Next we propose two methods for solving the ORL
problem.

4 Proposed Methods

First of the methods is based on the similarity
idea and the second one comes from the mixture-of-
components multitask learning ideas.

4.1 Similarity-based ORL

The idea of similarity-based ORL method is to add
data from similar tasks directly to the likelihood func-
tion of the models for every observed region. Consider



the single task estimation of maximum (log) likelihood
for observed region u

β̂u = argmax
βu

∑
(s,a,s′)∈Du

logPT (s
′|s, a;βu), (1)

where Du is a set of transition data from observed re-
gion u. A straight-forward extension of the single task
estimation (1) is to add data from other tasks and
weight them according to the similarity of the other
tasks to the current task at hand. This can be ex-
pressed by

β̂u = argmax
βu

∑
v∈U

∑
(s,a,s′)∈Dv

ku(v) logPT (s
′|s, a;βu),

(2)

where ku(v) ∈ [0, 1] is the similarity of the observed
region v to observed region u. Thus, data from ob-
served regions that have high similarity ku(v) have a
big effect on the estimation of the model of region u.
In the case of a mobile robot, consider the estimation
of the model for a region of slippery states u (e.g., an
icy region). If the similarity function ku assigns high
similarity to other regions of slippery states (e.g., other
icy regions or wet regions) and a low similarity value
for non-slippery states then the similarity-based ORL
method will provide an accurate estimate for βu even
if region u has few or no samples.

A practical option for the similarity function is to
just use the Gaussian kernel between the observations
of the regions, expressed as

ku(v) = exp(−∥ϕ(u)− ϕ(v)∥2/σ2), (3)

where σ is the width of the kernel. This parameter
could be chosen using cross-validation and it controls
how much multitask effect distant tasks have on the
current task at hand.

The only constraint on ku is that it should give value
1 for the region itself, i.e., ku(u) = 1. No other proper-
ties are required. Thus, we also allow non-symmetric
and non-positive definite similarities.

One disadvantage of similarity-based ORL is it suf-
fers from the curse of dimensionality if the observations
are high-dimensional. In this case it means that all
tasks will become dissimilar to each other due to the
high-dimensionality of observations. Therefore, next
we will introduce a more sophisticated method that is
based on mixture-of-components, which uses a proba-
bilistic framework to model the multitasking problem
of ORL and thus could be expected to mitigate the
above mentioned problem.

4.2 Component-based ORL

In this section we introduce a component-based mul-
titask learning method for learning transition probabil-
ities PT (s

′|s, a) for ORL.

Consider again the example of a mobile robot that is
moving along a difficult terrain that has obstacles and
varying ground conditions. The robot knows its loca-
tion and speed at each step. That knowledge allows the
robot to learn the state transition probabilities for each
action. However, if the robot has access to additional
observations about the states (using sensors or a cam-
era), then using such observational information could
allow the robot to estimate the transition probabilities
in fewer samples than by just using robots location and
speed.

Recall that in ORL the agent has access to obser-
vations, i.e., the agent knows function ϕ(u) ∈ O. For
example, for the mobile robot the set of observations
could contain measurements about the ground type
(e.g., gravel or tarmac) or visual information about
the obstacles around a particular location. As already
mentioned, in terms of multitask learning an observed
region u ∈ U is a task and ϕ(u) specifies its features.

Here we introduce the idea of component-based mul-
titask learning where the role of task features is to a
priori determine the component the task belongs to.
Let there be M components, then P (m|ϕ(u)) denotes
the probability that the task u with features ϕ(u) be-
longs to the component m (where m ∈ {1, . . . ,M}).
Let (s, a) be a state-action pair and u ∈ U be such

that (s, a) ∈ u, then the sharing between elements of
U is formulated as a mixture of components for the
transition probability:

PT (s
′|s, a) =

M∑
m=1

PT (s
′|s, a,m)P (m|ϕ(u)), (4)

where PT (s
′|s, a,m) is the transition probability to

state s′ under component m for state-action pair (s, a)
and P (m|ϕ(u)) is the component membership proba-
bility mentioned above. In the example of a mobile
robot, these components would comprise of states that
have similar transition dynamics, e.g., one component
could be a group of states where a certain moving ac-
tion fails due to difficult ground conditions and another
component represents states where the moving action
succeeds.

Given the number of components M and data about
transitions and observations, we want to find the max-
imum likelihood estimate for (4). To do that we first
need to assume a parametric form for its elements. The
parameterized version of (4) is given by

P (s′|s, a, β, α) =
M∑

m=1

P (s′|s, a, βm)P (m|ϕ(u), α), (5)

where βm is the parameter for the transition model of
component m and α is the parameter for component
membership probabilities. The estimates of both of
these parameters will be determined by maximum like-
lihood estimation. It should be noted that any param-
eterization will work as long as its maximum likelihood



estimation is tractable. The choice of parameterization
for P (m|ϕ(u), α) depends on the type of observations,
O. For discrete observations an option is to use a Naive
Bayes model:

P (m|o, α) = αm,0

K∏
k=1

αm,k,ok , (6)

where o is observation, i.e., o = ϕ(u) = (o1, . . . , oK)T .
Parameter αm,0 controls the overall probability of com-
ponent m and αm,k,ok controls the probability of com-
ponent m for regions whose observation’s k-th dimen-
sion is equal to ok. Since parameters are multiplied
together, the model assumes that each dimension in-
dependently affects the component probability.

For continuous observations following parameteriza-
tion can be used:

P (m|ϕ(u), α) = exp(⟨αm, ϕ(u)⟩)∑
m̄=1 exp(⟨αm̄, ϕ(u)⟩)

, (7)

where ϕ(u) denotes the observation for u, αm ∈ RK ,
i.e., observations are K-dimensional real values, and
⟨·, ·⟩ is inner product. This parameterization corre-
sponds to multi-class logistic regression problem.

Because of its complicated form, the maximum like-
lihood estimate for (5) cannot be found using straight-
forward optimization. A standard approach doing
maximum likelihood estimation on such problems is to
use an EM-based method [1]. To do that we introduce
a latent indicator variable

z ∈ {0, 1}M , (8)

which denotes the true component for u. Thus, only
one of the elements of z is equal to one and all others
are equal to zero. Using z we can rewrite the mixture
(5) as

P (s′, z|s, a, β, α)

=
M∑

m=1

zmP (s′|s, a, βm)P (m|ϕ(u), α) (9)

=
M∏

m=1

[P (s′|s, a, βm)P (m|ϕ(u), α)]zm , (10)

where the summation form is transformed into a prod-
uct form, which allows us to easily handle the log likeli-
hood. This latent variable formulation allows us to use
the EM algorithm for determining a maximum likeli-
hood solution for β and α.

The outline of the EM-method is

1. Start with initial values for parameters β and α.

2. Calculate the posterior probabilities of the latent
variables, given the parameters β and α (E-step).

表 1: KL-divergence of the estimated transition proba-
bilities from the true model, for the slippery grid world
experiment with 2-dimensional observations. For each
method the mean and standard deviation of its KL-
divergence averaged over 50 runs are reported, for dif-
ferent data sizes N = 50, N = 100, N = 150, and
N = 200. Bolded values in each column show methods
whose performance is better than others using t-test
with 0.1% confidence level.

Method N = 50 N = 100

Comp(1) 0.375± 0.065 0.280± 0.023
Comp(2) 0.373± 0.102 0.177± 0.036
Comp(3) 0.422± 0.123 0.235± 0.069
Comp(CV) 0.322± 0.053 0.190± 0.051
Sim(fixed) 0.369± 0.046 0.207± 0.022
Sim(CV) 0.338± 0.028 0.211± 0.023
Single task 1.686± 0.004 1.628± 0.006

(a) N = 50 and N = 100

Method N = 150 N = 200

Comp(1) 0.255± 0.012 0.244± 0.013
Comp(2) 0.117± 0.034 0.080± 0.034
Comp(3) 0.164± 0.051 0.123± 0.045
Comp(CV) 0.127± 0.032 0.094± 0.035
Sim(fixed) 0.153± 0.015 0.125± 0.010
Sim(CV) 0.162± 0.021 0.132± 0.014
Single task 1.576± 0.008 1.526± 0.009

(b) N = 150 and N = 200

3. Find β and α that maximize the expectation of
the regularized data likelihood (M-step).

4. If the solution has converged stop, otherwise go
to step 2.

Due to space restriction we leave out the details of
E-step and M-step and only present the conclusions.
E-step can be performed analytically by just applying
the Bayes law. The M-step for transition models can
be performed analytically for discrete and Gaussian
models and M-step for observation-based component
membership parameter α can be effectively computed
by convex optimization based methods.

We follow standard approach for implementing the
EM method. This includes using several restarts to the
EM procedure to avoid local optima and using cross-
validation to choose the number of components (M).

5 Experimental Results

In this section we present experimental results from
two simulated domains: grid world with slippery
ground conditions.

5.1 Slippery Grid World

We conducted experiments on a mobile robot task
with discrete state and action space. The size of the



state space of the grid world is 15 × 15 and there are
4 movement actions: left, right, up and down. There
are two types of states, one type is slippery, where
all movement actions fail with probability 0.8, keeping
the robot at the same spot and the other type is non-
slippery having probability of failure 0.15. The goal
of the agent is to reach the goal state from the initial
state. An example of the grid world is shown in Figure
1. The goal of the robot is to reach the goal state
denoted with “G” starting from bottom left state “S”.
White squares are non-slippery and colored squares are
slippery states. If the robot moves at the edge squares
it receives a negative reward of −1 and is reset to the
starting state. The robot receives reward +1 when it
reaches goal state, after which it is again reset to the
initial position. Other states do not give any reward.

The observations about each state are two-
dimensional real values of sensor measurements. The
first dimension shows the measurement of the depth
of the water layer covering the ground at that loca-
tion and the second dimension the amount of loose
gravel. Both measurements are noisy and for the
experiments are generated randomly from two Gaus-
sian distributions, one for slippery states and another
for non-slippery states. The two Gaussians are quite
separated, as can be seen from Figure 2.

The average performance over 50 runs for the
component-based and the similarity-based ORL meth-
ods is reported in Table 1. The table reports average
KL-divergence values of the estimated transition prob-
abilities from the true transition probabilities. Meth-
ods named ‘Comp(n)’ are component-based methods
with n components. Thus, ‘Comp(1)’ actually just
merges all observed regions as a unified task. The re-
sults in Table 1 use transition data that is collected uni-
formly over the state and action space, this allows us
to compare the pure performance of different methods
without the side effects of non-uniform data collect-
ing policy. Secondly, in this experiment the methods
used manually-chosen parameters to show the perfor-
mance of the methods without the problem of choos-
ing optimal parameters. For component-based meth-
ods, ‘Comp(2)’ and ‘Comp(3)’, we manually chose the
regularization parameter of the logistic regression to
be 10−3. For similarity-based method ‘Sim(fixed)’ the
Gaussian kernel with a fixed width σ = 2.5 was used.
The single task method that does not use observations
and ‘Comp(1)’ do not have any extra parameters.

Table 1 also reports the performance of methods
using cross-validation(CV) for the choice of the pa-
rameters. The ‘Comp(CV)’ is the component-based
ORL that uses 5-fold CV to choose the regulariza-
tion parameter for logistic regression from the set
{10−3, 10−1, 100} and the number of components. Sim-
ilarly, ‘Sim(CV)’ is the similarity-based ORL that uses
5-fold CV to choose the optimal width for the Gaussian
kernel from the set {1.5, 3.0, 4.5, 6.0, 10.0}.
Firstly, we can use the performance of the unified

図 1: Mobile robot in a grid-world with slippery and
non-slippery states. Robot starts from an initial state
at bottom left denoted with “S” and has to reach the
goal state “G”.

task (‘Comp(1)’) as a good comparison point in Ta-
ble 1, because unifying all tasks is not expected to
provide good results when a large number of samples
are available. All ORL methods outperform the ‘Sin-
gle task’ implying that the use of data sharing in this
case is valuable, even with just 50 samples. As ex-
pected the component-based method using 2 compo-
nents ‘Comp(2)’ is performing the best overall with
100 or more samples. The performance of ‘Comp(3)’
and ‘Sim(fixed)’ is slightly worse than ‘Comp(2)’, but
still clearly outperforming the unified task and single
task methods, validating their usefulness in this exper-
iment.

Also, as seen from Table 1 the cross-validation ver-
sion of component-based method ‘Comp(CV)’ is per-
forming almost as well as the best fixed parameter ver-
sion. Actually in the case N = 50 the CV method is
outperforming the fixed methods, because the regular-
ization that was used in the fixed cases (10−3) is too
small, resulting in poor performance of the EM-based
method, if only 50 samples are available. The effect
of the regularization of logistic regression is depicted
in Figure 3(a) for sample sizes 100 and 200. For both
sample sizes if the regularization is not too big the
component-based ORL has good performance.

Similarly, the ‘Sim(CV)’ method is very close to the
fixed width case and the performance of similarity-
based ORL is not very sensitive to the chosen Gaus-
sian widths unless a too small width is chosen as seen
from Figure 3(b). These results suggest that CV can
be used for tuning the parameters of component-based
and similarity-based ORL.

Table 2 shows the value of the policies that were
found from the transition probabilities learned by dif-
ferent methods. The two ORL methods have simi-
lar performance and obtain significantly higher value
than unified task (‘Comp(1)’) and single task. They
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図 2: Distribution of observations for non-slippery
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(a) Dependence of component-based ORL on the
regularization of logistic regression.
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(b) Dependence of similarity-based ORL on Gaus-
sian width.

図 3: Average KL-divergence from the true distribu-
tion in slippery grid world tasks with two-dimensional
observations for sample sizes N = 100 and N = 200.
The averages and standard deviations were calculated
from 50 runs.

are quite close to the value of optimal policy, which is
0.799 in this task. The good performance of ‘Comp(1)’
is explained be the fact that in their nature the slippery
and non-slippery states are similar, because all 4 ac-
tions result in similar outcomes, just the probabilities
of these outcomes differ.

表 2: Value of the the policy found by using the es-
timated transition probabilities, for the slippery grid
world experiment with 2-dimensional observations.
For each method the mean and standard deviation of
its value averaged over 50 runs are reported, for dif-
ferent data sizes N = 50, N = 100, N = 150, and
N = 200. Bolded values in each column show methods
whose performance is better than others using t-test
with 0.1% confidence level.

Method N = 50 N = 100

Comp(CV) 0.716± 0.054 0.746± 0.023
Sim(CV) 0.715± 0.036 0.749± 0.021
Comp(1) 0.638± 0.009 0.649± 0.006
Single task −0.503± 0.117 −0.370± 0.179

(a) N = 50 and N = 100

Method N = 150 N = 200

Comp(CV) 0.754± 0.016 0.757± 0.018
Sim(CV) 0.756± 0.005 0.757± 0.004
Comp(1) 0.652± 0.002 0.651± 0.001
Single task −0.237± 0.196 −0.102± 0.179

(b) N = 150 and N = 200

5.2 Grid World with High-dimensional
Observations

We also tested the grid world example width high di-
mensional observations. Now the observations were 10-
dimensional. The first two dimensions were exactly the
same as before, containing useful information about
the states as depicted in Figure 2. The new 8 dimen-
sions did not contain any information, i.e., the obser-
vations for slippery and non-slippery states were gen-
erated from the same distribution, which was a single
8-dimensional Gaussian with zero mean and identity
covariance.

The results of high-dimensional grid world experi-
ments for component-based and similarity-based ORL
methods with CV are shown in Table 3. The sets of
model parameters used by CV are the same as in the
previous experiment. For comparison the results for
‘Comp(1)’ and ‘Single task’, are also presented in the
table and as they do not use observations, we just re-
port again their performance from the previous exper-
iment.

Comparing Table 3 to Table 1 shows that the per-
formance of both ORL methods is degraded compared
to the problem with low-dimensional observation. As
expected, the performance of the similarity-based ap-
proach, ‘Sim(CV)’, has worsened more than the perfor-
mance of the component-based approach, ‘Comp(CV)’.
The similarity-based approach just slightly outper-
forms the unified task ‘Comp(1)’ for sample sizes
N = 150 and N = 200. Although component-based
ORL also has weaker performance compared to the
low-dimensional observation case, it is performing still



表 3: KL-divergence of the estimated transition prob-
ability from the true model, for the slippery grid world
experiment with 10-dimensional observations. For
each method the mean and standard deviation of its
KL-divergence averaged over 50 runs are reported, for
different data sizes N = 50, N = 100, N = 150, and
N = 200. Bolded values in each column show methods
whose performance is better than others using t-test
with 0.1% confidence level.

Method N = 50 N = 100

Comp(CV) 0.395± 0.085 0.248± 0.044
Sim(CV) 0.398± 0.047 0.285± 0.014
Comp(1) 0.375± 0.065 0.280± 0.023
Single task 1.686± 0.004 1.628± 0.006

(a) N = 50 and N = 100

Method N = 150 N = 200

Comp(CV) 0.190± 0.054 0.140± 0.039
Sim(CV) 0.244± 0.014 0.222± 0.012
Comp(1) 0.255± 0.012 0.244± 0.013
Single task 1.576± 0.008 1.526± 0.009

(b) N = 150 and N = 200

表 4: Value of the the policy found by using the es-
timated transition probabilities, for the slippery grid
world experiment with 10-dimensional observations.
For each method the mean and standard deviation of
its value averaged over 50 runs are reported, for dif-
ferent data sizes N = 50, N = 100, N = 150, and
N = 200. Bolded values in each column show methods
whose performance is better than others using t-test
with 0.1% confidence level.

Method N = 50 N = 100

Comp(CV) 0.648± 0.101 0.699± 0.048
Sim(CV) 0.659± 0.014 0.667± 0.020
Comp(1) 0.639± 0.011 0.649± 0.005
Single task −0.508± 0.121 −0.380± 0.177

(a) N = 50 and N = 100

Method N = 150 N = 200

Comp(CV) 0.724± 0.043 0.740± 0.027
Sim(CV) 0.705± 0.033 0.727± 0.024
Comp(1) 0.652± 0.002 0.651± 0.001
Single task −0.279± 0.192 −0.135± 0.201

(b) N = 150 and N = 200

rather well and clearly outperforms other methods for
N = 150 and N = 200.

Table 4 shows the value of the policies that were
found from the transition probabilities learned by dif-
ferent methods for high-dimensional observations case.
As expected, compared to the case of low-dimensional
observations (see Table 2) both ORL methods have
weaker performance. The component-based method
slightly outperforms similarity-based method, signifi-
cantly only for N = 100. This suggests that although

the KL-error of the similarity-based method is much
higher than the component-based method, it still cap-
tures useful structure in the transition probabilities re-
sulting in almost similar performance in the grid world
task.

In summary, both ORL methods show good perfor-
mance in the grid world task and the curse of dimen-
sionality has mild effect on their performance.

6 Conclusions

The results of the grid world task show that the pro-
posed ORL framework is suitable in cases useful obser-
vations are available about the state-action space. The
two proposed method were shown to effectively employ
the additional observations to speed up the learning of
the transition probabilities.

Our next step is to apply the proposed methods to a
more challenging task of object lifting by robotic arm
where the robot has observations about the objects.
Additionally, our future work is to investigate the re-
lationship of ORL to the studies of Bayesian RL and
Partially Observable MDP (POMDP).
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