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Abstract: Combining information from various image descriptors has become a standard technique

for image classification tasks. Multiple kernel learning (MKL) approaches allow to determine the

optimal combination of such similarity matricesand the optimal classifier simultaneously. Most

MKL approaches employ aǹ1-regularization on the mixing coefficients to promote sparse solu-

tions; an assumption that is often violated in image applications where descriptors hardly encode

orthogonal pieces of information. In this paper, we compare`1-MKL with a recently developed

non-sparse MKL in object classification tasks. We show that the non-sparse MKL outperforms

both the standard MKL and SVMs with average kernel mixtures on the PASCAL VOC data sets.
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1 Introduction
Data fusion is an important topic in computer vision. Im-

ages can be represented by a multiplicity of features cap-

turing certain aspects, including color, textures, and shapes.

Unfortunately, the importance of different types of features

varies with the tasks; color information, for instance, sub-

stantially increases the detection of stop signs while color-

ing is almost irrelevant for finding cars in images. Tech-

niques for appropriately combining relevant features for a

task at hand are therefore crucial for state-of-the-art object

recognition systems.

From a machine learning view, different representations

give rise to different kernel functions. Kernels define (pos-

sibly nonlinear) similarities between data points and allow

to abstract learning algorithms from data. Thus, kernel ma-

chines have been successfully applied to many practical

problems in various fields [19]. Given a task at hand, de-

signing an appropriate kernel is essential for achieving good

generalizations, for instance by incorporating prior assump-

tions and domain knowledge [9, 28]. However, in the ab-

sence of prior knowledge one has to resort to alternatives.

For object recognition tasks, combining information from
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various image descriptors into several kernelsK1, . . . , Km

has become a standard technique. Unfortunately, the choice

of the right kernel mixture is often a matter of trial and er-

ror. As a remedy, uniform mixtures of normalized kernels

[14, 26] or brute-force approaches [2] are employed fre-

quently. However, the former approach may lead to sub-

optimal kernels and the latter is computationally infeasible

if many kernels are to be combined.

Recently, multiple kernel learning (MKL) [13, 1, 20, 18,

27] was applied to object classification tasks involving vari-

ous image descriptors [24]. Compared to uniform mixtures

and brute-force approaches, MKL has the appealing prop-

erty of always finding the optimal kernel combination and

converges quickly as it can be wrapped around a regular

support vector machine (SVM) [20]. MKL aims at learning

the optimal kernel mixture and the model parameters simul-

taneously. More specifically, MKL approaches find a linear

mixture of the kernels, that isK =
∑

j βjKj . To support

the interpretability of the solution, many MKL approaches

promote sparse mixtures by incorporating an`1-norm con-

straint on the mixing coefficients. However, it has often

been observed that`1-norm MKL is outperformed by the

average-sum kernelK =
∑

j Kj . An explanation is that

enforcing sparse mixtures may lead to degenerate models if

the optimal kernel mixture is non-sparse. A remedy might

be recently developed non-sparse variants of MKL promot-

ing non-sparse kernel mixtures [10].

In this contribution, we empirically compare sparse and



non-sparse MKL approaches to object classification tasks.

We employ candidate kernels obtained from many different

image descriptors including the 30 color SIFT features by

the VOC2008 winner [22]. Our empirical results on im-

age data sets from the PASCAL visual object classification

(VOC) challenge 2007 and 2008 [8] show that the non-

sparse MKL significantly outperforms the uniform mixture

and`1-norm MKL.

This paper is organized as follows. In Section 2, we

briefly review the underlying techniques, including sparse

and non-sparse MKL. Section 3 discusses similarities be-

tween the prepared kernels. Based on this analysis, we pre-

compute averages of similar kernels and apply MKL with

a substantially reduced sets of kernels. We discuss our em-

pirical results in Section 4 and Section 5 concludes.

2 Preliminaries

2.1 Support Vector Machines

In the supervised learning setting, we are givenn train-

ing samples{(xi, yi)}n
i=1, wherexi ∈ X is the input vector

andyi ⊆ Y . For instance, in object recognition, inputsx

are frequently histograms of some image features andY is

a discrete set of objects that are to be identified in the im-

ages. Inputs are often annotated with several labels as dif-

ferent objects can occur in the same image. To account for

these multi-label scenarios, we take a one-vs-all approach

and focus on binary classification settings. That is, we have

yi ∈ {+1,−1}, whereyi = +1 denotes that at least one

object from the actual category is included in thei-th im-

age andyi = −1 otherwise.

Support vector machines (SVMs) originate from linear

classifiers and maximize the margin between sample clouds

of both classes. Introducing a feature mappingψ from the

input spaceX to a reproducing kernel Hilbert space (RKHS)

H, linear classifiers inH of the form

f(x) = w>ψ(x) + b (1)

provide a rich set of flexible classifiers inX . The parame-

ters(w, b) are determined by solving the optimization prob-

lem

min
w,b,ξ

1
2
‖w‖22 + C

n∑

i=1

ξi, (2)

s.t. ∀i, yi

{
w>ψ(xi) + b

} ≥ 1− ξi; ξi ≥ 0,

where‖ · ‖2 denotes thè 2 norm andC > 0 is a regu-

larization constant. Notice that the spanned RKHS can be

infinite-dimensional, however, translating the above formu-

lation into the equivalent dual optimization problem pre-

vents from dealing with features inH explicitly.

min
α

n∑

i=1

αi − 1
2

n∑

i,l=1

αiαlyiylk(xi,xl) (3)

s.t. 0 ≤ αi ≤ C, ∀i;
n∑

i=1

yiαi = 0.

The above dual depends only on inner products (similari-

ties) of inputs which can be alternatively computed by means

of kernel functionsk, given by

k(x, x̄) = 〈ψ(x), ψ(x̄)〉H.

Once, optimal parameters are found, these are used as plug-

in estimates and the final decision function can be written

as

f(x) =
n∑

i=1

αik(xi,x) + b.

Note that only a small fraction of theα’s usually take non-

zero values which are often called support vectors. The

thresholdb is determined by saturated support vectors with

α = C. Finally, we remark that we need to use different

regularization constantsC+ and C− for the positive and

negative examples, respectively, to compensate the unbal-

anced sample sizes of the two classes [3].

2.2 Multiple Kernel Learning

Let K1, . . . ,Km bem kernel matrices withKt =
[kt(xi, xj)]i,j=1,...,n, obtained from different sources or fea-

tures. The multiple kernel learning (MKL) framework ex-

tends the regular SVM formulation by additionally learning

a linear mixture of the kernels, i.e.

Kβ =
m∑

j=1

βjKj .

Thus, the model in Equation (1) is extended to

f(x) =
m∑

j=1

βjw
>
j ψj(x) + b.

A common approach is to rephrase the above expression

by incorporating the mixing coefficients into the parame-

ter vectorwβ = (
√

β1w1, . . . ,
√

βmwm)> and the feature

mappingψβ(xi) = (
√

β1ψ1(xi), . . . ,
√

βmψm(xi))>. The

corresponding optimization problem maximizes the gener-

alization performance by simultaneously optimizing the pa-

rametersw, b, ξ, andβ. We obtain the commoǹ1-norm



MKL for p = 1 [1, 20, 18, 27], and non-sparse MKL for

p > 1 [10].

min
β,w,b,ξ

1
2
‖wβ‖22 + C

n∑

i=1

ξi

s.t. ∀i : yi (〈wβ, ψβ(xi)〉+ b) ≥ 1− ξi (4)

ξ ≥ 0; β ≥ 0; ‖β‖p ≤ 1

Note that we resolve the regular SVM optimization prob-

lem in Equation (2) for learning with only a single kernel

m = 1. Irrespectively of the actual value ofp, the above

optimization problem can be translated into a semi-infinite

program [20, 10] which can be interpreted as a dualized

variant of the optimization problem (4). We arrive at,

min
λ,β

λ

s.t.λ ≥
n∑

i=1

αi − 1
2

n∑

i,l=1

αiαlyiyl

m∑

j=1

βjkj(xi, xl),

∀α ∈ Rn (5)

0 ≤ αi ≤ C, ∀i;
n∑

i=1

yiαi = 0;

βj ≥ 0, ∀j; ‖β‖p ≤ 1

Initializing β with a uniform kernel mixture, the semi-infinite

program can be optimized efficiently by interleaving the

following two steps:

1. For the actual mixtureβ, the solution of the regular

SVM generates the most strongly violated constraint

(Equation (5)).

2. With respect to set of active constraints, the optimal

values ofβ andλ are identified by solving the corre-

sponding optimization problem forβ.

The actual optimization problems for the mixing coef-

ficients, however, differ with varying values ofp. For in-

stance, forp = 1, one obtains a linear program that can be

solved with standard techniques. Forp = 2, the `2-norm

gives rise to a quadratically constrained quadratic program

(QCQP) that can also be optimized with off-the-shelf QP-

solvers. For different values ofp, things get a bit tricky be-

cause there is hardly aǹp-norm solver. Nevertheless, one

can approximate thèp-norm constraint by a second-order

Taylor expansion around the current estimatesβold given

by

‖β‖p
p ≈ 1− p(3− p)

2
− (p2 − 2p)

∑

j

(βold
j )p−1βj

+
p(p− 1)

2

∑

j

(βold
j )p−2β2

j .

Using the above approximation, one obtain a QCQP, which

can again be optimized with standard techniques [10].

2.3 Kernel Alignment

In the remainder, we will need to analyze the similarity of

kernel matrices. For this purpose, we now introduce kernel

target alignment [5] as an adequate measure of similarity or

hyper kernel [17].

Let K1 = [k1(xi,xj)]i,j=1,...,n and

K2 = [k2(xi,xj)]i,j=1,...,n be the Gram matrices of kernel

functionsk1 andk2 for x1, . . . , xn. The alignment between

k1 andk2 is defined as the cosine of the angle between the

two matricesK1 andK2 given by

A(K1,K2) :=
〈K1,K2〉F

‖K1‖F ‖K2‖F
, (6)

where〈K1,K2〉F denotes the standard inner product

〈K1,K2〉F :=
∑n

i,j=1 k1(xi,xj)k2(xi, xj) and‖K1‖F is

the Frobenius norm in matrix space defined as‖K1‖F :=
〈K1,K1〉1/2

F .

It is important to center the kernels before computing the

alignment as many classifiers, including SVMs, are invari-

ant against mean shifts in the RKHSs. The centering in

the respective feature spaces is achieved by multiplying the

matrixH, given by

H := I − 1
n
11>

to the kernelsK1 andK2 from both sides, whereI is the

identity matrix of sizen and1 is a column vector with all

elements1. Thus, the resulting alignment for centered ker-

nels can be computed by

A(HK1H,HK2H) =
〈HK1H, HK2H〉F

‖HK1H‖F ‖HK2H‖F
, (7)

where〈HK1H, HK2H〉F = tr(HK1HK2), becauseH

is a projection matrix.

3 Experiments

3.1 VOC data sets

In order to show the advantage of our procedure, we com-

pare the performance of the different MKL procedures to
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図 1: Similarity between the 35 prepared kernels: (a) hyper kernel and (b) graphical representation of the similarities within

the first two eigen directions. In the panel (a), 6 groups are ’SIFTg1’, ’SIFT o’, ’SIFT no’, ’SIFT nrg’, ’SIFT rgb’, and

’PHoG’, while 6 elements within SIFT color channel consists of 3 pyramid levels (level 0, 1, y3) for dense grid and interest

points. In the panel (b), the color channels are specified as black=’g1’, red=’o’, magenda=’no’, green=’nrg’ and blue=’rgb’,

while the markers discriminates the pyramid levels and sampling scheme for SIFT plus PHoG (triangle), i.e. circle=’dense

level0’, square=’dense level1’, diamond=’dense y3’, plus=’interest level0’, X-mark=’interest points level1’, star=’interest

points y3’.

SVMs using the average-sum kernel. We experiment on the

VOC 2007 and VOC 2008 classification data sets [8].

The VOC 2007 data set consists of 9963 images (2501

training, 2510 validation and 4952 test) annotated with 20

object classes. The VOC 2008 data set contains 8780 im-

ages categorized into the same 20 object classes as in the

VOC 2007 data. The latter is split into train, validation and

test sets by the organizers (2113 for train, 2227 for valida-

tion, and 4340 for test). The ground-truth of the test set is

yet disclosed by the organizers who agreed to evaluate test

performance on request.

We split the multi-label problem into 20 binary classifi-

cation problems using the one-vs-all strategy. That is, for

each class, we define an auxiliary labelyi = +1 if at least

one object from the actual class is included in thei-th im-

age, andyi = −1 if there is no such object in the image.1

The evaluation is based on precision-recall (PR) curves and

the principal quantitative measure is the average precision

(AP) over all recall values.

We employ model selection for the SVM/MKL trade-

off parameterC and for the parameterp which controls

the sparseness of the MKL. We usedp = 1 + 2λ, where

λ = {−∞,−5,−4,−3,−2,−1, 0, 1,∞}. We resolvep =
1 for λ = −∞ and obtain the unweighted-sum kernel for

1Hardly detectable objects are indicated byyi = 0 by the organizers.
Since these are omitted in the final evaluation we simply excluded them
from the training process.

p = ∞. Furthermore, we optimized the parameterp based

on the cross-validation score either jointly with all classes

(`p-joint) or individually for each category (`p-single).

The final classifiers are obtained by re-training the re-

spective approaches on all available data (i.e., training and

holdout sets) using the previously determined optimal pa-

rameters. We report on average AP scores over 10 repe-

titions with different training, holdout, and test sets. The

baselines SVM and̀1-norm MKL are implemented using

the Shogun library [20].

3.2 Image Features and Base Kernels

In our experiments, we employed the following two sets

of image features. The first category contains 30 histograms

of visual words (HoW) representations [6] based on color

SIFT descriptors [15] which are almost the same as those

applied by the winner of VOC 2008 [22]. As sampling

schemes, we use a dense grid with 6 pitches and interest

points from gray-scale images by the scale invariant de-

tector [25]. For both cases, we calculated the base SIFT

descriptors in 10 color channels:g1 (grey), o1 (opponent

color 1), o2, no1 (normalized o1), no2, nr (normalized red),

ng (normalized green), r, g, b. For prototype calculation and

visual word assignment, the color SIFTs are combined into

the following 5 groups:g1, o=[o1,o2,g1], no=[no1,no2],

nrg=[nr,ng], rgb=[r,g,b]. For each case, we created 4000



visual words for the dense grid (800 for the interest points)

by using k-means clustering.2 Finally, we also consider

three levels of the image pyramid representation [14]: for

each image, its visual words are summarized into histograms

for the whole image (level 0), for 4 quarter images (level 1)

and for 3 horizontal stripes (y3). In total, we prepared5
(colors)×2 (sampling)×3 (pyramid levels)= 30 kernels.

The second category of our image features is the pyramid

histogram of oriented gradient (PHoG) [7, 2]. For each of

the 5 color channels, which are same as in the first category,

we compute the PHoG representations of level 2 where the

3 pyramid levels are merged by a default scheme without

any adaptation. In sum, we computed 5 PHoG kernels. We

used theχ2 kernel, which has proved to be a robust simi-

larity measure for bag of words histograms [26], where the

band-width is set to the meanχ2 distances between all pairs

of training samples [12].

Although our MKL implementations are throughout ef-

ficient, simply storing all 35 kernels exceeds 1.2GB. We

therefore pre-combine kernels based on a similarity analy-

sis using kernel target alignment [5] before applying MKL.

Figure 1 (a) shows the kernel alignment score (7) between

the 30 SIFT + 5 PHoG kernels. We can see: (i) the ker-

nels within the same colors are mostly similar, (ii)g1 and

rgb kernels are also similar and (iii) the PHoG and SIFT

kernels are less similar. In order to assure our findings, we

plotted the kernels in a 2-dimensional space spanned by the

first and second eigenvectors of the hyper kernel obtained

by a principal component analysis (PCA) and spectral clus-

tering [16] (Figure. 1(b)). Based on this similarity analysis,

we averaged 6 SIFT kernels with uniform weights within

each color. By doing this, we reduced the number of base

kernels to 10. We obtain 5 pre-combined SIFT and 5 PHoG

kernels which are plugged into the MKL.

3.3 Result 1: Significance Test for 10 Ran-
dom Splits of VOC 2008

Before we use the official VOC 2008 data split to com-

pare our outcomes to already published results in Section

3.4, we investigate statistical properties of the performances

of the different methods. We therefore draw 2111 training,

1111 validation, and 1110 test images randomly from the

labeled pool (i.e., official training and holdout split). We

report on APs and standard deviations over 10 repetitions

2We use only 800 visual words for the interest points as about1/5 of
the descriptors are extracted per image.

with distinct training, holdout, test sets. To test on the sig-

nificance of the differences in performance, we conduct a

Wilcoxon signed-ranks test for each method and class and

additionally for the average AP over all classes. Table 1

shows the results.3

The methods whose performance are not significantly worse

than the best score are marked in bold face. The`p-single

MKL is always among the best performing algorithms. Its

jointly-optimized counterpart̀p-joint, performs similarly

and attains the second best performance. Uniform weights

and`1-MKL are significantly outperformed by the two non-

sparse MKL variants for several object classes. The result

is however not really surprising as̀p-single is optimized

class-wise.

Figure 2 shows the resulting kernel weights, averaged

over the 10 repetitions. We see that the solutions of`p-

joint distribute some weight on each kernel, achieving non-

sparse solutions. The averagep for `p-joint is 1.075. Fur-

thermore, Figure 2 implies that PHoW features carry more

relevant information than PHoG. Since the PHoG features

do not seem to play a great role in the classification, a natu-

ral question is whether PHoG do contribute to the accuracy

at all. Table 2 shows the average gain in accuracy for using

PHoW kernels alone and PHoG & PHoW kernels together,

respectively. The result shows that the PHoG kernels abso-

lutely contribute to the final decision. We observe a signif-

icant gain in accuracy by incorporating PHoG kernels into

the learning process for all but the average-sum kernel.

表 2: Average gain in accuracy by adding PHoG features.

uniform `1 `p-joint `p-single
PHoW 45.4±1.0 45.6±0.8 45.5±0.8 45.5±1.0

PHoW&G 45.2±1.0 46.6±0.9 46.9±1.0 46.9±1.0

3.4 Result 2: Results for the Official Splits of
VOC 2007 and VOC 2008

In our second experimental setup, we evaluated the per-

formance of the approaches for the official splits of the

VOC 2007 and 2008 challenges. The winners of VOC2008

[21] reported an average AP of60.5 on VOC 2007 and

achieved an AP of54.9 on VOC2008. Their result is based

3Since creating a codebook and assigning descriptors to visual words
is computationally demanding, we apply the codebook created with the
training images of the official split. This could result in slightly better
absolutetest errors, since some information of the test images might be
contained in the codebook. However, our focus in this Section lies on
a relative comparison between different classification methods, and this
computational shortcut does not favor any of these approaches.



表 1: Average precisions on the test images of our 10 splits. For each column, the best method and comparable ones based

on a Wilcoxon signed-rank test at the significance level of 5% are marked in bold faces.

average aeroplane bicycle bird boat bottle bus
uniform 45.2±1.0 70.4±5.3 42.5±3.6 47.8±6.0 61.2±4.6 22.5±5.7 50.5±10.8

`1 46.6±0.9 72.8±4.7 44.5±5.8 49.3±5.4 61.3±4.3 20.5±4.0 51.5±10.0
`p-joint 46.9±1.0 72.6±5.0 45.1±5.0 49.7±5.4 61.9±4.4 22.1±4.7 50.5±11.2
`p-single 46.9±1.0 71.2±4.9 44.0±4.9 49.0±5.9 61.7±4.0 22.5±5.2 52.3±9.3

car cat chair cow diningtable dog
uniform 53.0±3.4 52.6±3.0 42.8±3.6 13.8±3.8 33.1±9.4 36.1±3.0

`1 54.0±3.5 55.3±2.6 45.9±4.4 13.8±4.4 36.7±5.1 38.5±4.8
`p-joint 54.7±3.5 55.7±2.5 44.9±4.7 13.7±4.2 37.8±5.5 38.3±4.5
`p-single 54.4±3.1 55.7±2.6 45.6±4.1 13.7±3.5 37.2±5.0 38.8±3.4

horse motorbike person pottedplant sheep sofa
uniform 48.2±8.3 44.5±6.5 85.8±1.0 22.2±3.7 23.7±6.6 39.6±7.4

`1 47.1±7.9 47.5±4.8 86.7±1.0 23.2±5.1 26.6±8.6 39.5±8.5
`p-joint 48.0±8.0 48.0±5.8 86.8±1.0 24.8±6.3 25.9±9.3 40.6±9.0
`p-single 49.3±8.2 47.6±4.9 86.8±1.0 24.9±6.1 24.7±6.8 40.6±9.0

train tvmonitor
uniform 60.4±8.6 53.4±5.9

`1 60.8±8.9 57.0±5.6
`p-joint 61.6±8.2 56.2±6.4
`p-single 61.1±8.7 56.0±7.3
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図 2: Selected weights by MKL:̀1 (left) and`p-joint (right)

on color descriptors [22], kernel codebook [23], and kernel

discriminant analysis [4].

Table 3 shows the resulting average APs for our MKL ap-

proaches.4 The non-sparse MKL increases the accuracy of

the basic color descriptors (uniform only PHoW) of about

2%. Furthermore, [21] reports a loss in accuracy of less

than 1% if a SVM is substituted for the kernel discrimi-

nant analysis. Taking the different code books into account,

we conjecture that – except for the code book – non-sparse

multiple kernel learning is on par or better as the winner of

last years VOC challenge. We will address the validity of

our assumption in future work.

4APs for VOC2008 have been kindly evaluated by the organizers.

表 3: Average APs for VOC 2007/2008 using official splits.

VOC2007 VOC2008
uniform (only PHoW) 55.0 49.0

uniform 55.0 —
`1 56.8 —

`p-joint 57.3 51.5
`p-single 57.1 50.9

4 Discussion
In contrast to anecdotal reports, we observed`1-MKL to

outperform the average-sum kernel for PHoW and PHoG

kernels (see Table 1). Nevertheless, carefully adjusting the

normp for boosts the performance of non-sparse MKL which



performed best throughout all our experiments. The opti-

mal choice of the normp thereby depends on the actual set

of kernels. As a rule of thumb, large values ofp work out

in cases where all kernels encode a similar amount of in-

dependent information while smaller values ofp are best if

some kernels are less informative or redundant.

As an illustrative example, consider a simple experimen-

tal setup where we deployed MKL together with the fol-

lowing 12 kernels: level-2 PHoW with grey and hue chan-

nels with 10 pixels pitch dense grid and 1200 vocabulary

(3 pyramid levels× 2 colors), PHoG of grey channel (3

pyramid levels), and the pyramid histograms of intensity

with hue channel (3 pyramid levels). Table 4 shows the re-

sults. The sparsè1-MKL yields a similar accuracy as the

average-sum kernel. As suspected, both approaches are sig-

nificantly outperformed by non-sparse MKL.

表 4: A simple case where the performance of`1-norm

MKL deteriorates.

uniform `1 `p-joint `p-single
mean AP 40.8±1.0 40.8±0.9 42.6±0.7 42.3±0.9

5 Conclusions
When measuring data with different measuring devices,

it is always a challenge to combine the respective device

uncertainties in order to fuse all available sensor informa-

tion optimally. In this paper, we revisited this important

topic and discussed machine learning approaches to adap-

tively combine different image descriptors in a systematic

and theoretically well founded manner. While MKL ap-

proaches in principle solve this problem, it has been ob-

served that the standard̀1-norm based MKL can rarely

outperform SVMs that use an average of a large number

of kernels. One hypothesis why this seemingly unintuitive

results may occur, is that the sparsity prior may not be ap-

propriate in many real world problems. A close inspection

reveals that most kernels contain useful structural informa-

tion and should therefore not be omitted. A slightly less

severe method of sparsification is to use another norm for

optimization, namely thèp-norm. We tested whether this

hypothesis holds true for computer vision and applied the

recently developed non-sparse`p-norm MKL algorithms to

object classification tasks. By choosingp as a hyperparam-

eter which controls the degree of non-sparsity from a set

of candidate values with the help of a validation data, we

showed that̀p-MKL significantly improves SVMs with av-

eraged kernels and the standard sparse`1-norm MKL. Sim-

ilar accuracy gain has been observed by controllingp in

one-class MKL [11].

Future work will incorporate further modeling ideas of

the VOC 2008 winner, e.g. the kernel code book, which

we have so far not even employed. The test result with the

official splits shown in this paper implied that our method

is highly competitive to the winners solution. Furthermore,

a combination of mid-level features by MKL will be an in-

teresting research direction.
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