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Collaborative Ranking

Setting
Internet retailer (e.g. Netflix) sells movies M to users U.
Users rate movies if they liked them.
Retailer wants to suggest some more movies which
might be interesting for users.

Goal
Suggest movies that user will like. Pointless to recommend
movies that users do not like since they are unlikely to rent.

Problems with Netflix contest
Error criterion is uniform over all movies.
Can only recommend a small number of movies at a
time (probably no more than 10).
Need to do well only on top scoring movies.
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More Applications

Retail
eTailer (e.g. Amazon) wants to suggest new books and other
products based on past purchase decisions and reviews.

Collaborative photo viewing site
Want to suggest some more photos user might want to see
given past viewing behavior (e.g. Flickr.com).

Collaborative bookmark site
Suggest new bookmarks based on which ones users clicked
at before. Do this in a personalized fashion. This immediately
avoids click spam: only spammer is affected by spam clicks:
each user gets his personalized view (e.g. Digg.com).

News site
Suggest new stories personalized to click behavior, such as
news.{google, yahoo}.com.
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Even More Applications

Blogs and Internet Discussions
Show mainly stories that the Specific User likes. E.g. a
customized version of Slashdot or Groklaw.

Internet Dating
Suggest new dates based on previous viewing behavior,
number of contact attempts, collaboratively.

Advertising
Use more fine-grained information on link following behavior,
e.g. a) customer visits site, b) puts things into shopping
basket, c) registers for an account, d) purchases item. Use
the entire range of decisions to predict better.
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Requirements

Direct Optimization
Want to optimize scoring function directly, or at least convex
(or at least continuous) uppoer bound of this.

Featureless Estimation
Algorithm should not need inherent features of objects.

Incorporating Features
If features exist, algorithm should be able to include them.

Scalability
Implementation needs to scale to hundreds of millions of
records. Parallel and multi-core implementation needed.
Cheap deployment phase.
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The Ingredients

Convex Upper Bound
Bound ranking loss, such as NDCG@k directly via convex
ranking bound (e.g. Chapelle, Le and Smola, 2007).

Low Rank Matrix Factorization
Use tools of Srebro et al. and factorize the scoring matrix into
a product of user and movie matrix: F = MU.

Features
Use movie specific, user specific, and (movie, user) specific
information to add to factorization

F = MU + fmwm + wufu + fmu · wmu︸ ︷︷ ︸
optional

.

Bundle Method Solver
Scalable convex optimization for movie and user phase.
Parallelize over users.
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Ranking Movies for a User

Data
(movie,user) pairs (i , j)
ratings Yij ∈ {1, . . . , 5} of movie i by user j

Goal
For a given user j rank unseen movies i such that the
movies he likes most are suggested first.

Modified goal
Rank by assigning scores Fij to (movie,user) pairs.
This is fast at training time since it decouples the movies
(only quicksort needed).

Ranking loss
Multivariate performance score (couples the Fij scores)
We use Normalized Discounted Cumulative Gains
truncated at 10 retrieved movies (NDCG@10).
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Scoring Function

movies

movie score
F(user,movie)

movies

Goal is to find a scoring function Fij which optimizes a
user-defined ranking and performance score.
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Ranking Scores

Normalized Discounted Cumulative Gain

DCG@k(π, y) =
k∑

i=1

(2yi − 1)

log(πi + 1)
and

NDCG@k(π, y) =
DCG@k(π, y)

DCG@k(argsort(y), y)
.

π is permutation and y are user ratings. Score = a(π)>b(y)

Extensions
Alternatives are unnormalized, not truncated, different
decay, different position weighting, . . .
We can take position specific ranking into account. E.g.
last position in the list should be a romantic comedy, etc.
But more expensive at prediction time!
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A Convex Upper Bound

Problem
Finding F such that DCG@k is maximized is highly
nonconvex (it is piecewise constant).

Solution
Structured estimation yields convex upper bound. We use

G(π, f ) :=
∑

j

cπj fj which is maximized for π∗ = argsort f .

Here cj is a monotonically decreasing function in j .

Theorem
The loss ∆(y , π∗) for choosing π∗ is bounded by ξ where

G(argsort y , f )−G(π, f ) ≥ ∆(y , π)− ξ for all π.
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Putting it together

Per-user loss

l(y , f ) = max
π

∆(y , π) + G(π, f )−G(argsort y , f ).

Maximization is carried out by solving a Linear Assignment
Problem: the linear programming relaxation of the integer
programming problem is totally unimodular. This allows us to
compute gradients and values efficiently.
Use Joncker and Volgenant or Orlin and Yee algorithm.

Cumulative upper bound

L(Y , F ) :=
∑

i∈Users

l(Yi·, Fi·)

We only sum over a subset of movies per user.
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Low Rank Factorization

Estimating F
Srebro and coworkers define regularizer for F

‖F‖ := inf
MU=F

1
2

[
‖M‖2 + ‖U‖2

]
Semidefinite Convex Problem

Replace with semidefinite construction for matrix via[
ZM F>

F ZU

]
� 0 and ‖F‖ → 1

2
[tr ZM + tr ZU ] .

Problem
The optimization problem is huge. Even storing full F is
impossible (1010 entries).

Solution
Factorize F = MU or low rank M and U (10-200 dimensions).
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Optimization Problem

Objective Function

L(Y , MU) +
λ

2

[
‖U‖2 + ‖M‖2

]
Algorithm

Objective function is convex in U for fixed M and vice versa.
1 Minimize L(Y , MU) + λ

2 ‖M‖
2

2 Minimize L(Y , MU) + λ
2 ‖U‖

2

Repeat until converged.
Extensions

Add user, movie specific features
Different regularization for different movie, user numbers
Different regularization for each dimension
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Features

Improved low rank factorization
Use movie specific, user specific, and (movie, user) specific
information to add to factorization

F = MU + fmwm + wufu + fmu · wmu︸ ︷︷ ︸
optional

.

Optimization
Optimize over all parameters except for M or U.
Problem is still convex.

Domain knowledge
The right place for feature engineering. In particular fmu

contains (movie, user) features.
Christmas movies are not popular in August.
Die Hard will not sell well on Good Friday.
Soccer movies are popular in worldcup years . . .
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Basic Constraints

Empirical Risk
Evaluating it is expensive (linear assignment is killer).
Almost equally expensive to compute value or value and
gradient.

Regularizer
Cheap to compute
Easy to minimize over regularizer plus piecewise linear
function

Idea
Use past gradients to build up successively improving
lower bound on empirical risk.
Solve regularized lower bound problem successively.
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Bundle Approximation
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Algorithm

Lower bound

Rt [w ] := max
j≤t
〈at , w〉+ bt ≤ Remp[w ]

where at = ∂wRemp[wt−1] and bt = Remp[wt−1]− 〈at , wt−1〉 .

Pseudocode
Initialize t = 0, w0 = 0, a0 = 0, b0 = 0
repeat

Find minimizer wt := argminw Rt(w) + λ
2 ‖w‖

2

Compute gradient at+1 and offset bt+1.
Increment t ← t + 1.

until εt ≤ ε

Upper Bound
Note that Rt+1[wt ] = Remp[wt ]. Hence Rt+1[wt ]− Rt [wt ] upper
bounds gap size. We get a cheap convergence monitor.
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Dual Problem

Good News
Dual optimization problem is Quadratic Program regardless
of the choice of the empirical risk.

Details

minimize
β

1
2λ

β>AA>β − β>b

subject to βi ≥ 0 and
∑

i

βi = 1

The primal coefficient w is given by w = −λ−1A>β.
Very Cheap Variant

Can even use simple line search for update (almost as good).
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Convergence

Theorem
The number of iterations to reach ε precision is bounded by

n ≤ log2
λRemp[0]

G2 +
8G2

λε
− 4

steps. If the Hessian of Remp[w ] is bounded, convergence to
any ε ≤ H/2 takes at most the following number of steps:

n ≤ log2
λRemp[0]

4G2 +
4
λ

max
[
0, 1− 8G2H∗/λ

]
− 4H∗

λ
log 2ε

Advantages
Linear convergence for smooth loss
For non-smooth loss almost as good in practice (as long
as smooth on a course scale).
General solver (works for any loss)
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Datasets

Data set sizes

Dataset Users Movies Ratings
EachMovie 61265 1623 2811717
MovieLens 983 1682 100000

Netflix 480189 17770 100480507

Very sparse matrix. Ratings between 1 and 5.
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Comparators

Regression
Plain regression on the labels
Very easy to implement, only solve least mean squares
problems iteratively.
This is what the Netflix contest wants.

Ordinal Regression
Retain absolute ordering between users
Relax the actual scores (retain only margin)
Suggested by Herbrich and Gräpel, 2000

Protocol
Same protocol for all solvers (same function space)
Weak generalization: new movies for the same user
Strong generalization: new movies for a new user (do
not optimize for the user we want to test on).

Alexander J. Smola: Maximum Margin Matrix Factorization for Collaborative Ranking 26 / 30



Weak Generalization (NDCG@10)

Method N=10 N=20 N=50
EachMovie NDCG 0.6673± 0.0015 0.7589± 0.0006 0.7291± 0.0040

Ordinal 0.5592± 0.0040 0.6619± 0.0062 0.6415± 0.0086
Regr. 0.5349± 0.0214 0.6291± 0.0161 0.6354± 0.0.0142

p = 2.7e-14 p = 3.0e-12 p =6.3e-10

MovieLens NDCG 0.6364± 0.0064 0.7153± 0.0038 0.6943± 0.0017
Ordinal 0.6291± 0.0004 0.6601± 0.0013 0.62066± 0.0006
Regression 0.6404± 0.0057 0.7015± 0.0056 0.6655± 0.0050
MMMF 0.6061± 0.0037 0.6937± 0.0039 0.6989± 0.0051

p = 0.011 p = 6e-5 p = 0.038

Netflix NDCG 0.6081 0.6204
Regression 0.6082 0.6287
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Strong Generalization (NDCG@10)

Method N=10 N=20 N=50
EachMovie NDCG 0.6367± 0.001 0.6619± 0.0022 0.6771± 0.0019

GPR 0.4558± 0.015 0.4849± 0.0066 0.5375± 0.0089
CGPR 0.5734± 0.014 0.5989± 0.0118 0.6341± 0.0114
GPOR 0.3692± 0.002 0.3678± 0.0030 0.3663± 0.0024
CGPOR 0.3789± 0.011 0.3781± 0.0056 0.3774± 0.0041
MMMF 0.4746± 0.034 0.4786± 0.0139 0.5478± 0.0211

MovieLens NDCG 0.6237± 0.0241 0.6711± 0.0065 0.6455± 0.0103
GPR 0.4937± 0.0108 0.5020± 0.0089 0.5088± 0.0141
CGPR 0.5101± 0.0081 0.5249± 0.0073 0.5438± 0.0063
GPOR 0.4988± 0.0035 0.5004± 0.0046 0.5011± 0.0051
CGPOR 0.5053± 0.0047 0.5089± 0.0044 0.5049± 0.0035
MMMF 0.5521± 0.0183 0.6133± 0.0180 0.6651± 0.0190
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Discussion

Open Question
Why is strong generalization with our solver so much
better? Not much difference for weak generalization.

Parallelization
User optimization easy: embarassingly parallel.
Movie optimization almost as easy: precompute gradient
of loss in parallel.
MMMF is very slow (up to 1 day) vs. 20 minutes for our
implementation.

Improvements
Adaptive regularization for dimensions, sample sizes
(movies, users)
Better initialization
Better sparse matrix library
Use QuickMatch (faster than current implementation)
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