Evaluating the Variance of Likelihood-Ratio Gradient Estimators Seiya Tokui¹² Issei Sato²³

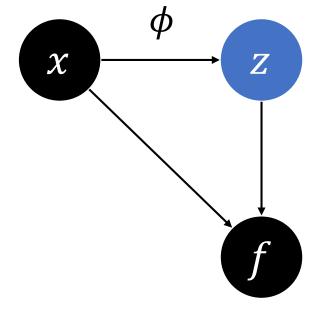
¹ Preferred Networks ² The University of Tokyo ³ RIKEN

ICML 2017 @ Sydney

Task: Gradient estimation for stochastic computational graph

lf

Want to compute the following gradient:



Computational Graph

 $\nabla_{\phi} \mathbb{E}_{q_{\phi}(z|x)} f(x, z)$

No stochasiticity in z

 (q is a delta distribution)
 → use backprop

z is stochastic
 (stochastic computational graph) → need more techniques

Example: Variational inference in deep directed graphical models

 χ

Graphical Models

Generative model Z_1 Z_2 Z_3 $p_{\theta}(x, z) = p_{\theta}(x|z_1) p_{\theta}(z_1|z_2) p_{\theta}(z_2|z_3) p_{\theta}(z_3)$ Each factor is written by a NN p_{θ} Approximate posterior $q_{\phi}(z|x) = q_{\phi}(z_1|x)q_{\phi}(z_2|z_1)q_{\phi}(z_3|z_2)$ Each factor is written by a NN Objective function (variational bound) q_{ϕ} $\mathcal{L}(\phi,\theta) \coloneqq \mathbb{E}_{q_{\phi}(z|x)} \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} = f(x,z)$

We want to compute $\nabla_{\phi}\mathcal{L}$ to optimize \mathcal{L} with a gradient method.

Overview of unbiased estimators

Likelihood-ratio estimators

✓ z can be continuous or discrete
 ✓ f can be non-continuous
 ✓ Tend to have high variance
 ✓ Many (heuristic) techniques to reduce the variance exist

Reparameterization trick

- ✓ z must be continuous
 ✓ f must be differentiable
- Tend to have low variance in practice (but not guaranteed)

Our finding: when there are *M* random variables, also likelihood-ratio estimators can be formulated with reparameterization for M - 1 variables \rightarrow *unified framework of gradient estimators*

A unified framework of gradient estimators

Let
$$z = (z_1, \dots, z_M)$$
 and $q_{\phi}(z|x) = \prod_{i=1}^M q_{\phi_i}(z_i|\text{pa}_i)$.
The set of parents of z_i

Suppose we have a *reparameterization formula:* $z_i \sim q_{\phi_i}(z_i | pa_i) \iff z_i = g_{\phi_i}(pa_i, \epsilon_i), \quad \underline{\epsilon_i} \sim p(\epsilon_i)$

Noise variable that generates z_i

Exchange ∇ and \mathbb{E} partially for each i: $\nabla_{\phi_i} \mathbb{E}_{q_{\phi}(z|x)} f(x,z) = \nabla_{\phi_i} \mathbb{E}_{\epsilon} f(x, g_{\phi}(x, \epsilon)) = \mathbb{E}_{\epsilon_{\setminus i}} \nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f(x, g_{\phi}(x, \epsilon))$ Reparameterization Local marginalization

[Williams, 1992][Kingma & Welling, 2014] [Rezende+, 2014][Titsias & Lázaro-Gredilla, 2014] [Titsias & Lázaro-Gredilla, 2015]

A unified framework of gradient estimators

$$\nabla_{\phi_i} \mathbb{E}_{q_{\phi}(z|x)} f(x, z) = \mathbb{E}_{\epsilon_{\setminus i}} \nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f(x, g_{\phi}(x, \epsilon))$$

Local gradient

Each method differs in how to estimate the local gradient.

- Likelihood-ratio estimator: use log derivative trick
- Reparameterization estimator: use reparameterization trick
- *Optimal estimator:* exactly (or numerically) compute the inner expectation

Likelihood-ratio estimator under the framework

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f(x, z) = \mathbb{E}_{\epsilon_i} (f(x, z) - \frac{b_i(x, \epsilon)}{Baseline}) \nabla_{\phi_i} \log q_{\phi_i}(z_i | pa_i) + \frac{C_i(x, \epsilon_{\setminus i})}{Residual}$$
Residual

Baseline	Definition	Example		
Constant	b_i is a constant of x and ϵ . $C_i = 0$.	Running average of sampled <i>f</i>		
Independent	$b_i(x,\epsilon_{\setminus i})$ is a constant of ϵ_i . $C_i = 0$.	Input-dependent baseline Local signal [Mnih & Gregor, 2014]		
Linear	$b_i(x,\epsilon)$ is linear against z_i .	MuProp [Gu+, 2016]		
Fully- informed	$b_i(x,\epsilon)$ may be nonlinear against z_i .	The optimal estimator (general)		

Reparameterization estimator under the framework

Apply the reparameterization trick to the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \mathbb{E}_{\epsilon_i} \nabla_{\phi_i} f(x, g_{\phi}(x, \epsilon))$$

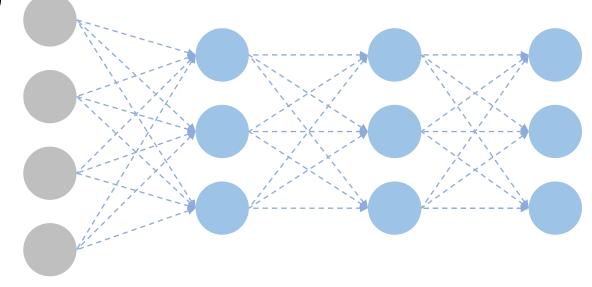
- If g_{ϕ} is not continuous, the above equation does not hold (in other words, Monte Carlo estimation of the right hand side has *infinite variance*).
- Otherwise, the reparameterization trick can be used.

Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

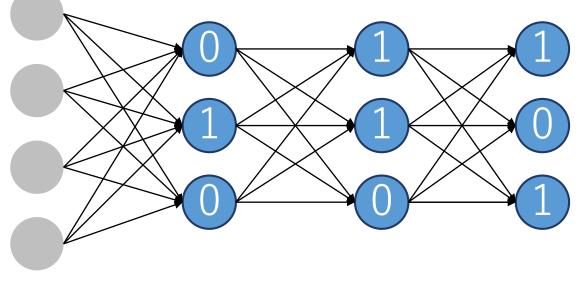


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

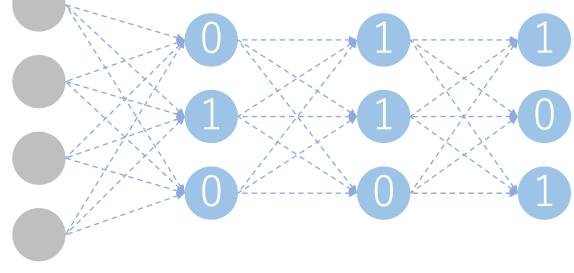


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

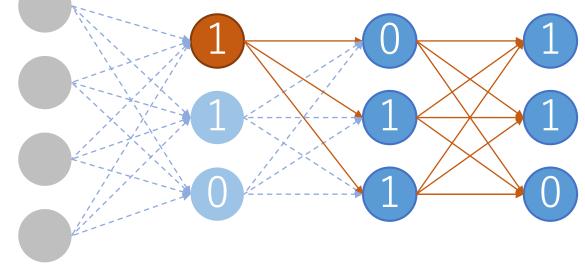


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)



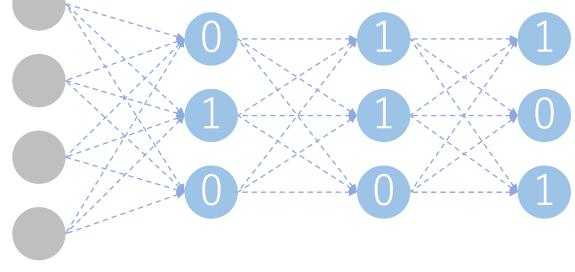
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.



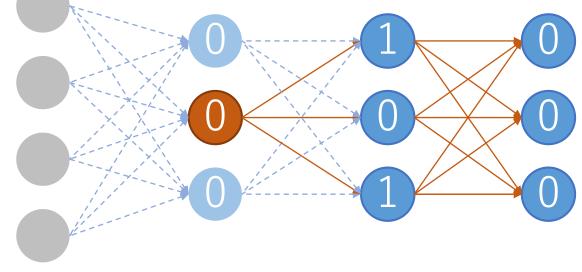
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.



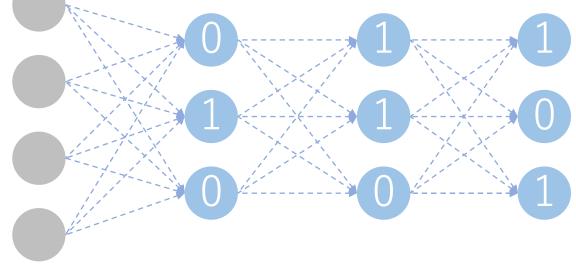
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.



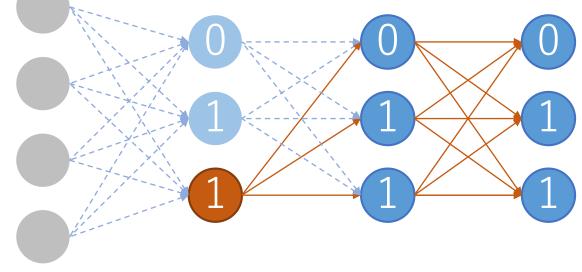
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.

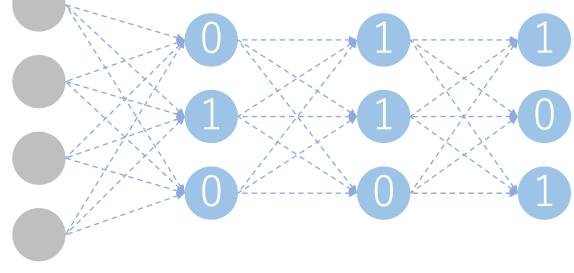


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)



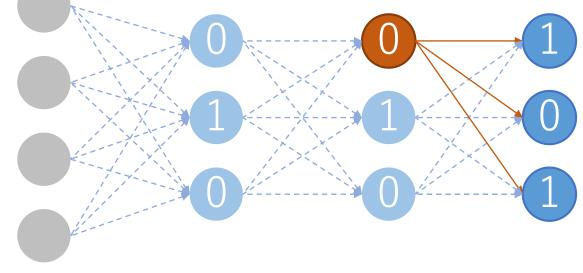
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.

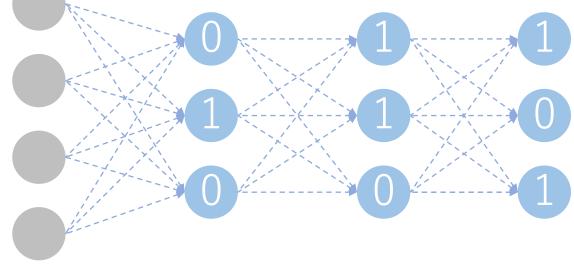


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

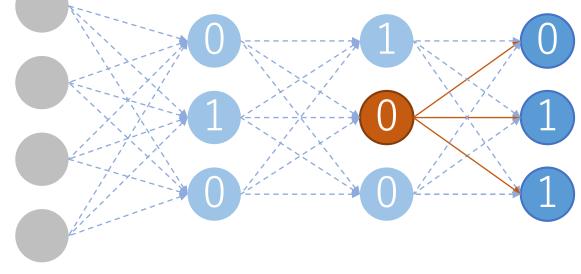


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)



Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

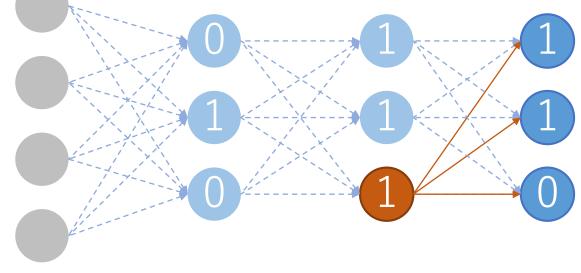


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)



Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.



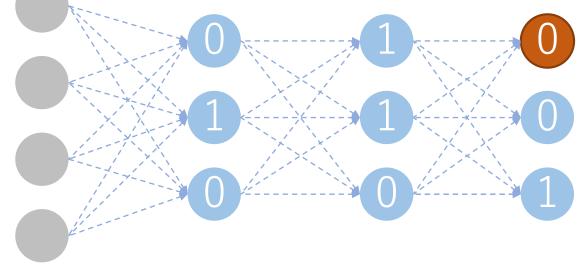
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.



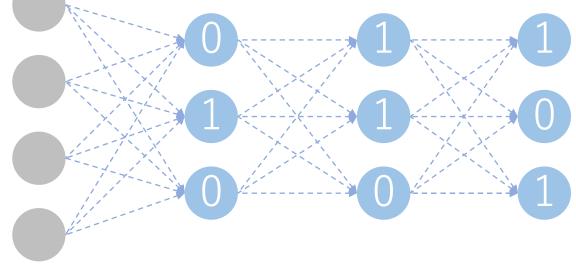
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.



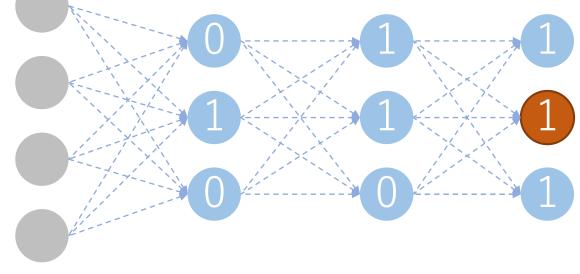
Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

All the ϵ_i 's are fixed.

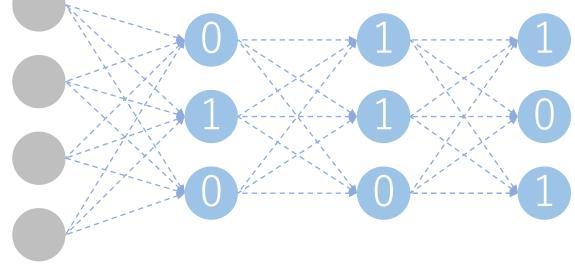


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

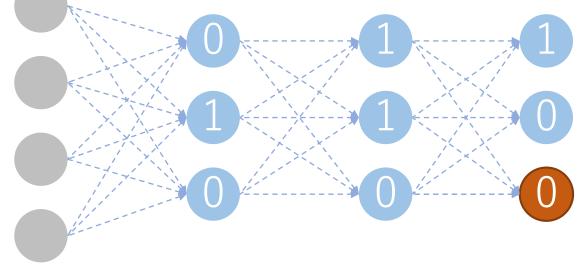


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)

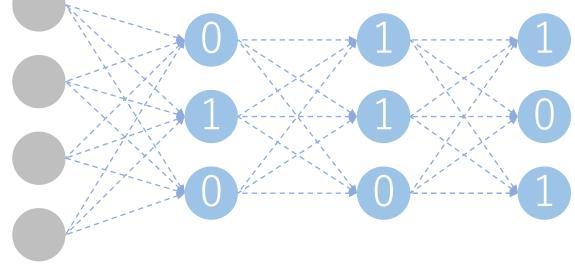


Exactly (or numerically) compute the local gradient:

$$\nabla_{\phi_i} \mathbb{E}_{\epsilon_i} f\left(x, g_{\phi}(x, \epsilon)\right) = \sum_{z_i} f(x, z) \nabla_{\phi_i} q_{\phi_i}(z_i | \text{pa}_i)$$

Implementation (Bernoulli case):

- Sample ϵ and compute $z = g_{\phi}(x, \epsilon)$ and f(x, z)
- For each *i*:
 - Flip z_i and resample descendants of z_i with fixed $\epsilon_{\setminus i}$
 - Recompute f(x, z)
 - Compute the local gradient (the above equation)



Evaluating the variance of estimators within the framework

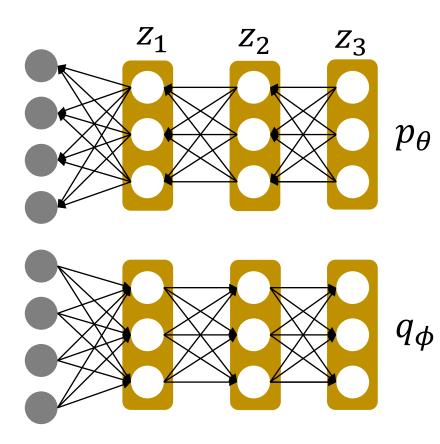
Theorem 1 The optimal estimator achieves the minimum variance among all estimators within the framework.

(∵ the property of Rao-Blackwellization)

Theorem 2 When z_i is a Bernoulli variable, there is an **independent baseline** b_i^* with which the likelihood-ratio estimator achieves the optimal variance.

(I.e., LR with independent baseline can be the optimal estimator.)

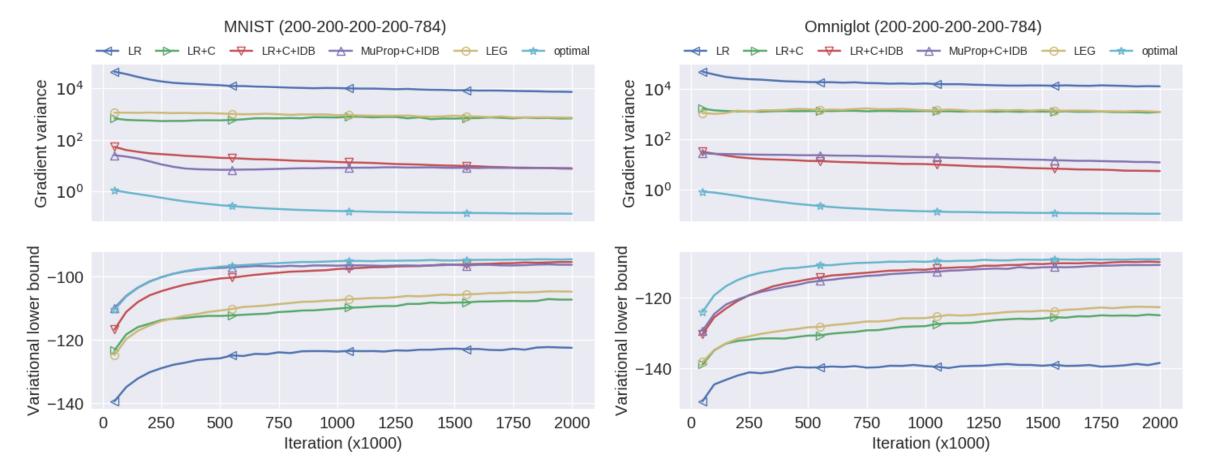
Experiment: variational learning of sigmoid belief networks



- Datasets: MNIST and Omniglot
- 784-dimensional binary (0/1) inputs

- Each latent variable follows a Bernoulli distribution with the logit given by the net input (i.e., sigmoid-Bernoulli unit)
- In the optimal estimator, the Bernoulli unit is reparameterized by 0/1 thresholding at $\epsilon \sim U(0, 1)$.

Experimental results: variational learning of sigmoid belief nets



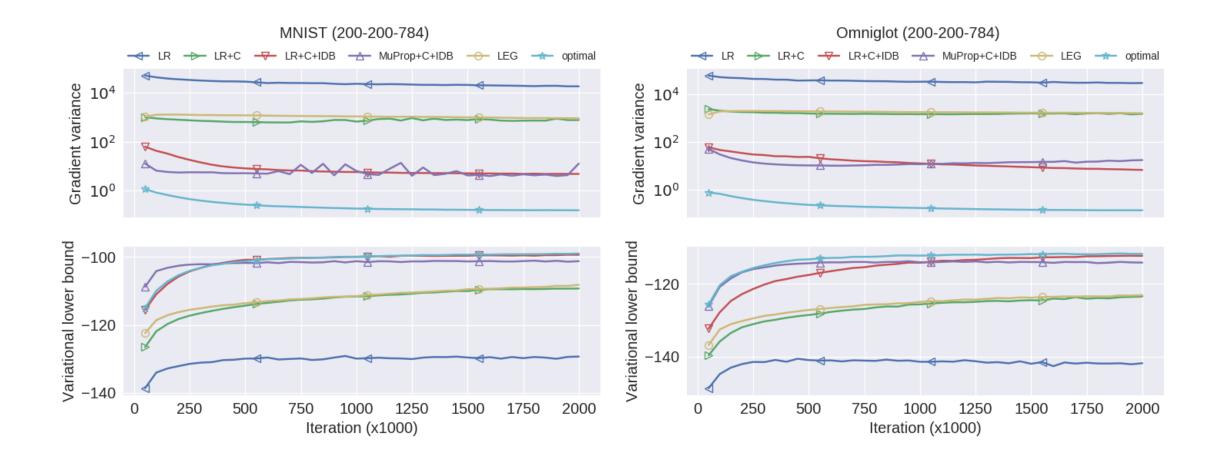
Conclusion

- We proposed a framework of gradient estimators for stochastic computational graph by reparameterization and local marginalization.
- We formulated a hierarchy of baseline techniques for likelihood-ratio estimators and showed the relationship between this hierarchy and the optimal estimator.
- The experimental results show that the variance of gradient estimation for binary discrete variables is approaching to the optimum with recent advancements, yet a non-negligible gap still exists, indicating the possibility of further improvements.

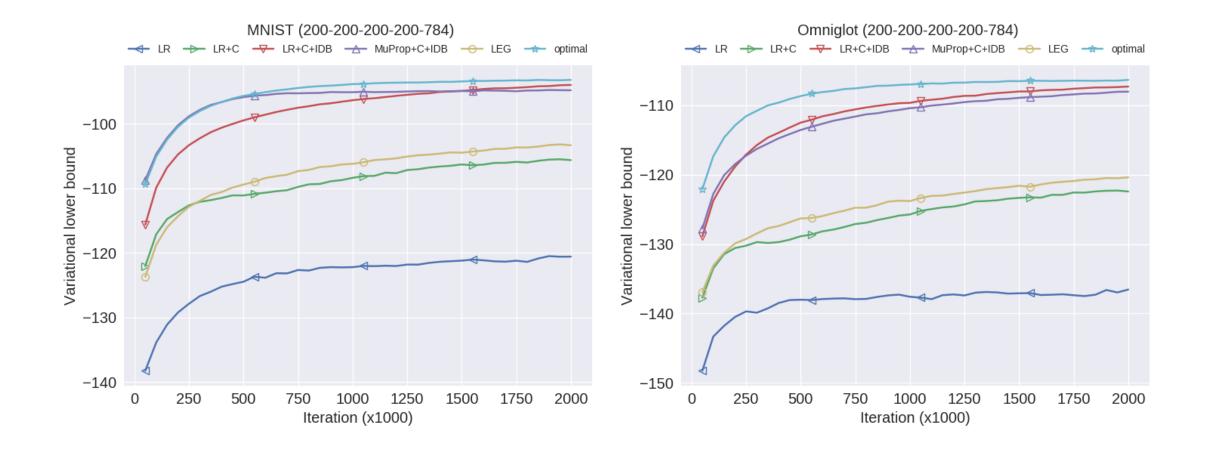
(end)

35

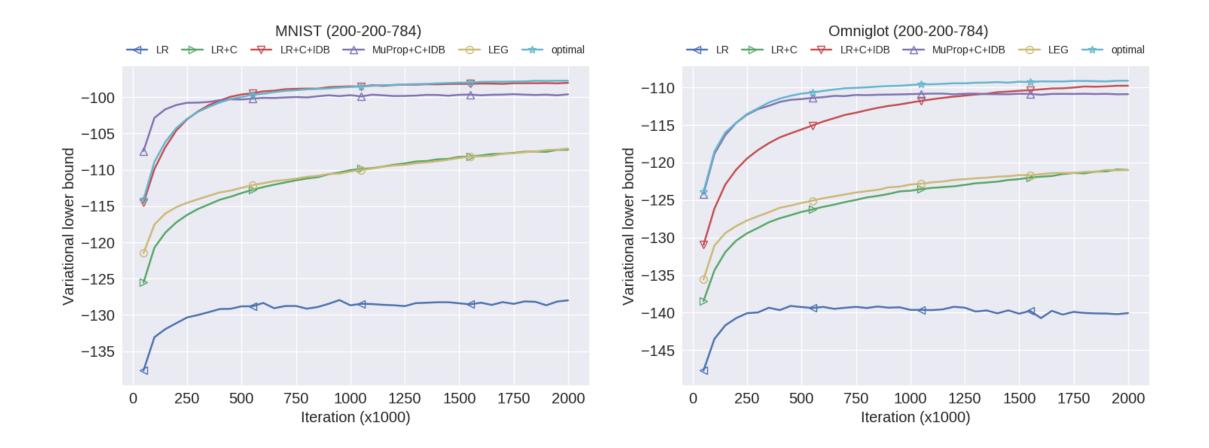
Appendix: results with shallow networks



Appendix: training curve of deep networks



Appendix: training curve of shallow networks



Appendix: final performance on test sets

	MNIST (shallow)		MNIST (deep)		Omniglot (shallow)		Omniglot (deep)	
	VB	LL	VB	LL	VB	LL	VB	LL
LR	-127.33	-108.53	-119.93	-103.53	-139.17	-124.08	-137.54	-122.85
LR+C	-107.21	-97.90	-105.38	-95.30	-122.10	-113.87	-123.27	-114.27
LR+C+IDB	-98.04	-92.68	-94.10	-89.02	-111.10	-107.14	-108.72	-105.00
MuProp+C+IDB	-99.96	-94.23	-95.03	-89.83	-112.97	-108.28	-109.55	-105.52
LEG	-106.75	-98.22	-103.26	-93.26	-121.68	-113.56	-121.27	-112.80
optimal	-97.64	-92.55	-93.31	-88.97	-110.60	-106.90	-108.17	-104.85

- VB stands for variational bound
- LL stands for log likelihood, which is approximated by "Monte Carlo objective" using sample of size 50,000