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Task: Gradient estimation for stochastic 
computational graph

Want to compute the following gradient:

∇𝜙𝔼𝑞𝜙(𝑧|𝑥)𝑓(𝑥, 𝑧)

If

• No stochasiticity in 𝑧
(𝑞 is a delta distribution)

→ use backprop

• 𝑧 is stochastic
(stochastic computational graph)

→ need more techniques

𝑥

𝑓

𝑧

Computational Graph

𝜙

2



Example: Variational inference in deep 
directed graphical models

Generative model
𝑝𝜃 𝑥, 𝑧 = 𝑝𝜃 𝑥 𝑧1 𝑝𝜃 𝑧1 𝑧2 𝑝𝜃 𝑧2 𝑧3 𝑝𝜃(𝑧3)

Approximate posterior
𝑞𝜙 𝑧 𝑥 = 𝑞𝜙 𝑧1 𝑥 𝑞𝜙 𝑧2 𝑧1 𝑞𝜙(𝑧3|𝑧2)

Objective function (variational bound)

ℒ 𝜙, 𝜃 ≔ 𝔼𝑞𝜙(𝑧|𝑥) log
𝑝𝜃 𝑥, 𝑧

𝑞𝜙 𝑧 𝑥

We want to compute ∇𝜙ℒ to optimize ℒ
with a gradient method.

𝑧1 𝑧2 𝑧3

Graphical Models

𝑝𝜃

𝑞𝜙

𝑥

Each factor is written by a NN

Each factor is written by a NN

= 𝑓(𝑥, 𝑧)
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Overview of unbiased estimators

Likelihood-ratio estimators

✓ 𝑧 can be continuous or discrete
✓ 𝑓 can be non-continuous
✓ Tend to have high variance
✓ Many (heuristic) techniques to 

reduce the variance exist

Reparameterization trick

✓ 𝑧 must be continuous
✓ 𝑓 must be differentiable
✓ Tend to have low variance in 

practice (but not guaranteed)

Our finding: when there are 𝑀 random variables, also likelihood-ratio 
estimators can be formulated with reparameterization for 𝑀 − 1 variables
→ unified framework of gradient estimators
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A unified framework of gradient estimators

Let 𝑧 = (𝑧1, … , 𝑧𝑀) and 𝑞𝜙 𝑧 𝑥 = ς𝑖=1
𝑀 𝑞𝜙𝑖(𝑧𝑖|pa𝑖).

Suppose we have a reparameterization formula:
𝑧𝑖 ∼ 𝑞𝜙𝑖 𝑧𝑖 pa𝑖 ⟺ 𝑧𝑖 = 𝑔𝜙𝑖 pa𝑖 , 𝜖𝑖 , 𝜖𝑖 ∼ 𝑝(𝜖𝑖)

Exchange ∇ and 𝔼 partially for each 𝑖 :

∇𝜙𝑖𝔼𝑞𝜙(𝑧|𝑥)𝑓 𝑥, 𝑧 = ∇𝜙𝑖𝔼𝜖𝑓 𝑥, 𝑔𝜙 𝑥, 𝜖 = 𝔼𝜖∖𝑖∇𝜙𝑖𝔼𝜖𝑖𝑓(𝑥, 𝑔𝜙 𝑥, 𝜖 )

The set of parents of 𝒛𝒊

Noise variable that generates 𝒛𝒊

Reparameterization
[Williams, 1992][Kingma & Welling, 2014]

[Rezende+, 2014][Titsias & Lázaro-Gredilla, 2014]

Local marginalization
[Titsias & Lázaro-Gredilla, 2015]

Differentiable even if 𝒈 is non-
continuous (⇐ 𝒛𝒊 is discrete)
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A unified framework of gradient estimators

∇𝜙𝑖𝔼𝑞𝜙(𝑧|𝑥)𝑓 𝑥, 𝑧 = 𝔼𝜖∖𝑖∇𝜙𝑖𝔼𝜖𝑖𝑓(𝑥, 𝑔𝜙 𝑥, 𝜖 )

Each method differs in how to estimate the local gradient.

• Likelihood-ratio estimator: use log derivative trick

• Reparameterization estimator: use reparameterization trick

• Optimal estimator: exactly (or numerically) compute the inner 
expectation

Local gradient
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Likelihood-ratio estimator under the framework

∇𝜙𝑖𝔼𝜖𝑖𝑓 𝑥, 𝑧 = 𝔼𝜖𝑖 𝑓 𝑥, 𝑧 − 𝑏𝑖 𝑥, 𝜖 ∇𝜙𝑖 log 𝑞𝜙𝑖 𝑧𝑖 pa𝑖 + 𝐶𝑖 𝑥, 𝜖∖𝑖
Baseline Residual

Baseline Definition Example

Constant 𝑏𝑖 is a constant of 𝑥 and 𝜖. 𝐶𝑖 = 0. Running average of sampled 𝑓

Independent 𝑏𝑖(𝑥, 𝜖∖𝑖) is a constant of 𝜖𝑖. 𝐶𝑖 = 0.
Input-dependent baseline
Local signal [Mnih & Gregor, 2014]

Linear 𝑏𝑖(𝑥, 𝜖) is linear against 𝑧𝑖. MuProp [Gu+, 2016]

Fully-
informed

𝑏𝑖(𝑥, 𝜖) may be nonlinear against 𝑧𝑖. The optimal estimator (general)
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Reparameterization estimator under the framework

Apply the reparameterization trick to the local gradient:

∇𝜙𝑖𝔼𝜖𝑖𝑓 𝑥, 𝑔𝜙 𝑥, 𝜖 = 𝔼𝜖𝑖∇𝜙𝑖𝑓(𝑥, 𝑔𝜙 𝑥, 𝜖 )

• If 𝑔𝜙 is not continuous, the above equation does not hold
(in other words, Monte Carlo estimation of the right hand 
side has infinite variance).

• Otherwise, the reparameterization trick can be used.
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Optimal estimator under the framework
(slow for use in every iteration, yet useful for evaluation purpose)

Exactly (or numerically) compute the local gradient:

∇𝜙𝑖𝔼𝜖𝑖𝑓 𝑥, 𝑔𝜙 𝑥, 𝜖 =෍

𝑧𝑖

𝑓 𝑥, 𝑧 ∇𝜙𝑖𝑞𝜙𝑖 𝑧𝑖 pa𝑖

Implementation (Bernoulli case):
• Sample 𝜖 and compute 𝑧 = 𝑔𝜙(𝑥, 𝜖)

and 𝑓(𝑥, 𝑧)
• For each 𝑖:

• Flip 𝑧𝑖 and resample 
descendants of 𝑧𝑖 with fixed 𝜖∖𝑖

• Recompute 𝑓(𝑥, 𝑧)
• Compute the local gradient

(the above equation)
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0

1

0

1

1

0

1

0

1

Implementation (Bernoulli case):
• Sample 𝜖 and compute 𝑧 = 𝑔𝜙(𝑥, 𝜖)

and 𝑓(𝑥, 𝑧)
• For each 𝑖:

• Flip 𝑧𝑖 and resample 
descendants of 𝑧𝑖 with fixed 𝜖∖𝑖

• Recompute 𝑓(𝑥, 𝑧)
• Compute the local gradient

(the above equation)
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Optimal estimator under the framework
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Evaluating the variance of estimators within the framework

Theorem 1 The optimal estimator achieves the minimum 
variance among all estimators within the framework.

(∵ the property of Rao-Blackwellization)

Theorem 2 When 𝑧𝑖 is a Bernoulli variable, there is an 
independent baseline 𝑏𝑖

⋆ with which the likelihood-ratio 
estimator achieves the optimal variance.

(I.e., LR with independent baseline can be the optimal estimator.)
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Experiment:
variational learning of sigmoid belief networks

• Datasets: MNIST and Omniglot

• 784-dimensional binary (0/1) inputs

• Each latent variable follows a 
Bernoulli distribution with the logit 
given by the net input (i.e., sigmoid-
Bernoulli unit)

• In the optimal estimator, the Bernoulli 
unit is reparameterized by 0/1 
thresholding at 𝜖 ∼ 𝑈(0, 1).

𝑧1 𝑧2 𝑧3

𝑝𝜃

𝑞𝜙
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Experimental results:
variational learning of sigmoid belief nets
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Conclusion

• We proposed a framework of gradient estimators for 
stochastic computational graph by reparameterization and 
local marginalization.

• We formulated a hierarchy of baseline techniques for 
likelihood-ratio estimators and showed the relationship 
between this hierarchy and the optimal estimator.

• The experimental results show that the variance of gradient 
estimation for binary discrete variables is approaching to the 
optimum with recent advancements, yet a non-negligible gap 
still exists, indicating the possibility of further improvements.
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(end)
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Appendix:
results with shallow networks
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Appendix:
training curve of deep networks
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Appendix:
training curve of shallow networks
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Appendix: final performance on test sets

• VB stands for variational bound

• LL stands for log likelihood, which is approximated by 
“Monte Carlo objective” using sample of size 50,000
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