Accepted to ICML2017

Semi-Supervised Classification based on Classification from Positive and Unlabeled Data

Tomoya Sakai^{1,2} Marthinus Christoffel du Plessis, Gang Niu^{1,2} and Masashi Sugiyama^{2,1} ¹The University of Tokyo, Japan ²RIKEN, Japan

Classification Problem

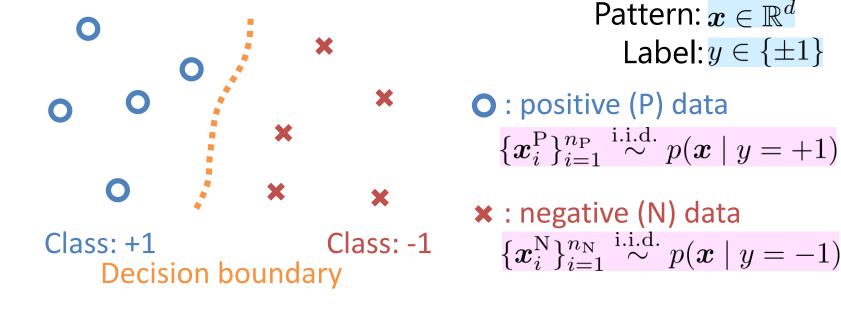
Identify class or category of data points

Examples

Image is a cat (positive class) or not (negative class)

Supervised Learning (PN Learning)

Learn from labeled (positive and negative) data

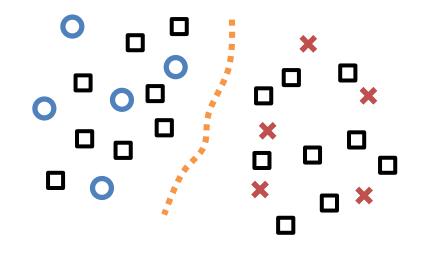


Better performance with many labeled data

Collecting labeled data is costly

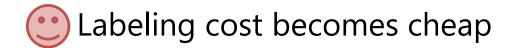
Semi-Supervised Learning (SSL)

Learn from a small amount of labeled data and a large amount of unlabeled data



- : positive data: negative data
- $\Box: \mathsf{unlabeled data} \\ \{ \boldsymbol{x}^{\mathrm{U}}_i \}_{i=1}^{n_{\mathrm{U}}} \overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x})$

4



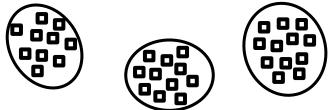
This Work

Existing methods:

Require strong distributional assumptions for utilizing unlabeled data

Ex. the cluster assumption requires the samples in the same cluster be likely to share the same label

(Chapelle et al., NIPS, 2002)



If the distributional assumptions are not satisfied, the performance of the existing methods decreases

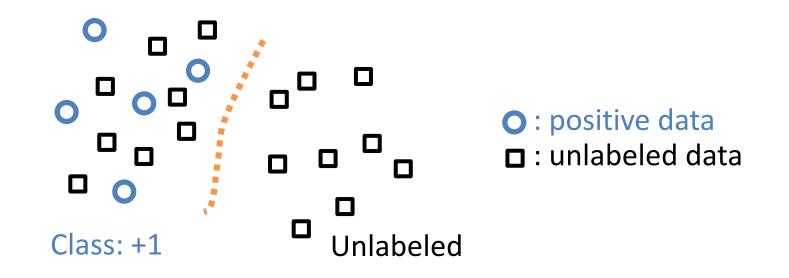
Propose method:

NOT require the strong distributional assumptions

Outline

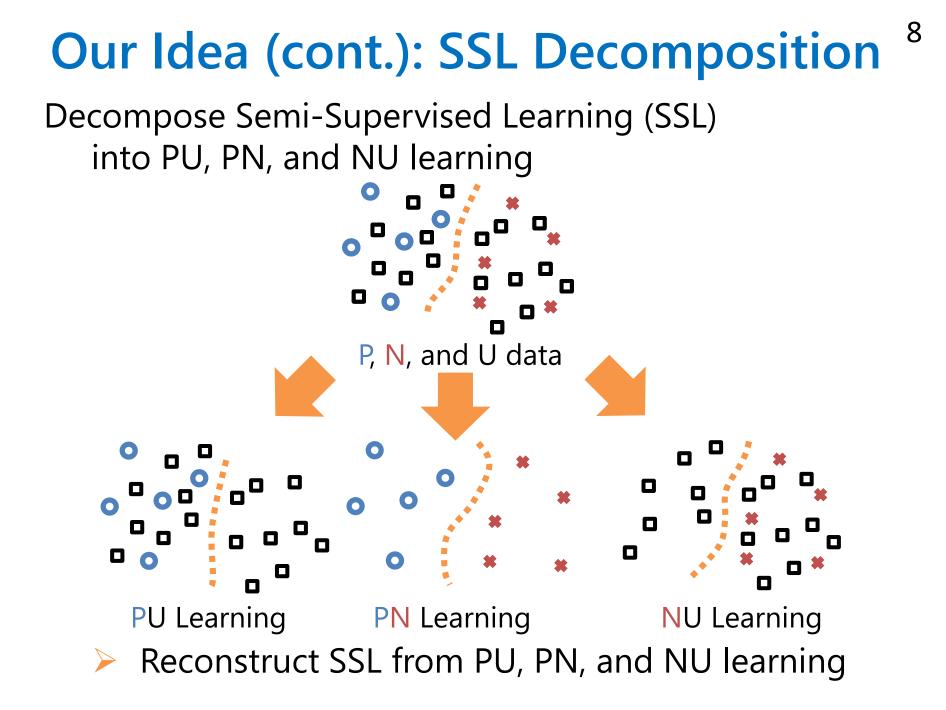
- 1. Introduction
- 2. Proposed Method
- 3. Experiment
- 4. Conclusions

Our Idea: Use of PU Learning Learning from **positive (P)** and **unlabeled** (U) data



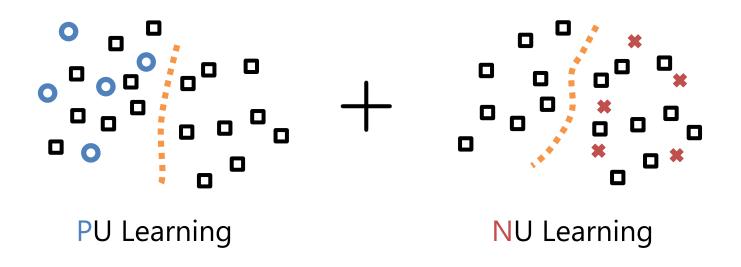
Utilize unlabeled data without the distributional assumption (du Plessis et al., NIPS, 2014)

How to use PU learning for semi-supervised learning?



PU+NU: PUNU Learning

Since PU and NU are symmetric, it might be natural to combine **PU** and **NU** learning



Is this really good?

Is PUNU Learning Better?

From Niu et al. NIPS, (2016), we have (Case I) The size of unlabeled data is sufficiently large PU or NU is the best (Case II) The size of unlabeled data is small $\begin{bmatrix} PN > PU > NU \\ or \\ PN > NU > PU \end{bmatrix}$ > PN is always the best

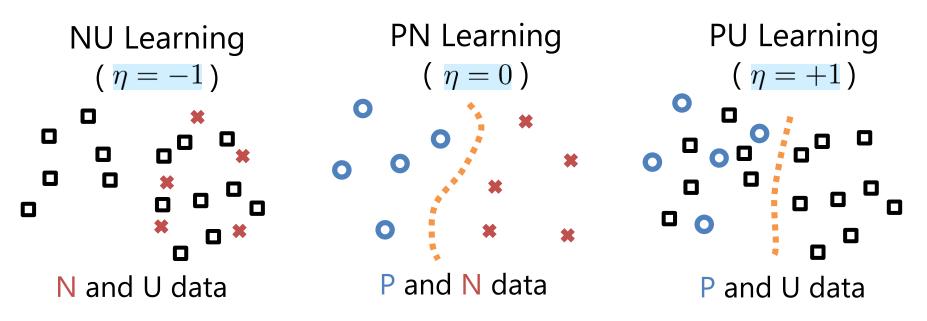
PUNU (=PU+NU) is not a good idea since it contains the worst one in the combination

Combine PN with PU/NU would be promising (PN+PU or PN+NU is better)

Proposed Method: PNU Learning

11

Combine PN with PU/NU learning (PN+PU or PN+NU)



> The PNU risk:

 $R_{\rm PNU}^{\eta}(g) := \begin{cases} (1-\eta)R_{\rm PN}(g) + \eta R_{\rm PU}(g) & (\eta \ge 0)\\ (1+\eta)R_{\rm PN}(g) - \eta R_{\rm NU}(g) & (\eta < 0) \end{cases}$

• Obtain the decision rule by minimizing the PNU risk $\eta \in [-1,1] \ g$: classifier R_{PN}, R_{PU}, R_{NU} : risks in PN, PU, and NU learning

Comparison with Existing Methods¹²

Existing approach:

Design regularizer based on the distributional assumption

Unlabeled data are used

Our approach:

 $R_{\rm PN}$: risk in supervised learning

Not require the strong distributional assumptions

Utilize unlabeled data for risk evaluation

 $\widehat{g} = \operatorname{argmin} \ \widehat{R}^{\eta}_{\mathrm{PNU}}(g)$

Labeled and unlabeled data are used

Theoretical Analyses

Without the distributional assumptions, we prove the follows:

Generalization error bound

 $\mathbf{E}_{p(\boldsymbol{x},y)}[\ell_{0-1}(yg(\boldsymbol{x}))] \leq 2\widehat{R}^{\eta}_{\mathrm{PNU}}(g) + \mathcal{O}_p\left(\frac{1}{\sqrt{n_{\mathrm{P}}}} + \frac{1}{\sqrt{n_{\mathrm{N}}}} + \frac{1}{\sqrt{n_{\mathrm{U}}}}\right) \forall g \in \mathcal{G}$

Unlabeled data help reduce the bound

> Optimal parametric convergence rate

Variance reduction

 $\operatorname{Var}[\widehat{R}^{\eta}_{\mathrm{PNU}}(g)] < \operatorname{Var}[\widehat{R}_{\mathrm{PN}}(g)]$ for some η if n_{U} is sufficiently large

- The PNU risk is stable in terms of the variance
- More stable cross-validation

 $\mathcal{G} = \{g(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}) \rangle \mid \|\boldsymbol{w}\| \leq C_{\boldsymbol{w}}, \|\boldsymbol{\phi}(\boldsymbol{x})\| \leq C_{\boldsymbol{\phi}} \}$ $R_{\text{PN}}: \text{risk in supervised learning} \quad \ell_{0-1}(m): 0-1 \text{ loss}$

Outline

- 1. Introduction
- 2. Proposed Method
- 3. Experiment
- 4. Conclusions

Image Classification

(smaller is better) Average with the standard error of misclassification rate $n_{\rm L} = 100$

Data set	$n_{ m U}$	$ heta_{ m P}$	$\widehat{ heta}_{ m P}$	PNU	\mathbf{ER}	LapSVM	SMIR	WellSVM
Arts	$1000 \\ 5000 \\ 10000$	0.50	0.50~(0.01)	$\begin{array}{c} 27.4 \ (1.3) \\ 24.8 \ (0.6) \\ 25.6 \ (0.7) \end{array}$		26.1 (0.7) 26.1 (0.4) 25.5 (0.6)	· /	N/Á
Deserts	$1000 \\ 5000 \\ 10000$	0.73	0.67~(0.01)	$\begin{array}{c} {\bf 13.0} \ ({\bf 0.5}) \\ {\bf 13.4} \ ({\bf 0.4}) \\ {\bf 13.3} \ ({\bf 0.5}) \end{array}$	13.3(0.5)	· · ·	· · · ·	N/Á
Fields	$1000 \\ 5000 \\ 10000$	0.65	0.57~(0.01)	$\begin{array}{c} 22.4 \ (1.0) \\ 20.6 \ (0.5) \\ 21.6 \ (0.6) \end{array}$			$\begin{array}{c} 28.2 \ (1.1) \\ 29.6 \ (1.2) \\ \text{N/A} \end{array}$	
Stadiums	$1000 \\ 5000 \\ 10000$	0.50	0.50~(0.01)	11.0(0.5)	11.5 (0.5) 10.9 (0.3) 10.9 (0.3)		17.4 (3.6) 13.4 (0.7) N/A	
Platforms	$ \begin{array}{r} 1000 \\ 5000 \\ 10000 \end{array} $	0.27 (0.34~(0.01)	$\begin{array}{c} 21.8 \ (0.5) \\ 23.3 \ (0.8) \\ 21.4 \ (0.5) \end{array}$		$\begin{array}{c} 24.1 \ (0.5) \\ 24.9 \ (0.7) \\ 24.8 \ (0.5) \end{array}$		N/Á

PNU learning outperforms the existing methods

Class-prior is estimated by

the energy distance minimization method (Kawakubo et al., IEICE-ED, 2016)

* Colored cells indicate the best and comparable method in terms of t-test (sig. lev. 5%)

* The methods taking 2 hours were omitted and indicated as "N/A"

Outline

- 1. Introduction
- 2. Proposed Method
- 3. Experiment
- 4. Conclusions

World of SSL based on PU Learning ¹⁷

	PN	PU
MR	Vapnik,	du Plessis et al.,
Minimization	Springer, 2000.	NIPS, 2014.

MR: misclassification rate

> Obtain classification rules based on MR minimization

SSL: Semi-Supervised Learning

World of SSL based on PU Learning ¹⁸

	PN	PU	Semi-Supervised
MR	Vapnik,	du Plessis et al.,	This talk!
Minimization	Springer, 2000.	NIPS, 2014.	

MR: misclassification rate

> Obtain classification rules based on MR minimization

SSL: Semi-Supervised Learning

World of SSL based on PU Learning ¹⁹

	PN	PU	Semi-Supervised
MR Minimization	Vapnik, Springer, 2000.	du Plessis et al., NIPS, 2014.	This talk!
AUC Maximization			

AUC: area under the receiver operating characteristic curve > Useful for imbalanced classification when $n_P \ll n_N$

$$\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x} \mid y = +1)$$

 $\{\boldsymbol{x}_{i}^{\mathrm{N}}\}_{i=1}^{n_{\mathrm{N}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x} \mid y = -1)$

World of SSL based on PU Learning ²⁰

	PN	PU	Semi-Supervised
MR	Vapnik,	du Plessis et al.,	This talk!
Minimization	Springer, 2000.	NIPS, 2014.	
AUC	Herschtal and Raskutti,		ooster session!
Maximization	ICML, 2004.		I., MLJ, 2017.
SMI	Suzuki et al.,	Sakai et al.,	To be explored
Estimation	BMC bioinform, 2009.	arXiv, 2017.	

SMI: squared-loss mutual information

- > Statistical dependency measure
- Useful for dimension reduction, feature selection, independence test, and object matching

World of SSL based on PU Learning²¹

	PN	PU	Semi-Supervised
MR	Vapnik,	du Plessis et al.,	This talk!
Minimization	Springer, 2000.	NIPS, 2014.	
AUC	Herschtal and Raskutti,		ooster session!
Maximization	ICML, 2004.		I., MLJ, 2017.
SMI	Suzuki et al.,	Sakai et al.,	To be explored
Estimation	BMC bioinform, 2009.	arXiv, 2017.	

Code available at https://github.com/t-sakai-kure/PNU