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Binary classification

Classify input data 𝑋 ∈ ℝ𝑑 to class 𝑌 ∈ +1 (positive), −1(negative)

Supervised learning:
Classifier 𝑔:ℝ𝑑 → ℝ is learned from positive data and negative data

class:+1 class:-1

: positive data

: negative data
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Supervised binary classification (PN learning) 3

Goal: minimize expected risk

Minimize empirical risk: approximation by data in hand

𝑅 𝑔 = 𝔼 𝑋,𝑌 ~𝑝 𝑥,𝑦 𝑙 𝑔 𝑋 , 𝑌 = 𝜋p𝔼p 𝑙 𝑔 𝑋 ,+1 + 𝜋n𝔼n 𝑙 𝑔 𝑋 ,−1

෠𝑅pn 𝑔 =
𝜋p

𝑛p
෍

𝑥∈𝒳p

𝑙(𝑔 𝑥 ,+1) +
𝜋n
𝑛n

෍

𝑥∈𝒳n

𝑙(𝑔 𝑥 ,−1)

input data 𝑋 ∈ ℝ𝑑

class label 𝑌 ∈ ±1
loss function 𝑙: ℝ × ±1 → ℝ

𝔼p ⋅ ≔ 𝔼𝑋~𝑝 𝑥|𝑌=+1 ⋅

𝔼n ⋅ ≔ 𝔼𝑋~𝑝 𝑥|𝑌=−1 ⋅

𝜋p ≔ 𝑝 𝑌 = +1

𝜋n ≔ 𝑝 𝑌 = −1
𝒳p = 𝑥𝑖

p

𝑖=1

𝑛p
~
𝑖.𝑖.𝑑.

𝑝 𝑥 𝑌 = +1

𝒳n = 𝑥𝑖
n
𝑖=1
𝑛n ~

𝑖.𝑖.𝑑.
𝑝 𝑥 𝑌 = −1

risk for positive class risk for negative class



Classification when negative data is unavailable

Example: click advertisement
Clicked : positive
Non-clicked : unlabeled (not interesting or unseen)

4

Learn a PN binary classifier from
positive and unlabeled data (PU learning)

class:+1 class:-1

: positive data

: unlabeled data



Unbiased PU learning [Natarajan+, NIPS 2013, du Plessis+, ICML 2015] 5

Goal: minimize the same expected risk as PN learning

Idea: unlabeled data = positive data + negative data

Risk can be expressed by only positive and unlabeled data

𝑅 𝑔 = 𝜋p𝔼p[𝑙(𝑔 𝑋 ,+1)] + 𝜋n𝔼n[𝑙(𝑔 𝑋 ,−1)]

negative data unavailable

𝑅pu 𝑔 = 𝜋p𝔼p 𝑙 𝑔 𝑋 ,+1 + 𝔼u 𝑙 𝑔 𝑋 ,−1 − 𝜋p𝔼p 𝑙 𝑔 𝑋 ,−1

𝔼u 𝑙 𝑔 𝑋 ,−1 = 𝜋p𝔼p 𝑙 𝑔 𝑋 ,−1 + 𝜋n𝔼n 𝑙 𝑔 𝑋 ,−1

𝔼u ⋅ = 𝔼𝑋~𝑝(𝑥) ⋅ , 𝒳u = 𝑥𝑖
u
𝑖=1
𝑛u ~

𝑖.𝑖.𝑑.
𝑝 𝑥 ≔ 𝜋p𝑝 𝑥|𝑌 = +1 + 𝜋n𝑝(𝑥|𝑌 = −1)



Theoretical properties of unbiased PU learning
[du Plessis+, NIPS 2014, ICML 2015; Niu+, NIPS 2016]
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Risk estimator is unbiased

For linear-in-parameter models, estimation error
vanishes in the optimal parametric rate

PU learning can be better than PN learning if

𝒪𝑝
𝜋p
𝑛p
+ 1

𝑛u

𝒪𝑝
𝜋p
𝑛p
+ 𝜋n

𝑛n
cf. PN learning

𝜋p
𝑛p
+ 1

𝑛u
< 𝜋n

𝑛n

𝔼 ෠𝑅pu 𝑔 = 𝑅pu 𝑔 = 𝑅(𝑔)

𝜋p ≔ 𝑝 𝑌 = +1 , 𝜋n ≔ 𝑝 𝑌 = −1
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How about flexible models, like deep nets?

Unbiased PU learning works well 
in linear-in-parameter models experimentally. 

[du Plessis+, NIPS 2014, ICML 2015; Niu+, NIPS 2016]

𝑦𝜙(𝑥) 𝑤

From: http://book.paddlepaddle.org/02.recognize_digits/index.html

http://book.paddlepaddle.org/02.recognize_digits/index.html


Classify even digits and odd digits of MNIST by 3-layer MLP

𝑛p=100, 𝑛n=50, 𝑛u=59900

Epoch (of SGD updates)

Er
ro

r

Unbiased PU learning with flexible model 8

Empirical error 
goes negative

Overfitting!
unbiased PU test

unbiased PU train

PN-test

PN-train
0



Overfitting and negative risk of unbiased PU 9

If classifier can perfectly separate P and U,
training error w.r.t. 0-1 loss is:

Class:+1 Class:-1

: P data

: U data

𝜋p

𝑛p
σ𝑥∈𝒳p

𝑙 𝑔 𝑥 , +1 +
1

𝑛u
σ𝑥∈𝒳u

𝑙 𝑔 𝑥 , −1 −
𝜋p

𝑛p
σ𝑥∈𝒳p

𝑙 𝑔 𝑥 , −1

risk for positive class risk for negative class

0 𝜋p ⋅ 1 < 0𝜋𝑝 ⋅ 0



PU learning with non-negative risk estimator
（non-negative PU learning） 10

Idea:

We propose the new risk estimator which is always non-negative

෨𝑅pu 𝑔 =

𝜋p

𝑛p
෍

𝑥∈𝒳p

𝑙 𝑔 𝑥 , +1 +𝐦𝐚𝐱 𝟎,
1

𝑛u
෍

𝑥∈𝒳u

𝑙 𝑔 𝑥 , −1 −
𝜋p

𝑛p
෍

𝑥∈𝒳p

𝑙 𝑔 𝑥 ,−1

classifier 𝑔:ℝ𝑑 → ℝ
loss function 𝑙: ℝ × ±1 → ℝ

𝜋p ≔ 𝑝 𝑌 = +1

𝜋n ≔ 𝑝 𝑌 = −1
𝔼n ⋅ ≔ 𝔼𝑋~𝑝 𝑥|𝑌=−1 ⋅

positive dataset 𝒳p = 𝑥𝑖
p

𝑖=1

𝑛p
~
𝑖.𝑖.𝑑.

𝑝 𝑥 𝑌 = +1

unlabeled dataset 𝒳u = 𝑥𝑖
u
𝑖=1
𝑛u ~

𝑖.𝑖.𝑑.
𝑝(𝑥)

Round-up risk for negative class to zero



Theoretical analysis of non-negative PU learning

Risk estimator is consistent and its bias decreases exponentially
Bias is negligible in practice

Risk estimator may reduce mean squared error
Non-negative risk estimator is more stable

For linear-in-parameter models, estimation error
vanishes in the optimal parametric rate

𝒪𝑝 exp − Τ1 ൗ𝜋p
2 𝑛p + Τ1 𝑛u

𝒪𝑝
𝜋p
𝑛p
+ 1

𝑛u

11

𝔼𝒳p,𝒳u
෨𝑅pu 𝑔 − 𝑅 𝑔

2
≤ 𝔼𝒳p,𝒳u

෠𝑅pu 𝑔 − 𝑅 𝑔
2

non-negative PU unbiased PU



Large-scale algorithm 12

•Want to use mini-batch SGD

•Our objective function

•Sum of risks in mini-batches

𝒳p
𝑖 , 𝒳u

𝑖 : 𝑖-th mini-batch (𝑖 = 1,… ,𝑁)

𝜋p

𝑛p
෍

𝑖=1

𝑁

෍

𝑥∈𝒳𝑝
𝑖

𝑙 𝑔 𝑥 , +1 + max 0,෍

𝑖

𝑁
1

𝑛𝑢
෍

𝑥∈𝒳𝑢
𝑖

𝑙 𝑔 𝑥 , −1 −
𝜋𝑝
𝑛𝑝

෍

𝑥∈𝒳𝑝

𝑙 𝑔 𝑥 , −1

෍

𝑖=1

𝑁
𝜋p

𝑛p
෍

𝑥∈𝒳p
𝑖

𝑙 𝑔 𝑥 , +1 +𝐦𝐚𝐱 𝟎,
1

𝑛u
෍

𝑥∈𝒳u
𝑖

𝑙 𝑔 𝑥 , −1 −
𝜋p

𝑛p
෍

𝑥∈𝒳p

𝑙 𝑔 𝑥 , −1

Still, upper bound can be minimized!



P=artifacts

N=animals

13-layer CNN 
[Springenberg+, ICLR2015]

𝑛p = 1000

𝑛n = 562

𝑛u = 50000

CIFAR10 experiment 13

Epoch (of SGD updates)

unbiased PU test

PN test

non-negative PU test

non-negative PU train

PN-train

unbiased PU train

Er
ro

r

Achieved smaller test 
error than  unbiased 
PU and even PN!

Training error → 0



Conclusions 14

We proposed a non-negative risk estimator for PU learning which 
improves on the state-of-the-art unbiased risk estimators.

The new risk estimator is more robust against overfitting, and 
training very flexible model given limited P data becomes possible.

A large-scale PU learning algorithm was also developed.

Extensive theoretical analyses were presented.

Intensive experiments were carried out as well.
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