Expectation Propagation for t-Exponential Family Using q-Algebra

Futoshi FutamiIssei SatoMasashi SugiyamaUniversity of TokyoUniversity of TokyoRIKENRIKENRIKENUniversity of Tokyo

2017, Nov.8 IBIS

Gaussian distribution

Example of Gaussian process (GP) regression

Student-t distribution

$$\operatorname{St}(x;v,\mu,\Sigma) = \frac{\Gamma((v+k)/2)}{(\pi v)^{k/2} \Gamma(v/2) |\Sigma|^{1/2}} \left(1 + (x-\mu)^{\top} (v\Sigma)^{-1} (x-\mu) \right)^{-\frac{v+k}{2}}$$

GP example (Student-t likelihood)

Replace Gaussian likelihood with Student-t

The problem of dealing with Student-t

Student-t is difficult to handle...

- Not a member <u>of the Exponential family</u>.
- We cannot use many useful relations which make Gaussian easy to use.
- <u>Need to approximate Student-t</u> further by another distribution which is easy to handle (variational inference, EP, Laplace)

How to use Student-t directly as an alternative to Gaussian?

t-exponential family

 θ : natural parameter $\Phi(x)$: sufficient statistics $g_t(\theta)$: log partition function

$$p(x;\theta) = \exp_t(\langle \Phi(x), \theta \rangle - g_t(\theta))$$

 $p(x;\theta) = \exp(\langle \Phi(x), \theta \rangle - g(\theta))$

$$\exp_t(x) = \begin{cases} \exp(x) & \text{if } t = \\ [1+(1-t)x]^{\frac{1}{1-t}} & \text{othere} \end{cases}$$

- The performance heavily depends on the order in which data is processed.
- Sometimes disastrous results are obtained.

Expectation Propagation

[T. Minka, 2001] exponential family

Assumed Density Filtering

Data: permutation dependent

Calculation through natural parameter

Expectation Propagation

Data: permutation independent

Property of exponential family

• A product of same exponential families yields the same unnormalized exponential family

$$e^{\langle \Phi(x), \theta_1 \rangle - g(\theta_1)} e^{\langle \Phi(x), \theta_2 \rangle - g(\theta_2)}$$
$$= e^{\langle \Phi(x), (\theta_1 + \theta_2) \rangle - \tilde{g}(\theta_1, \theta_2)}$$

• Calculation can be performed through natural parameter or expected sufficient statistics

Approximation for t-exponential family

[T. Minka, 2001] exponential family

Assumed Density Filtering

Data: permutation dependent

Calculation through natural parameter

Expectation Propagation

Data: permutation independent

[N. Ding and S. V. N. Vishwanathan, 2010,2011]

t-exponential family

Assumed Density Filtering

Data: permutation dependent

Problem of t-Exponential family

 $\exp_t(x) \exp_t(y) \neq \exp_t(x+y)$

A product of t-exponential families does not yield the same un-normalized t-exponential family

Calculation cannot be performed through natural parameter or expected sufficient statistics

Our Contribution

By using q-algebra **Enabled natural parameter** based calculation in t-exponential family Extend ADF to EP in

t-exponential family

12

q-Algebra [H. Suyari and M. Tsukada, 2005] [L. Nivanen, A. Le Mehaute, and Q. A. Wang, 2003]

We can treat the pseudo additivity efficiently by using q-algebra $\exp_t(x) \exp_t(y) = \exp_t(x + y + (1 - t)xy)$

Definition 1 (q-product). Operation \otimes_q called q-product is defined as

$$x \otimes_q y := \begin{cases} x^{1-q} + y^{1-q} - 1 \end{bmatrix}^{\frac{1}{1-q}} & \text{if } x > 0, y > 0, \\ x^{1-q} + y^{1-q} - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 2 (q-division). Operation \oslash_q called q-division is defined as

$$x \oslash_q y := \begin{cases} x^{1-q} - y^{1-q} + 1 \end{bmatrix}^{\frac{1}{1-q}} & \text{if } x > 0, y > 0, \\ x^{1-q} - y^{1-q} - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Numerical Experiment

Comparison of binary classification by using Student-t Process and Gaussian Process

Student-t Process classifier		Gaussian Process classifier	
prior	$p(f X) = \operatorname{St}(f v, \mu, K)$	$p(f X) = \mathcal{N}(f \mu, K)$	
likelihood	$p(y_i f_i) = \epsilon + (1 - 2\epsilon)\Theta(y_i f_i)$		

[H. C. Kim and Z. Ghahramani 2008]

1) Toy datasets

How outliers affect the decision boundary

2 UCI datasets

Compare the performance

Experiment^① toy experiment

Gaussian Process without Outliers

Gaussian Process with Outliers

-2

-3

0

3

2

-3

-2

0

outliers outliers

3

2

Student-t is less affected by outliers than Gaussian

Experiment² UCI benchmark data

Dataset	Outliers	GPC	STC
Pima	0	34.0(3.0)	32.3(2.6)
	5%	34.9(3.1)	32.9(3.1)
	10%	36.2(3.3)	34.4(3.5)
Ionosphere	0	9.6(1.7)	7.5(2.0)
	5%	9.9(2.8)	9.6(3.2)
	10%	13.0(5.2)	11.9(5.4)
Thyroid	0	4.3(1.3)	4.4(1.3)
	5%	4.8(1.8)	5.5(2.3)
	10%	5.4(1.4)	7.2(3.4)
Sonar	0	15.4(3.6)	15.0(3.2)
	5%	18.3(4.4)	17.5(3.3)
	10%	19.4(3.8)	19.4(3.1)

Table 1: Classification Error Rates(%)

Better performance compared to Gaussian process on many datasets

Summary

