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Supervised Classification

A set of labeled instances {(x;, i) € X x Y}i—1,....n

A classifier f: X —» Y
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Motivation for Active Learning

In some real world scenarios,
® there are a lot of unlabeled instances, but

® labeling needs a large cost (money or time).

The learner selects which instances to label

and can reduce the labeling cost.
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Pool-based Active Learning

All unlabeled instances are given in advance
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Stream-based Active Learning

Unlabeled instances arrive sequentially
We consider the case of selecting k instances out of n
(n, k known in advance)
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Overview

A new framework for stream-based active learning

Pool-based active learning Stream-based active learning

All unlabeled instances are
given in advance
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Unlabeled instances appear
one by one
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Adaptive submodular
maximization
[Golovin-Krause'11]

Proposed framework

Submodular secretary problem
[Bateni-Hajiaghayi-Zadimoghaddam’13] 7/ 23
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Submodular Maximization

Selection of a “good” subset of given finite set V

Maximize f(S) fi2Y SR

subjectto |S| <k submodular

DEYER IO EIGP LAl [Badanidiyuru+14]

Select a small summary for given large dataset V
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Adaptive Submodular Maximization

[Golovin-Krause'11]

Select mmmmmg Observe
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The learner can select the next instance to label
according to the labels observed so far

Adaptive Submodularity

An extention of submodularity to this adaptive setting
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Classical Secretary Problem ioixioresos)

n candidates arrive in random order (n is given),
and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first | n/e] ones, and after that,
if the coming one is the best so far, hire him
= the best one can be hired with prob. > 1/e
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Submodular Secretary Problem
[Bateni-Hajiaghayi-Zadimoghaddam’13]

A generalization of the classical secretary problem

0 multiple candidates can be selected

o the objective function f: 2¥ — R>g is submodular

X XXX X X %

n=10,k=3
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Competitive Ratio

The competitive ratio of an algorithm is o € [0, 1].

‘ def

For any problem instance, the output S satisfies:

E[f(S)] = o maxs=cv f(S*)
ANAANANN~

the optimal achieved by the clairvoyant
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Proposed Framework

The proposed framework is a combination of
previous frameworks, but it is not straightforward

Adaptive Submodular Submodular Secretary
Maximization Problem

+ New property:
Policy-Adaptive Submodularity

Proposed Framework
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Policy-Adaptive Submodularity

Policy-adaptive submodularity is also a natural
extension of submodularity to the adaptive setting

Submodularity

Diminishing return
of each instance

. to the adaptive setting

Adaptive
Submodulairty
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Adaptive Stream Algorithm

JAET RSl A limited memory can be used

Partition the whole stream into kK segments,
and select the “best” instance from each segment

n/k instances n/k instances n/k instances

[ S v w—

Theorem [rujii-kashima16]
The competitive ratio is (2— +/3)(1—1/e) ~ 0.16
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Adaptive Secretary Algorithm

LS T 4dL 'l immediate decision at each arrival

Apply the classical secretary algo. to each segment,
and select the “best” instance with probability 1/e

n/k instances n/k instances n/k instances

maxA(v|go) maxA(v|gq) maxA(v|g2)
with prob. % with prob. % with prob. 15

Theorem [Fujii-Kashima’16]
The competitive ratio is ——22_ ~ 0.08

2e4/142/e
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Experimental Settings

Datasets

® WDBC (n =596, 32-d)

® MNIST (n = 14780, reduced to 10-d by PCA)

Benchmarks

® Uncertainty sampling

® Random

The proposed method is based on ALUMA [Gonen+13]
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Experimental Results

Error rate
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