Budgeted stream-based active learning via adaptive submodular maximization

Kaito Fujii (UTokyo)

(joint work with Hisashi Kashima (KyotoU))

IBIS Workshop 2017.11.8

1 Application: Pool-/Stream-based Active Learning

2 Previous Work: Adaptive Submodular Maximization

3 Previous Work: Submodular Secretary Problem

- 4 Proposed Framework
- 5 Experiments

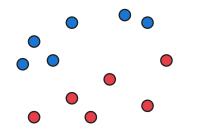
Supervised Classification

Input

A set of labeled instances $\{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,\dots,n}$

Output

A classifier $\hat{f} : \mathcal{X} \rightarrow \mathcal{Y}$



 $\mathcal{X} = \mathbb{R}^2,$ $\mathcal{Y} = \{ \text{red, blue} \}$

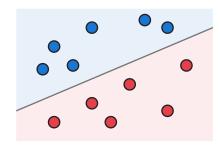
Supervised Classification

Input

A set of labeled instances $\{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,\dots,n}$

Output

A classifier $\hat{f} : \mathcal{X} \rightarrow \mathcal{Y}$



 $\mathcal{X} = \mathbb{R}^2,$ $\mathcal{Y} = \{ \text{red, blue} \}$

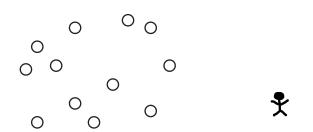
Motivation for Active Learning

In some real world scenarios,

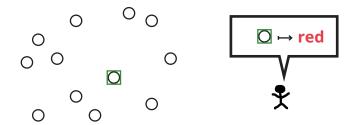
- there are a lot of unlabeled instances, but
- labeling needs a large cost (money or time).

Active Learning

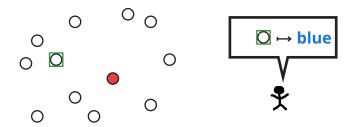
The learner selects which instances to label and can reduce the labeling cost.



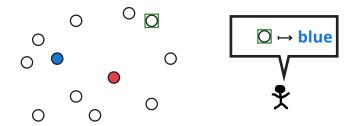
Unlabeled instances $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$



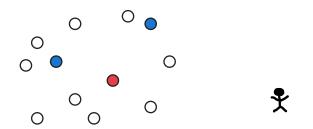
Unlabeled instances $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$



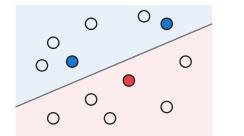
Unlabeled instances $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$



Unlabeled instances $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$



Unlabeled instances $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$



Unlabeled instances $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$ Labeling oracle $\phi: V \rightarrow \mathcal{Y}$

Y

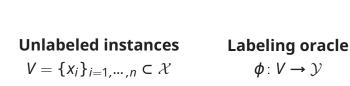
Unlabeled instances arrive sequentially

We consider the case of selecting *k* instances out of *n* (*n*, *k* known in advance)

Unlabeled instances $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$

Unlabeled instances arrive sequentially

We consider the case of selecting *k* instances out of *n* (*n*, *k* known in advance)

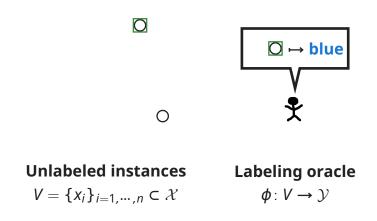


 \cap

Ŧ

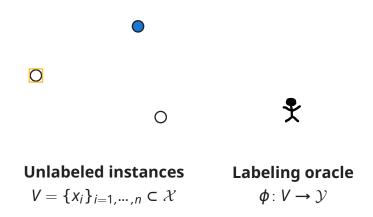
Unlabeled instances arrive sequentially

We consider the case of selecting *k* instances out of *n* (*n*, *k* known in advance)



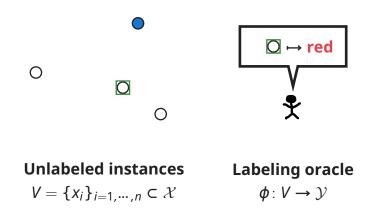
Unlabeled instances arrive sequentially

We consider the case of selecting *k* instances out of *n* (*n*, *k* known in advance)



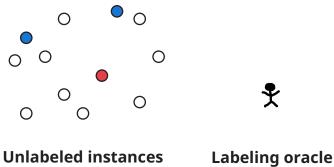
Unlabeled instances arrive sequentially

We consider the case of selecting *k* instances out of *n* (*n*, *k* known in advance)



Unlabeled instances arrive sequentially

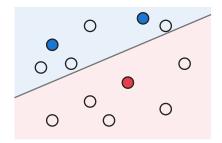
We consider the case of selecting *k* instances out of *n* (*n*, *k* known in advance)



 $V=\{x_i\}_{i=1,\cdots,n}\subset \mathcal{X}$

Unlabeled instances arrive sequentially

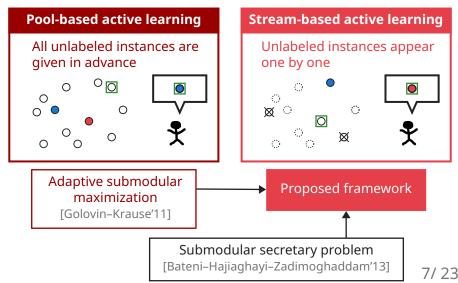
We consider the case of selecting k instances out of n(n, k known in advance)



Unlabeled instancesLabeling oracle $V = \{x_i\}_{i=1,\dots,n} \subset \mathcal{X}$ $\phi : V \rightarrow \mathcal{Y}$

Overview

A new framework for stream-based active learning



1 Application: Pool-/Stream-based Active Learning

2 Previous Work: Adaptive Submodular Maximization

3 Previous Work: Submodular Secretary Problem

4 Proposed Framework

5 Experiments

Submodular Maximization

Selection of a "good" subset of given finite set V

Maximize
$$f(S)$$
 $f: 2^V \rightarrow \mathbb{R}$ subject to $|S| \leq k$ submodular

Data Summarization

[Badanidiyuru+'14]

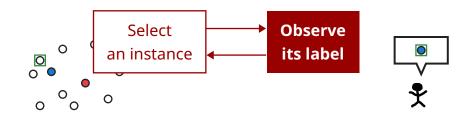
Select a small summary for given large dataset V

$$f\begin{pmatrix} \circ & \circ \\ \circ$$

Adaptive Submodular Maximization

[Golovin-Krause'11]

10/ 23



The learner can select the next instance to label according to the labels observed so far

Adaptive Submodularity

An extention of submodularity to this adaptive setting

1 Application: Pool-/Stream-based Active Learning

2 Previous Work: Adaptive Submodular Maximization

3 Previous Work: Submodular Secretary Problem

4 Proposed Framework

5 Experiments

Problem

n candidates arrive **in random order** (*n* is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first [n/e] ones, and after that,

if the coming one is the best so far, hire him

Problem

n candidates arrive **in random order** (*n* is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first [*n*/e] ones, and after that, if the coming one is the best so far, hire him

Problem

X

X

n candidates arrive **in random order** (*n* is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first [*n*/e] ones, and after that, if the coming one is the best so far, hire him

Problem

n candidates arrive **in random order** (*n* is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first [*n*/e] ones, and after that, if the coming one is the best so far, hire him

Problem

n candidates arrive **in random order** (*n* is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

♀ ♀ ♀ ♀ ♀ ♀

pass the first [*n*/e] ones, and after that, if the coming one is the best so far, hire him

Problem

n candidates arrive **in random order** (*n* is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first [n/e] ones, and after that, if the coming one is the best so far, hire him

Problem

n candidates arrive **in random order** (*n* is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first [*n*/e] ones, and after that, if the coming one is the best so far, hire him

Submodular Secretary Problem

[Bateni-Hajiaghayi-Zadimoghaddam'13]

A generalization of the classical secretary problem

1 multiple candidates can be selected

2 the objective function $f: 2^V \to \mathbb{R}_{\geq 0}$ is submodular

The competitive ratio of an algorithm is $\alpha \in [0, 1]$. **def**

For any problem instance, the output *S* satisfies:

$$\mathbb{E}[f(S)] \ge \alpha \max_{S^* \subseteq V} f(S^*)$$

the optimal achieved by the clairvoyant

1 Application: Pool-/Stream-based Active Learning

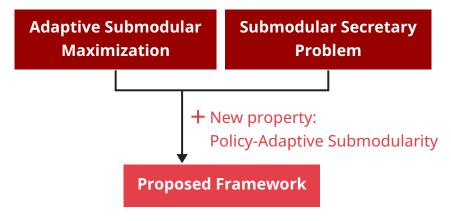
2 Previous Work: Adaptive Submodular Maximization

3 Previous Work: Submodular Secretary Problem

4 Proposed Framework

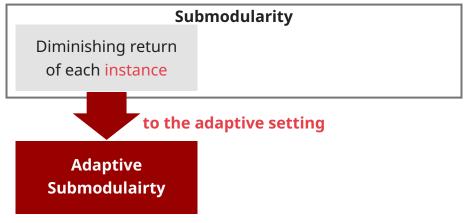
5 Experiments

The proposed framework is a combination of previous frameworks, but it is not straightforward



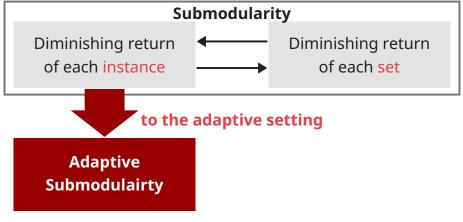
Policy-Adaptive Submodularity

Policy-adaptive submodularity is also a natural extension of submodularity to the adaptive setting



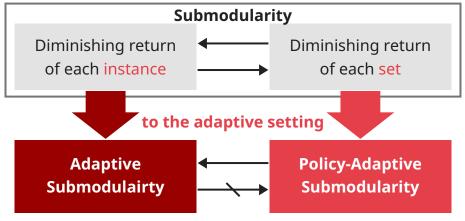
Policy-Adaptive Submodularity

Policy-adaptive submodularity is also a natural extension of submodularity to the adaptive setting



Policy-Adaptive Submodularity

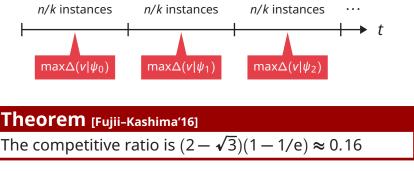
Policy-adaptive submodularity is also a natural extension of submodularity to the adaptive setting



Adaptive Stream Algorithm

Stream setting A limited memory can be used

Partition the whole stream into *k* segments, and select the "best" instance from each segment

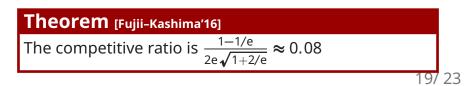


Adaptive Secretary Algorithm

Secretary setting immediate decision at each arrival

Apply the classical secretary algo. to each segment, and select the "best" instance with probability 1/e





1 Application: Pool-/Stream-based Active Learning

2 Previous Work: Adaptive Submodular Maximization

3 Previous Work: Submodular Secretary Problem

4 Proposed Framework

5 Experiments

Experimental Settings

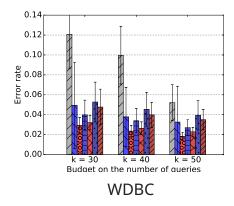
- WDBC (*n* = 596, 32-d)
- MNIST (n = 14780, reduced to 10-d by PCA)

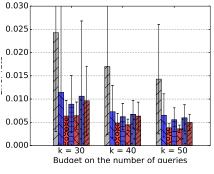
Benchmarks

- Uncertainty sampling
- Random

The proposed method is based on ALuMA [Gonen+13]

Experimental Results





MNIST

The proposed method outperforms uncertainty sampling in each setting

Overview

A new framework for stream-based active learning

