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Figure 2: Sample images from our MPIIGaze dataset showing the considerable variability in terms of place and time of
recording, directional light and shadows. For comparison, the last column shows sample images from other current publicly
available datasets (cf. Table 1): UT Multiview [39] (top), Eyediap [8] (middle), Smith et al. [37] (bottom).

2. Pursuing the performance gain for domain-specific
training. If we can assume that training data is directly
collected in the target daily-life environment, the goal
is to fully utilise the rich training data.

While better performances can be expected for the sec-
ond domain-specific training task where both the training
and testing data come from the same dataset, the ultimate
goal of person-independent gaze estimation is to handle the
first cross-domain training task, which leads to the most
challenging but practically most important use cases.

The contribution of this work is threefold. First, we intro-
duce the first large-scale dataset for appearance-based gaze
estimation in the wild. Our dataset is one order of magni-
tude larger than existing datasets and significantly more vari-
able with respect to illumination and appearance. Second,
we present an extensive evaluation of state-of-the-art gaze
estimation algorithms on three current datasets, including
our own, and identify key research challenges of in-the-wild
settings. Third, we present a method for appearance-based
gaze estimation that uses multimodal convolutional neural
networks and that significantly outperforms state-of-the-art
methods in the most challenging cross-dataset evaluation.

2. Related Work

2.1. Gaze Estimation Methods

Gaze estimation methods can be model-based or
appearance-based [12]. Model-based methods use a geo-
metric eye model and can be further divided into corneal-
reflection and shape-based methods, depending on whether
they require external light sources to detect eye features.
Early works on corneal reflection-based methods focused
on stationary settings [36, 30, 13, 51] and were later ex-
tended to handle arbitrary head poses using multiple light
sources or cameras [52, 53]. In contrast, shape-based meth-

ods [16, 4, 50, 44] directly infer gaze directions from ob-
served eye shapes, such as pupil centre or iris edges. Al-
though they have recently been applied to more practical
application scenarios [18, 11, 41, 49], their accuracy is
lower and it is unclear whether shape-based approaches
can robustly handle low image quality and variable light-
ing conditions. Appearance-based gaze estimation methods
directly use eye images as input and can therefore poten-
tially work with low-resolution eye images. While early
works assumed a fixed head pose [3, 42, 48, 35, 27, 24],
recent works focused on methods for 3D head pose estima-
tion [25, 26, 9, 6]. However, appearance-based methods
require larger amounts of user-specific training data than
model-based methods, and it remains unclear if the learned
estimator can generalise to unknown users. Similarly, pre-
vious methods typically assumed accurate 3D head poses
as input, which is a strong assumption for unconstrained in-
the-wild settings.

2.2. Calibration-Free Gaze Estimation

The requirement to collect person-specific training data
during a calibration step is a key limitation of both model-
based and appearance-based methods. To address this limi-
tation, several previous works used interaction events, such
as mouse clicks or key presses, as a proxy for the user’s on-
screen gaze position [40, 15]. Alternatively, visual saliency
maps [5, 38] or pre-recorded human gaze patterns of the pre-
sented visual stimuli [1] were used as bottom-up, probabilis-
tic training data to learn the estimation function. However,
all of these approaches rely on observations of a specific
person and environment, which limits their applicability.

Purely data-driven approaches leverage large amounts of
training data to learn gaze estimators that generalise to ar-
bitrary users without the need for person-specific calibra-
tion [34, 10, 39] settings. These methods have significant
potential to bring gaze estimation to new settings, includ-
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Figure 5: Overview of iTracker, our eye tracking CNN. Inputs include left eye, right eye, and face images detected and
cropped from the original frame (all of size 224⇥ 224). The face grid input is a binary mask used to indicate the location and
size of the head within the frame (of size 25 ⇥ 25). The output is the distance, in centimeters, from the camera. CONV rep-
resents convolutional layers (with filter size/number of kernels: CONV-E1,CONV-F1: 11 ⇥ 11/96, CONV-E2,CONV-F2:
5 ⇥ 5/256, CONV-E3,CONV-F3: 3 ⇥ 3/384, CONV-E4,CONV-F4: 1 ⇥ 1/64) while FC represents fully-connected layers
(with sizes: FC-E1: 128, FC-F1: 128, FC-F2: 64, FC-FG1: 256, FC-FG2: 128, FC1: 128, FC2: 2). The exact model
configuration is available on the project website.

4. iTracker: A Deep Network for Eye Tracking

In this section, we describe our approach for building a
robust eye tracker using our large-scale dataset, GazeCap-
ture. Given the recent success of convolutional neural net-
works (CNNs) in computer vision, we use this approach to
tackle the problem of eye tracking. We believe that, given
enough data, we can learn eye tracking end-to-end without
the need to include any manually engineered features, such
as head pose [43]. In Sec. 4.1, we describe how we de-
sign an end-to-end CNN for robust eye tracking. Then, in
Sec. 4.2 we use the concept of dark knowledge [11] to learn
a smaller network that achieves a similar performance while
running at 10–15fps on a modern mobile device.

4.1. Learning an End-to-End Model

Our goal is to design an approach that can use the infor-
mation from a single image to robustly predict gaze. We
choose to use deep convolutional neural networks (CNNs)
to make effective use of our large-scale dataset. Specifi-
cally, we provide the following as input to the model: (1)
the image of the face together with its location in the im-
age (termed face grid), and (2) the image of the eyes. We
believe that using the model can (1) infer the head pose rela-
tive to the camera, and (2) infer the pose of the eyes relative
to the head. By combining this information, the model can
infer the location of gaze. Based on this information, we

design the overall architecture of our iTracker network, as
shown in Fig. 5. The size of the various layers is similar to
those of AlexNet [20]. Note that we include the eyes as indi-
vidual inputs into the network (even though the face already
contains them) to provide the network with a higher resolu-
tion image of the eye to allow it to identify subtle changes.

In order to best leverage the power of our large-scale
dataset, we design a unified prediction space that allows us
to train a single model using all the data. Note that this is not
trivial since our data was collected using multiple devices at
various orientations. Directly predicting screen coordinates
would not be meaningful beyond a single device in a sin-
gle orientation since the input could change significantly.
Instead, we leverage the fact that the front-facing camera
is typically on the same plane as, and angled perpendicu-
lar to, the screen. As shown in Fig. 6, we predict the dot
location relative to the camera (in centimeters in the x and
y direction). We obtain this through precise measurements
of device screen sizes and camera placement. Finally, we
train the model using a Euclidean loss on the x and y gaze
position. The training parameters are provided in Sec. 5.1.

Further, after training the joint network, we found fine-
tuning the network to each device and orientation helpful.
This was particularly useful in dealing with the unbalanced
data distribution between mobile phones and tablets. We
denote this model as iTracker⇤.
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