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特徴量変換とは
パターン認識における特徴量変換の位置付け

2

画 
像 
デ 
| 
タ

認 
識 
結 
果

特 
徴 
抽 
出

判 
別 
・ 
類 
別 
処 
理

識 
別 
処 
理

PCA・LDA 
 etc

SVM・kNN 
 etc

特 
徴 
変 
換

SIFT・CNN 
 etc

L2-normalization 
 etc

x

kxk2

”猫”



特徴量変換とは
パターン認識における特徴量変換の位置付け

3

画 
像 
デ 
| 
タ

認 
識 
結 
果

特 
徴 
抽 
出

判 
別 
・ 
類 
別 
処 
理

識 
別 
処 
理

特 
徴 
変 
換

ヒューリスティック 理論的



特徴量変換とは
パターン認識における特徴量変換の位置付け

4

画 
像 
デ 
| 
タ

認 
識 
結 
果

特 
徴 
抽 
出

判 
別 
・ 
類 
別 
処 
理

識 
別 
処 
理

特 
徴 
変 
換

データ・ラベル依存汎用的

ヒューリスティック 理論的

特徴変換： • 汎用性（データに依って処理を変えない） 
• 弁別性（特徴の判別力を向上）



画像特徴量
人為的特徴量 = Hand-crafted特徴 

学習的特徴量 = 畳み込みニューラルネット(CNN)特徴
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転移された（pre-trained on ImageNet）CNNモデルを用いる

勾配方向ヒストグラム 
(SIFT)

例：

例：



画像特徴量の変換
人為的特徴量 = Hand-crafted特徴 

学習的特徴量 = 畳み込みニューラルネット(CNN)特徴

6

T. Kobayashi,
“Structured Feature Similarity with Explicit Feature Map”, 

CVPR2016

T. Kobayashi, 
“Learning Additive Kernel For Feature Transformation  

and Its Application to CNN Features”, 
BMVC2016

科研費「パターン認識のための特徴量変換に関する研究」15K00261



人為的特徴量の変換



距離尺度
主にヒストグラム特徴に対する手法が提案されてきた 

-      (カイ２乗) -distance 
- Earth Mover’s distance（EMD） 
- Faster EMD （高速版EMD） 
- SiftDist（SIFTでのEMD） 
- Diffusion distance（ヒストグラム上の拡散過程） 

ここでは特徴の物理的構造に着目した特徴変換を考える
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1. 特徴量のテンソル構造 

2. SSIMに基づく距離尺度

ポイント



特徴量のテンソル構造（１）
画像特徴量は多くの場合にテンソル構造を内包する 

画像（x×y:２次元）から特徴量（１次元）を抽出 
　　３階テンソル（x×y×特徴） 

　　（従来は）ベクトル
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three-way tensor. As mentioned in [11], most image fea-
tures extracted on spatial domain are essentially formulated
in a tensor (or matrix) rather than in a simple vector. The
proposed method exploits the intrinsic feature structure and
reconsiders similarity measurement functions for enhancing
robustness.

3.1. Feature structure

For enhancing robustness to feature perturbations, the
whole feature x is represented by an ensemble of n sub-
features ˆ

x

l

on which the similarity measure is computed
and then summed up as follows:

¯S(x,y) =
nX

l=1

w
l

S(ˆx
l

, ˆy
l

), (5)

where ˆ

x

l

and ˆ

y

l

are the l-th sub-features assigned with the
weight w

l

(

P
n

l=1

w
l

= 1), and S is a similarity function de-
fined in Sec. 3.2. Most of features extracted from the spatial
domain (image) are intrinsically formulated in a three-way
tensor of I⇥J ⇥K, x = {x

ijk

}I,J,K
i=1,j=1,k=1

, where I indi-
cates the dimensionality of local primitive feature and J,K
are the number of spatial bins along x, y-axes; for example,
SIFT [15] consists of 8(I)-dimensional gradient orientation
histogram extracted on 4(J)⇥4(K) spatial grids. Based on
the tensor structure, there are four conceivable ways to de-
fine the form of sub-features as follows (Fig. 1):
1. VECTOR: This is the same as the above-mentioned
naive approach that simply computes SSIM by regarding
the whole feature as only one sub-feature: ¯S = S(x,y).
2. MATRIX: From the viewpoint that the features are ex-
tracted from the spatial domain, the whole feature can be re-
shaped into a two-dimensional matrix of I⇥JK [11]. In this
structure, we define the sub-features along the respective di-
mensions; ˆx

i

={x
ijk

}J,K
j=1,k=1

2 RJK , ˆ

x

jk

={x
ijk

}I
i=1

2
RI . The similarity measure is accordingly formulated as

¯S(x,y) =
IX

i=1

S(ˆx
i

, ˆy
i

)

2I
+

J,KX

j,k=1

S(ˆx
jk

, ˆy
jk

)

2JK
. (6)

Note that each feature element x
ijk

is counted twice in this
similarity measurement.
3. TENSOR: We treat the essential feature structure of
three-way tensor as it is. The sub-features are conse-
quently formulated along the respective three dimensions;
ˆ

x

ij

= {x
ijk

}K
k=1

2 RK , ˆ

x

jk

= {x
ijk

}I
i=1

2 RI , ˆ

x

ik

=
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ijk

}J
j=1

2 RJ . The feature elements in each sub-feature
are consistent along one dimension. The similarity measure
is given by
¯S(x,y) = (7)
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Figure 1. Structural representation of the sub-features in the pro-
posed method. Each block indicates the sub-feature.

Table 1. Comparison of the sub-feature structures in terms of ro-
bustness, showing the ratio of the sub-features affected by one-
element perturbation. The smaller ratio means higher robustness.

Structure Ratio Robustness rank
VECTOR 1

1 4th
MATRIX 2

I+JK

3rd
TENSOR 3

IJ+JK+KI

2nd
ELEMENT 1

IJK

1st

where each feature element x
ijk

is counted three times.
4. ELEMENT: At the minimum case, we set each feature
element x

ijk

as the sub-feature, resulting in the simple sim-
ilarity measure of

¯S(x,y)=
I,J,KX

i,j,k=1

S(x
ijk

, y
ijk

)

IJK
=

I,J,KX

i,j,k=1

M(u(x
ijk

), u(y
ijk

))

IJK

=

I,J,KX

i,j,k=1

1

IJK

2x
ijk

y
ijk

x2

ijk

+ y2
ijk

. (8)

where V and C are removed since the sub-feature is a scalar.
This similarity measurement (8) is closely related to �2

distance
P

i,j,k

1

2

(xijk�yijk)
2

xijk+yijk
, ignoring cross-bin relation-

ships. And, as in the VECTOR structure, the ELEMENT ap-
proach does not take into account the structure of the feature
at all. It is also possible to extend ELEMENT to CUBE by re-
placing point-wise element with a cube of V⇥V⇥V volume;
ˆ

x

ijk

= {x
i

0
j

0
k

0}
ii

0
<i+V, jj

0
<j+V, kk

0
<k+V

2 RV

3

. The
similarity measure is formulated in a manner similar to slid-
ing window approach by

¯S(x,y)=

I�V+1,
J�V+1,
K�V+1X

i,j,k=1

S(ˆx
ijk

, ˆy
ijk

)

(I�V +1)(J�V +1)(K�V +1)

. (9)

Discussion. We can characterize these approaches from the
viewpoint of robustness. Suppose one feature element is
changed such as due to noise. The proposed similarity mea-
sure (5) is based on an ensemble of sub-features. Thus, de-
gree of the effect by the one-element perturbation can be
estimated as the number (ratio) of the sub-feature stained
by it. This is summarized in Table 1. On the assumption
that the local feature dimensionality I is generally larger
than the numbers of spatial bins J and K, the above four
approaches are ranked in terms of the robustness (ratio)

画像の局所領域から 
特徴抽出

３階テンソル 高次元ベクトル

x軸

特徴次元

y軸



特徴量のテンソル構造（２）
テンソル構造を保持した表現を考える 

テンソルの各軸（x,y,特徴）に沿った特徴束を一つの単位と
して、そこでの距離尺度を考える 

• 特徴束を大きくしすぎると、元のベクトル表現 
• 特徴束を小さくしすぎると、特徴要素１個ずつ
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テンソル構造を保持した表現を考える 

テンソルの各軸（x,y,特徴）に沿った特徴束を一つの単位と
して、そこでの距離尺度を考える 

• 特徴束を大きくしすぎると、元のベクトル表現 
• 特徴束を小さくしすぎると、特徴要素１個ずつ
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Figure 1. Structural representation of the sub-features in the pro-
posed method. Each block indicates the sub-feature.

Table 1. Comparison of the sub-feature structures in terms of ro-
bustness, showing the ratio of the sub-features affected by one-
element perturbation. The smaller ratio means higher robustness.

Structure Ratio Robustness rank
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ijk

is counted three times.
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element x
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where V and C are removed since the sub-feature is a scalar.
This similarity measurement (8) is closely related to �2
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Discussion. We can characterize these approaches from the
viewpoint of robustness. Suppose one feature element is
changed such as due to noise. The proposed similarity mea-
sure (5) is based on an ensemble of sub-features. Thus, de-
gree of the effect by the one-element perturbation can be
estimated as the number (ratio) of the sub-feature stained
by it. This is summarized in Table 1. On the assumption
that the local feature dimensionality I is generally larger
than the numbers of spatial bins J and K, the above four
approaches are ranked in terms of the robustness (ratio)
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often analytical and linear. An excellent example is the
Wiener filter for signal deconvolution and denoising
(that also requires second-order stationary assumptions
about the signal and the noise).
6)  Finally, the MSE is widely used simply because it is a con-
vention. Historically, it has been employed extensively for
optimizing and assessing a wide variety of signal processing
applications, including filter design, signal compression,
restoration, denoising, reconstruction, and classification.
Moreover, throughout the literature, competing algorithms
have most often been compared using the MSE/PSNR. It
therefore provides a convenient and extensive standard
against which the MSE/PSNR results of new algorithms may
be compared. This saves time and effort but further propa-
gates the use of the MSE.

SO WHAT’S WRONG WITH THE MSE?
It is apparent that the MSE possesses many favorable properties
for application and analysis, but the perspicacious reader might
point out that a more fundamental issue has been missing.
That is, does the MSE really measure signal fidelity? Given all
of its above-mentioned attractive features, a signal processing
practitioner might opt for the MSE if it proved to be a reason-
able signal fidelity measure. But is that the case?

Unfortunately, the converse appears true when the MSE is
used to predict human perception of image fidelity and quality
[2]–[5]. An illustrative example is shown in Figure 2, where an
original Einstein image is altered by different types of distortion:
a contrast stretch, mean luminance shift, contamination by
additive white Gaussian noise, impulsive noise distortion, JPEG
compression, blur, spatial scaling, spatial shift, and rotation. In

[FIG2] Comparison of image fidelity measures for “Einstein” image altered with different types of distortions. (a) Reference image.
(b) Mean contrast stretch. (c) Luminance shift. (d) Gaussian noise contamination. (e) Impulsive noise contamination. (f) JPEG
compression. (g) Blurring. (h) Spatial scaling (zooming out). (i) Spatial shift (to the right). (j) Spatial shift (to the left). (k) Rotation
(counter-clockwise). (l) Rotation (clockwise).
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MSE=309, SSIM=0.987
CW-SSIM=1.000

MSE=306, SSIM=0.928
CW-SSIM=0.938

MSE=309, SSIM=0.580
CW-SSIM=0.633

MSE=871, SSIM=0.404
CW-SSIM=0.933

MSE=694, SSIM=0.505
CW-SSIM=0.925

MSE=590, SSIM=0.549
CW-SSIM=0.917

MSE=0, SSIM=1
CW-SSIM=1

MSE=313, SSIM=0.730
CW-SSIM=0.811

MSE=309, SSIM=0.576
CW-SSIM=0.814

MSE=308, SSIM=0.641
CW-SSIM=0.603

 MSE=873, SSIM=0.399
CW-SSIM=0.933

MSE=577, SSIM=0.551
CW-SSIM=0.916
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         Z. Wang and A. C. Bovik. Mean squared error: love it or  
leave it? - a new look at signal fidelity measures. IEEE  
Signal Processing Magazine, 26(1):98–117, January 2009 
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as VECTOR<MATRIX<TENSOR<ELEMENT. By consid-
ering that the ELEMENT approach (8) lacks structural infor-
mation, the TENSOR one (7) is expected to work better.

3.2. Similarity measure

The original SSIM (1) is defined as the product of the
three types of similarity function regarding mean M, stan-
dard deviation V and correlation C. The joint product is
sensitive to any distortion of these statistics, which is favor-
able for image assessment but lacks robustness in feature
matching. From the perspective of robustness, we have the
following variants of SSIM measurement for S in (5):

S
org

= M⇥ V ⇥ C (original) (10)
S
+µ

= wMM+ wC(V ⇥ C) (separating M) (11)
S
+�

= wVV + wC(M⇥ C) (separating V) (12)
S
+c

= wCC + wM(M⇥ V) (separating C) (13)
S
add

= wMM+ wVV + wCC (fully additive), (14)

where we introduce weights to balance the terms of addi-
tive forms. Note that (11) is the same configuration as the
Euclidean one (4) by pushing out the similarity M of mean
into the additive term.

Though the weights might be optimized by MKL [20],
in this study, they are determined based on the value range
of the similarity functions;

M2
⇢

[ 0, +1] : non-neg. feat.
[-1,+1] : real feat. , V2 [0,+1], C2 [�1,+1],

(15)
where M takes a different range according to whether
u(x) 2 [0,+1] or [�1,+1]. The weights can be set
so as to make the similarity measures consistent in terms
of value range. That is, in the case of non-negative fea-
tures, (wM, wV , wC) = (2, 2, 1), while for real-valued fea-
tures, (wM, wV , wC) = (1, 2, 1)1. Note that those weights
are finally normalized to ensure S(ˆx

l

, ˆx
l

) = 1, resulting in
¯S(x,x)=1 in (5); they are divided by wM + wV + wC .
Discussion. As to the robustness, if the perturbation ap-
pears independently in the three terms M,V and C, the fully
additive form S

add

(14) maximally suppresses the influence
on the final similarity measure based on the similar discus-
sion in Table 1. As a result, we recommend the fully addi-
tive similarity measurement S

add

(14) in the TENSOR struc-
ture (7) which increases robustness by exploiting the addi-
tive formulation. Besides, the additive form has a merit of
reducing dimensionality in explicit feature map (Sec. 3.3).

3.3. Explicit feature map

As in the previous methods [16, 13, 17], the proposed
similarity measurement basically operates on pair-wise fea-

1In real-valued features, M, 2V�1 and C have the identical value rage
of [�1,+1], and the constant bias in 2V � 1 is inessential and removed.

tures {x,y} and, empirically speaking, such pair-wise op-
eration requires significant computation time for plenty of
samples. In contrast, L

2

metric can be efficiently computed
by taking advantage of matrix multiplication such as via
BLAS library. Especially for matching features, the fast
computation of similarity measure is highly demanded. To
reduce the computation time, we provide the explicit feature
map g(x)2RDg such that ¯S(x,y)⇡g(x)

>
g(y) where the

similarity computation results in simple matrix multiplica-
tion which is efficiently performed as in L

2

metric.
We first consider to decompose the similarity measure-

ment function ¯S in a functional form.

Theorem 1. For the proposed method of any similarity
measure (10-14) under any structure (6-9), there exists
the explicit functional map g(�;x) such that ¯S(x,y) =R1
�1 g(�;x)⇤g(�;y)d�.

The proposed similarity ¯S (5) of any configuration
(Sec. 3.1, 3.2) is composed of addition and/or multiplica-
tion of M,V and C2. And, C(x,y) (3) is the dot product
of the vectors gC(x) =

x�u(x)
kx�u(x)k2

and gC(y) =
y�u(y)

ky�u(y)k2
.

Therefore, the only issue for proving Theorem 1 is to prove
that k(a, b) = 2ab

a

2
+b

2 used in M and V has the explicit func-
tional map.

Lemma 2. There exists the explicit functional map
g
k

(�; a) = g̃
k

(�; a) � b(a), where b(a) 2 R, such that
k(a, b) =

R1
�1 g̃

k

(�; a)⇤g̃
k

(�; b)d�+ b(a)b(b).

Proof. We show the concrete form of g
k

by following the
approach [25] of the explicit map for �2 kernel.

In the case of ab 6= 0,

k(a, b)=
2sgn(ab)��a
b

��
+

�� b
a

��=
2sgn(ab)
e�!

+ e!
= sgn(ab)sech(!), (16)

where ! = log

�� b
a

�� and sgn(·) is the sign function. Based
on the Fourier expansion of sech, k is further rewritten as

k(a, b) = sgn(ab)sech(!) = sgn(ab)
Z 1

�1
e�i!�(�)d�

=

Z 1

�1
[sgn(a)e�i� log |a|

p
(�)]⇤[sgn(b)e�i� log |b|

p
(�)]d�,

(17)

where (�) is the inverse Fourier transform of sech(!),
(�) = 1

2

sech(⇡�
2

). In the case of ab = 0, 2ab

a

2
+b

2 = [[a =

0]][[b = 0]] where [[·]] is the Iverson bracket that equals to 1
if the condition in the brackets is satisfied and 0 otherwise.

2In the explicit mapping, + and ⇥ in (5, 10-14) are replaced with �
(direct sum) and ⌦ (direct product), respectively. And note that in the
mapping the square root is applied to the weights w

l

, wM, wV , wC .
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a novel similarity metric of the features that have struc-
ture beyond one-way array (vector), not limited to a non-
negative histogram form unlike the previous methods. Re-
cent features are frequently defined in a structured array
form [11, 13], though most methods unfold them into a
vector; for example, local primitive features are extracted
on the two-dimensional spatial positions (grids) to form a
three-way tensor as particularly found in local descriptors
such as SIFT [15] and SURF [1]. We effectively incorpo-
rate such feature structure into similarity measurement for
enhancing robustness, which is demanded in feature match-
ing, with retaining discriminative power of SSIM. In ad-
dition, we provide the explicit feature map in which the
proposed similarity is embedded as a dot product. An or-
dinary similarity measurement operates respective pairs of
features, requiring significant computation time. The ex-
plicit mapping enables us to efficiently compute the pro-
posed similarity measure by dot products which result in
matrix multiplication performed in a computationally effi-
cient way such as by the BLAS library. Furthermore, the
explicit feature map is regarded as feature transformation
into an effective vector form to which linear classifiers are
directly applied. Thus, the proposed method works for mea-
suring feature similarity as well as transforming features.

2. SSIM for image quality assessment

We review the formulation of SSIM [27, 26] in image
quality assessment and mention its applicability to (generic)
feature matching. Given a reference image I

x

, the target
(distorted) image I

y

is assessed in terms of quality by mea-
suring its fidelity to I

x

. The SSIM operates on an image
patch pair of x and y 2 RD drawn from I

x

and I
y

to as-
sign the following similarity measure S:

S(x,y)=M(x,y)V(x,y) C(x,y), (1)
M(x,y)=k(u(x), u(y)), V(x,y)=k(q(x), q(y)), (2)

C(x,y)= (x�u(x))>(y�u(y))

kx�u(x)k
2

ky�u(y)k
2

, k(a, b)=
2ab

a2 + b2
, (3)

where u(x) and q(x) are functions to compute mean and
standard deviation of pixel values in patches x and y, re-
spectively, and k(a, b) is a function to measure similarity
between two scalars a and b. A similarity between two im-
ages I

x

and I
y

is then computed by averaging the above
patch-based SSIM scores S over a whole image.

Three functions M,V and C in (2, 3) measure similar-
ities regarding luminances, contrasts and structures in the
patches, respectively. The structural similarity C(x,y) ex-
tracts pixel relationship, correlation coefficient, as in cross-
bin distance. It, however, is too robust in pixel value
changes to give favorable similarity measure since it always
produces maximum similarity score (i.e., 1) for affine rela-
tionship between pixel values, y

i

= ↵x
i

+ �, (↵ > 0). To

compensate it, the other two types of similarities M and V
are complementarily introduced to capture changes of lu-
minance (bias �) and contrast (scaling ↵). These measure-
ments are related to a human perceptual system [26].

On the other hand, the dot product, a simple similarity
measure in the Euclidean space, is decomposed into

x

>
y = D {q(x)q(y)C(x,y) + u(x)u(y)} , (4)

which is different from, but related to (1). Namely, the lu-
minance and contrast similarities degenerate into the simple
products, u(x)u(y) and q(x)q(y), respectively. Though
the luminance one is separated into an additive form, such
formulation is also found in SSIM variant [3]. Thus, based
on the comparison of (1) and (4), it turns out that the success
of SSIM is largely due to the function k(a, b) = 2ab

a

2
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2 .
k(a, b) can be rewritten by using ✓ = arctan(
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) as
k(a, b) = 2ab
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4

)} which measures a dif-
ference between a and b based on the ratio b

a

. Thereby, the
difference |a� b| contributes to the similarity k(a, b) dif-
ferently according to r=

p
a2 + b2; k(a, b) is vulnerable to

|a�b| on smaller r while it is insensitive on larger r. Even
though such functionality is inspired from the human per-
ceptual process [26], it is also compatible with generic fea-
ture similarity. It is recently shown that feature transform by
squared root [22] and log [10] successfully improves per-
formance via the similar functionality as above, increasing
resolution in smaller feature values while suppressing it in
larger ones; in particular, the log transform is closely re-
lated to the ratio b

a

. Thus, the function k is considered to be
useful for establishing effective feature similarity measure.

3. Structured feature similarity

Based on the above analysis of the SSIM formulation,
we propose a method to measure similarity for matching
features, such as SIFT [15], by leveraging the SSIM mea-
sure. The straightforward way to incorporate SSIM is to
directly feed feature vectors x and y into (1). Such naive
method, however, does not work well, being inferior even
to L

2

metric as will be shown in Fig. 3. This is because
the feature matching is different from image quality assess-
ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a
histogram form in the features, our assumption is that the
features are formulated in a structured form, for example,

a novel similarity metric of the features that have struc-
ture beyond one-way array (vector), not limited to a non-
negative histogram form unlike the previous methods. Re-
cent features are frequently defined in a structured array
form [11, 13], though most methods unfold them into a
vector; for example, local primitive features are extracted
on the two-dimensional spatial positions (grids) to form a
three-way tensor as particularly found in local descriptors
such as SIFT [15] and SURF [1]. We effectively incorpo-
rate such feature structure into similarity measurement for
enhancing robustness, which is demanded in feature match-
ing, with retaining discriminative power of SSIM. In ad-
dition, we provide the explicit feature map in which the
proposed similarity is embedded as a dot product. An or-
dinary similarity measurement operates respective pairs of
features, requiring significant computation time. The ex-
plicit mapping enables us to efficiently compute the pro-
posed similarity measure by dot products which result in
matrix multiplication performed in a computationally effi-
cient way such as by the BLAS library. Furthermore, the
explicit feature map is regarded as feature transformation
into an effective vector form to which linear classifiers are
directly applied. Thus, the proposed method works for mea-
suring feature similarity as well as transforming features.

2. SSIM for image quality assessment

We review the formulation of SSIM [27, 26] in image
quality assessment and mention its applicability to (generic)
feature matching. Given a reference image I
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, the target
(distorted) image I

y

is assessed in terms of quality by mea-
suring its fidelity to I
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patch pair of x and y 2 RD drawn from I
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, k(a, b)=
2ab
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where u(x) and q(x) are functions to compute mean and
standard deviation of pixel values in patches x and y, re-
spectively, and k(a, b) is a function to measure similarity
between two scalars a and b. A similarity between two im-
ages I

x

and I
y

is then computed by averaging the above
patch-based SSIM scores S over a whole image.

Three functions M,V and C in (2, 3) measure similar-
ities regarding luminances, contrasts and structures in the
patches, respectively. The structural similarity C(x,y) ex-
tracts pixel relationship, correlation coefficient, as in cross-
bin distance. It, however, is too robust in pixel value
changes to give favorable similarity measure since it always
produces maximum similarity score (i.e., 1) for affine rela-
tionship between pixel values, y
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+ �, (↵ > 0). To

compensate it, the other two types of similarities M and V
are complementarily introduced to capture changes of lu-
minance (bias �) and contrast (scaling ↵). These measure-
ments are related to a human perceptual system [26].

On the other hand, the dot product, a simple similarity
measure in the Euclidean space, is decomposed into
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y = D {q(x)q(y)C(x,y) + u(x)u(y)} , (4)

which is different from, but related to (1). Namely, the lu-
minance and contrast similarities degenerate into the simple
products, u(x)u(y) and q(x)q(y), respectively. Though
the luminance one is separated into an additive form, such
formulation is also found in SSIM variant [3]. Thus, based
on the comparison of (1) and (4), it turns out that the success
of SSIM is largely due to the function k(a, b) = 2ab
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ference between a and b based on the ratio b
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. Thereby, the
difference |a� b| contributes to the similarity k(a, b) dif-
ferently according to r=
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a2 + b2; k(a, b) is vulnerable to

|a�b| on smaller r while it is insensitive on larger r. Even
though such functionality is inspired from the human per-
ceptual process [26], it is also compatible with generic fea-
ture similarity. It is recently shown that feature transform by
squared root [22] and log [10] successfully improves per-
formance via the similar functionality as above, increasing
resolution in smaller feature values while suppressing it in
larger ones; in particular, the log transform is closely re-
lated to the ratio b
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. Thus, the function k is considered to be
useful for establishing effective feature similarity measure.

3. Structured feature similarity

Based on the above analysis of the SSIM formulation,
we propose a method to measure similarity for matching
features, such as SIFT [15], by leveraging the SSIM mea-
sure. The straightforward way to incorporate SSIM is to
directly feed feature vectors x and y into (1). Such naive
method, however, does not work well, being inferior even
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metric as will be shown in Fig. 3. This is because
the feature matching is different from image quality assess-
ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a
histogram form in the features, our assumption is that the
features are formulated in a structured form, for example,

a novel similarity metric of the features that have struc-
ture beyond one-way array (vector), not limited to a non-
negative histogram form unlike the previous methods. Re-
cent features are frequently defined in a structured array
form [11, 13], though most methods unfold them into a
vector; for example, local primitive features are extracted
on the two-dimensional spatial positions (grids) to form a
three-way tensor as particularly found in local descriptors
such as SIFT [15] and SURF [1]. We effectively incorpo-
rate such feature structure into similarity measurement for
enhancing robustness, which is demanded in feature match-
ing, with retaining discriminative power of SSIM. In ad-
dition, we provide the explicit feature map in which the
proposed similarity is embedded as a dot product. An or-
dinary similarity measurement operates respective pairs of
features, requiring significant computation time. The ex-
plicit mapping enables us to efficiently compute the pro-
posed similarity measure by dot products which result in
matrix multiplication performed in a computationally effi-
cient way such as by the BLAS library. Furthermore, the
explicit feature map is regarded as feature transformation
into an effective vector form to which linear classifiers are
directly applied. Thus, the proposed method works for mea-
suring feature similarity as well as transforming features.

2. SSIM for image quality assessment

We review the formulation of SSIM [27, 26] in image
quality assessment and mention its applicability to (generic)
feature matching. Given a reference image I

x

, the target
(distorted) image I

y

is assessed in terms of quality by mea-
suring its fidelity to I

x

. The SSIM operates on an image
patch pair of x and y 2 RD drawn from I
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and I
y

to as-
sign the following similarity measure S:
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, k(a, b)=
2ab

a2 + b2
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where u(x) and q(x) are functions to compute mean and
standard deviation of pixel values in patches x and y, re-
spectively, and k(a, b) is a function to measure similarity
between two scalars a and b. A similarity between two im-
ages I

x

and I
y

is then computed by averaging the above
patch-based SSIM scores S over a whole image.

Three functions M,V and C in (2, 3) measure similar-
ities regarding luminances, contrasts and structures in the
patches, respectively. The structural similarity C(x,y) ex-
tracts pixel relationship, correlation coefficient, as in cross-
bin distance. It, however, is too robust in pixel value
changes to give favorable similarity measure since it always
produces maximum similarity score (i.e., 1) for affine rela-
tionship between pixel values, y
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compensate it, the other two types of similarities M and V
are complementarily introduced to capture changes of lu-
minance (bias �) and contrast (scaling ↵). These measure-
ments are related to a human perceptual system [26].

On the other hand, the dot product, a simple similarity
measure in the Euclidean space, is decomposed into
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y = D {q(x)q(y)C(x,y) + u(x)u(y)} , (4)

which is different from, but related to (1). Namely, the lu-
minance and contrast similarities degenerate into the simple
products, u(x)u(y) and q(x)q(y), respectively. Though
the luminance one is separated into an additive form, such
formulation is also found in SSIM variant [3]. Thus, based
on the comparison of (1) and (4), it turns out that the success
of SSIM is largely due to the function k(a, b) = 2ab
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ferently according to r=
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|a�b| on smaller r while it is insensitive on larger r. Even
though such functionality is inspired from the human per-
ceptual process [26], it is also compatible with generic fea-
ture similarity. It is recently shown that feature transform by
squared root [22] and log [10] successfully improves per-
formance via the similar functionality as above, increasing
resolution in smaller feature values while suppressing it in
larger ones; in particular, the log transform is closely re-
lated to the ratio b
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. Thus, the function k is considered to be
useful for establishing effective feature similarity measure.

3. Structured feature similarity

Based on the above analysis of the SSIM formulation,
we propose a method to measure similarity for matching
features, such as SIFT [15], by leveraging the SSIM mea-
sure. The straightforward way to incorporate SSIM is to
directly feed feature vectors x and y into (1). Such naive
method, however, does not work well, being inferior even
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metric as will be shown in Fig. 3. This is because
the feature matching is different from image quality assess-
ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a
histogram form in the features, our assumption is that the
features are formulated in a structured form, for example,
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directly applied. Thus, the proposed method works for mea-
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standard deviation of pixel values in patches x and y, re-
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between two scalars a and b. A similarity between two im-
ages I
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is then computed by averaging the above
patch-based SSIM scores S over a whole image.

Three functions M,V and C in (2, 3) measure similar-
ities regarding luminances, contrasts and structures in the
patches, respectively. The structural similarity C(x,y) ex-
tracts pixel relationship, correlation coefficient, as in cross-
bin distance. It, however, is too robust in pixel value
changes to give favorable similarity measure since it always
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though such functionality is inspired from the human per-
ceptual process [26], it is also compatible with generic fea-
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larger ones; in particular, the log transform is closely re-
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. Thus, the function k is considered to be
useful for establishing effective feature similarity measure.
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Based on the above analysis of the SSIM formulation,
we propose a method to measure similarity for matching
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sure. The straightforward way to incorporate SSIM is to
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metric as will be shown in Fig. 3. This is because
the feature matching is different from image quality assess-
ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a
histogram form in the features, our assumption is that the
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構造パターン
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(x,y) = M(x,y)⇥ V(x,y)⇥ C(x,y)

平均値の類似度 標準偏差の類似度

明るさ コントラスト

where

as VECTOR<MATRIX<TENSOR<ELEMENT. By consid-
ering that the ELEMENT approach (8) lacks structural infor-
mation, the TENSOR one (7) is expected to work better.

3.2. Similarity measure

The original SSIM (1) is defined as the product of the
three types of similarity function regarding mean M, stan-
dard deviation V and correlation C. The joint product is
sensitive to any distortion of these statistics, which is favor-
able for image assessment but lacks robustness in feature
matching. From the perspective of robustness, we have the
following variants of SSIM measurement for S in (5):

S
org

= M⇥ V ⇥ C (original) (10)
S
+µ

= wMM+ wC(V ⇥ C) (separating M) (11)
S
+�

= wVV + wC(M⇥ C) (separating V) (12)
S
+c

= wCC + wM(M⇥ V) (separating C) (13)
S
add

= wMM+ wVV + wCC (fully additive), (14)

where we introduce weights to balance the terms of addi-
tive forms. Note that (11) is the same configuration as the
Euclidean one (4) by pushing out the similarity M of mean
into the additive term.

Though the weights might be optimized by MKL [20],
in this study, they are determined based on the value range
of the similarity functions;

M2
⇢

[ 0, +1] : non-neg. feat.
[-1,+1] : real feat. , V2 [0,+1], C2 [�1,+1],

(15)
where M takes a different range according to whether
u(x) 2 [0,+1] or [�1,+1]. The weights can be set
so as to make the similarity measures consistent in terms
of value range. That is, in the case of non-negative fea-
tures, (wM, wV , wC) = (2, 2, 1), while for real-valued fea-
tures, (wM, wV , wC) = (1, 2, 1)1. Note that those weights
are finally normalized to ensure S(ˆx

l

, ˆx
l

) = 1, resulting in
¯S(x,x)=1 in (5); they are divided by wM + wV + wC .
Discussion. As to the robustness, if the perturbation ap-
pears independently in the three terms M,V and C, the fully
additive form S

add

(14) maximally suppresses the influence
on the final similarity measure based on the similar discus-
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>
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metric.
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where (�) is the inverse Fourier transform of sech(!),
(�) = 1

2

sech(⇡�
2

). In the case of ab = 0, 2ab

a

2
+b

2 = [[a =

0]][[b = 0]] where [[·]] is the Iverson bracket that equals to 1
if the condition in the brackets is satisfied and 0 otherwise.

2In the explicit mapping, + and ⇥ in (5, 10-14) are replaced with �
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a novel similarity metric of the features that have struc-
ture beyond one-way array (vector), not limited to a non-
negative histogram form unlike the previous methods. Re-
cent features are frequently defined in a structured array
form [11, 13], though most methods unfold them into a
vector; for example, local primitive features are extracted
on the two-dimensional spatial positions (grids) to form a
three-way tensor as particularly found in local descriptors
such as SIFT [15] and SURF [1]. We effectively incorpo-
rate such feature structure into similarity measurement for
enhancing robustness, which is demanded in feature match-
ing, with retaining discriminative power of SSIM. In ad-
dition, we provide the explicit feature map in which the
proposed similarity is embedded as a dot product. An or-
dinary similarity measurement operates respective pairs of
features, requiring significant computation time. The ex-
plicit mapping enables us to efficiently compute the pro-
posed similarity measure by dot products which result in
matrix multiplication performed in a computationally effi-
cient way such as by the BLAS library. Furthermore, the
explicit feature map is regarded as feature transformation
into an effective vector form to which linear classifiers are
directly applied. Thus, the proposed method works for mea-
suring feature similarity as well as transforming features.

2. SSIM for image quality assessment

We review the formulation of SSIM [27, 26] in image
quality assessment and mention its applicability to (generic)
feature matching. Given a reference image I

x

, the target
(distorted) image I

y

is assessed in terms of quality by mea-
suring its fidelity to I

x

. The SSIM operates on an image
patch pair of x and y 2 RD drawn from I

x

and I
y

to as-
sign the following similarity measure S:

S(x,y)=M(x,y)V(x,y) C(x,y), (1)
M(x,y)=k(u(x), u(y)), V(x,y)=k(q(x), q(y)), (2)

C(x,y)= (x�u(x))>(y�u(y))

kx�u(x)k
2

ky�u(y)k
2

, k(a, b)=
2ab

a2 + b2
, (3)

where u(x) and q(x) are functions to compute mean and
standard deviation of pixel values in patches x and y, re-
spectively, and k(a, b) is a function to measure similarity
between two scalars a and b. A similarity between two im-
ages I

x

and I
y

is then computed by averaging the above
patch-based SSIM scores S over a whole image.

Three functions M,V and C in (2, 3) measure similar-
ities regarding luminances, contrasts and structures in the
patches, respectively. The structural similarity C(x,y) ex-
tracts pixel relationship, correlation coefficient, as in cross-
bin distance. It, however, is too robust in pixel value
changes to give favorable similarity measure since it always
produces maximum similarity score (i.e., 1) for affine rela-
tionship between pixel values, y

i

= ↵x
i

+ �, (↵ > 0). To

compensate it, the other two types of similarities M and V
are complementarily introduced to capture changes of lu-
minance (bias �) and contrast (scaling ↵). These measure-
ments are related to a human perceptual system [26].

On the other hand, the dot product, a simple similarity
measure in the Euclidean space, is decomposed into

x

>
y = D {q(x)q(y)C(x,y) + u(x)u(y)} , (4)

which is different from, but related to (1). Namely, the lu-
minance and contrast similarities degenerate into the simple
products, u(x)u(y) and q(x)q(y), respectively. Though
the luminance one is separated into an additive form, such
formulation is also found in SSIM variant [3]. Thus, based
on the comparison of (1) and (4), it turns out that the success
of SSIM is largely due to the function k(a, b) = 2ab

a

2
+b

2 .
k(a, b) can be rewritten by using ✓ = arctan(

b

a

) as
k(a, b) = 2ab

a

2
+b

2 = cos{2(✓ � ⇡

4

)} which measures a dif-
ference between a and b based on the ratio b

a

. Thereby, the
difference |a� b| contributes to the similarity k(a, b) dif-
ferently according to r=

p
a2 + b2; k(a, b) is vulnerable to

|a�b| on smaller r while it is insensitive on larger r. Even
though such functionality is inspired from the human per-
ceptual process [26], it is also compatible with generic fea-
ture similarity. It is recently shown that feature transform by
squared root [22] and log [10] successfully improves per-
formance via the similar functionality as above, increasing
resolution in smaller feature values while suppressing it in
larger ones; in particular, the log transform is closely re-
lated to the ratio b

a

. Thus, the function k is considered to be
useful for establishing effective feature similarity measure.

3. Structured feature similarity

Based on the above analysis of the SSIM formulation,
we propose a method to measure similarity for matching
features, such as SIFT [15], by leveraging the SSIM mea-
sure. The straightforward way to incorporate SSIM is to
directly feed feature vectors x and y into (1). Such naive
method, however, does not work well, being inferior even
to L

2

metric as will be shown in Fig. 3. This is because
the feature matching is different from image quality assess-
ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a
histogram form in the features, our assumption is that the
features are formulated in a structured form, for example,
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matrix multiplication performed in a computationally effi-
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into an effective vector form to which linear classifiers are
directly applied. Thus, the proposed method works for mea-
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We review the formulation of SSIM [27, 26] in image
quality assessment and mention its applicability to (generic)
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where u(x) and q(x) are functions to compute mean and
standard deviation of pixel values in patches x and y, re-
spectively, and k(a, b) is a function to measure similarity
between two scalars a and b. A similarity between two im-
ages I

x

and I
y

is then computed by averaging the above
patch-based SSIM scores S over a whole image.

Three functions M,V and C in (2, 3) measure similar-
ities regarding luminances, contrasts and structures in the
patches, respectively. The structural similarity C(x,y) ex-
tracts pixel relationship, correlation coefficient, as in cross-
bin distance. It, however, is too robust in pixel value
changes to give favorable similarity measure since it always
produces maximum similarity score (i.e., 1) for affine rela-
tionship between pixel values, y
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+ �, (↵ > 0). To

compensate it, the other two types of similarities M and V
are complementarily introduced to capture changes of lu-
minance (bias �) and contrast (scaling ↵). These measure-
ments are related to a human perceptual system [26].

On the other hand, the dot product, a simple similarity
measure in the Euclidean space, is decomposed into
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which is different from, but related to (1). Namely, the lu-
minance and contrast similarities degenerate into the simple
products, u(x)u(y) and q(x)q(y), respectively. Though
the luminance one is separated into an additive form, such
formulation is also found in SSIM variant [3]. Thus, based
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metric as will be shown in Fig. 3. This is because
the feature matching is different from image quality assess-
ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.
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is then computed by averaging the above
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Three functions M,V and C in (2, 3) measure similar-
ities regarding luminances, contrasts and structures in the
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tracts pixel relationship, correlation coefficient, as in cross-
bin distance. It, however, is too robust in pixel value
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ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a
histogram form in the features, our assumption is that the
features are formulated in a structured form, for example,
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a novel similarity metric of the features that have struc-
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posed similarity measure by dot products which result in
matrix multiplication performed in a computationally effi-
cient way such as by the BLAS library. Furthermore, the
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. Thus, the function k is considered to be
useful for establishing effective feature similarity measure.

3. Structured feature similarity

Based on the above analysis of the SSIM formulation,
we propose a method to measure similarity for matching
features, such as SIFT [15], by leveraging the SSIM mea-
sure. The straightforward way to incorporate SSIM is to
directly feed feature vectors x and y into (1). Such naive
method, however, does not work well, being inferior even
to L
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metric as will be shown in Fig. 3. This is because
the feature matching is different from image quality assess-
ment in terms of robustness, though both of them are built
on similarity measurement. The SSIM has been success-
fully applied to measure degree of distortion in the target
image by effectively characterizing subtle image changes.
In contrast, the feature matching requires to discriminate
the target itself while being highly robust to those distor-
tions. Thus, we propose a similarity measure of features so
as to enhance robustness which SSIM lacks, with retaining
the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a
histogram form in the features, our assumption is that the
features are formulated in a structured form, for example,

k

as VECTOR<MATRIX<TENSOR<ELEMENT. By consid-
ering that the ELEMENT approach (8) lacks structural infor-
mation, the TENSOR one (7) is expected to work better.

3.2. Similarity measure
The original SSIM (1) is defined as the product of the

three types of similarity function regarding mean M, stan-
dard deviation V and correlation C. The joint product is
sensitive to any distortion of these statistics, which is favor-
able for image assessment but lacks robustness in feature
matching. From the perspective of robustness, we have the
following variants of SSIM measurement for S in (5):

Sorg = M× V × C (original) (10)
S+µ = wMM+ wC(V × C) (separating M) (11)
S+σ = wVV + wC(M× C) (separating V) (12)
S+c = wCC + wM(M× V) (separating C) (13)
Sadd = wMM+ wVV + wCC (fully additive), (14)

where we introduce weights to balance the terms of addi-
tive forms. Note that (11) is the same configuration as the
Euclidean one (4) by pushing out the similarity M of mean
into the additive term.

Though the weights might be optimized by MKL [20],
in this study, they are determined based on the value range
of the similarity functions;

M∈
{

[ 0, +1] : non-neg. feat.
[-1,+1] : real feat. , V∈ [0,+1], C∈ [−1,+1],

(15)
where M takes a different range according to whether
u(x) ∈ [0,+∞] or [−∞,+∞]. The weights can be set
so as to make the similarity measures consistent in terms
of value range. That is, in the case of non-negative fea-
tures, (wM, wV , wC) = (2, 2, 1), while for real-valued fea-
tures, (wM, wV , wC) = (1, 2, 1)1. Note that those weights
are finally normalized to ensure S(x̂l, x̂l) = 1, resulting in
S̄(x,x)=1 in (5); they are divided by wM + wV + wC .
Discussion. As to the robustness, if the perturbation ap-
pears independently in the three terms M,V and C, the fully
additive form Sadd (14) maximally suppresses the influence
on the final similarity measure based on the similar discus-
sion in Table 1. As a result, we recommend the fully addi-
tive similarity measurement Sadd (14) in the TENSOR struc-
ture (7) which increases robustness by exploiting the addi-
tive formulation. Besides, the additive form has a merit of
reducing dimensionality in explicit feature map (Sec. 3.3).

3.3. Explicit feature map
As in the previous methods [16, 13, 17], the proposed

similarity measurement basically operates on pair-wise fea-
1In real-valued features, M, 2V−1 and C have the identical value rage

of [−1,+1], and the constant bias in 2V − 1 is inessential and removed.

tures {x,y} and, empirically speaking, such pair-wise op-
eration requires significant computation time for plenty of
samples. In contrast, L2 metric can be efficiently computed
by taking advantage of matrix multiplication such as via
BLAS library. Especially for matching features, the fast
computation of similarity measure is highly demanded. To
reduce the computation time, we provide the explicit feature
map g(x)∈RDg such that S̄(x,y)≈g(x)⊤g(y) where the
similarity computation results in simple matrix multiplica-
tion which is efficiently performed as in L2 metric.

We first consider to decompose the similarity measure-
ment function S̄ in a functional form.

Theorem 1. For the proposed method of any similarity
measure (10-14) under any structure (6-9), there exists
the explicit functional map g(λ;x) such that S̄(x,y) =∫∞
−∞ g(λ;x)∗g(λ;y)dλ.

The proposed similarity S̄ (5) of any configuration
(Sec. 3.1, 3.2) is composed of addition and/or multiplica-
tion of M,V and C2. And, C(x,y) (3) is the dot product
of the vectors gC(x) =

x−u(x)
∥x−u(x)∥2 and gC(y) =

y−u(y)
∥y−u(y)∥2 .

Therefore, the only issue for proving Theorem 1 is to prove
that k(a, b) = 2ab

a2+b2 used in M and V has the explicit func-
tional map.

Lemma 2. There exists the explicit functional map
gk(λ; a) = g̃k(λ; a) ⊕ b(a), where b(a) ∈ R, such that
k(a, b) =

∫∞
−∞ g̃k(λ; a)∗g̃k(λ; b)dλ+ b(a)b(b).

Proof. We show the concrete form of gk by following the
approach [25] of the explicit map for χ2 kernel.

In the case of ab ̸= 0,

k(a, b)=
2sgn(ab)∣∣a
b

∣∣+
∣∣ b
a

∣∣=
2sgn(ab)
e−ω + eω

= sgn(ab)sech(ω), (16)

where ω = log
∣∣ b
a

∣∣ and sgn(·) is the sign function. Based
on the Fourier expansion of sech, k is further rewritten as

k(a, b) = sgn(ab)sech(ω) = sgn(ab)
∫ ∞

−∞
e−iωλκ(λ)dλ

=

∫ ∞

−∞
[sgn(a)e−iλ log |a|

√
κ(λ)]∗[sgn(b)e−iλ log |b|

√
κ(λ)]dλ,

(17)

where κ(λ) is the inverse Fourier transform of sech(ω),
κ(λ) = 1

2 sech(πλ2 ). In the case of ab = 0, 2ab
a2+b2 = [[a =

0]][[b = 0]] where [[·]] is the Iverson bracket that equals to 1
if the condition in the brackets is satisfied and 0 otherwise.

2In the explicit mapping, + and × in (5, 10-14) are replaced with ⊕
(direct sum) and ⊗ (direct product), respectively. And note that in the
mapping the square root is applied to the weights wl, wM, wV , wC .
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ment function S̄ in a functional form.

Theorem 1. For the proposed method of any similarity
measure (10-14) under any structure (6-9), there exists
the explicit functional map g(λ;x) such that S̄(x,y) =∫∞
−∞ g(λ;x)∗g(λ;y)dλ.

The proposed similarity S̄ (5) of any configuration
(Sec. 3.1, 3.2) is composed of addition and/or multiplica-
tion of M,V and C2. And, C(x,y) (3) is the dot product
of the vectors gC(x) =

x−u(x)
∥x−u(x)∥2 and gC(y) =

y−u(y)
∥y−u(y)∥2 .

Therefore, the only issue for proving Theorem 1 is to prove
that k(a, b) = 2ab
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where
関数sechのフーリエ展開に基いて

Therefore, we can obtain

g̃k(λ; a) = sgn(a)e−iλ log |a|

√
1

2
sech

(
πλ

2

)
, (18)

b(a) = [[a = 0]].

By using Lemma 2, we can give the explicit functional
maps of M and V to finally prove Theorem 1. And,
the fixed dimensional explicit feature map g(x) ∈ RDg

is obtained through approximating the function gk(λ; a)
in a vector form. According to [25], g̃k(λ; a) is approxi-
mated by means of D̃k basis points in λ, resulting in D̃k-
dimensional vector, of which direct sum with b(a) forms
Dk = D̃k+1-dimensional vector gk(a). The explicit maps
of M and V are thus simply obtained by gk(u(x̂l)) and
gk(q(x̂l)), respectively, and as presented above, C has the
explicit map gC(x̂l) =

x̂l−u(x̂l)
∥x̂l−u(x̂l)∥2 of which dimensional-

ity is the same as that of the sub-feature x̂l. For example,
the dimensionality of the explicit map g(x) of the proposed
similarity, Sadd in TENSOR structure, is 3IJK+2(D̃k+
1)(IJ+JK+KI) where D̃k is the only parameter [25].

The explicit feature map is not only useful for speeding
up similarity measurement but also regarded as a novel fea-
ture transform. Thereby, the proposed method works for
feature matching as well as feature classification using the
feature map g(x); a linear classifier such as by SVM [24] is
applicable to the feature vectors g(x) in which the proposed
similarity measure is embedded.

3.4. Metric property
A metric property inheres in the proposed similarity S̄.

Theorem 3.
√
1− S̄(x,y) is a metric.

Proof. The proposed method of any configuration is en-
sured to have S̄(x,x) = 1, ∀x. And, we apply Theorem 1
to obtain

1− S̄(x,y) = 1

2
(S̄(x,x) + S̄(y,y)− 2S̄(x,y))

=
1

2

∫ ∞

−∞
g(λ;x)∗g(λ;x)+g(λ;y)∗g(λ;y)−2g(λ;x)∗g(λ;y)dλ

=
1

2
⟨g(λ;x)− g(λ;y), g(λ;x)− g(λ;y)⟩. (19)

The square root of this measure is a metric.

The property of SSIM regarding a metric is partially
mentioned in [3]. The metric property would be useful for
more efficient data structures and search algorithms.

4. Experiment
The proposed similarity measurement is basically useful

for matching structured features (Sec. 4.1, Sec. 4.2). In ad-
dition, via the explicit feature map in Sec. 3.3, the method
is also applicable to feature classification tasks (Sec. 4.3).

4.1. Keypoint matching
We first test the proposed method on the task of keypoint

matching by means of local descriptors. The local descrip-
tors are generally formulated in a structured tensor form ex-
ploiting local spatial layout, such as 8(I)×4(J)×4(K) for
SIFT [15] and SURF [1]. Performance for the matching is
evaluated on the dataset by Mikolajczyk and Schmid [8] in a
similar protocol. The dataset contains eight image sets each
of which consists of one reference (undistorted) image and
five distorted ones captured at different angle, scale and so
on; in total, there are 40 image pairs for evaluating local de-
scriptor matching. In this evaluation, we extract SIFT [15]
local descriptors x∈R8×4×4 on the keypoints detected by
a Hessian-based detector. Since we focus only on evalu-
ating (dis)similarity measure, the performance is measured
based on averaged precision (AP), the ratio of the correctly
matched descriptor pairs (of >60% overlap).
Feature structure. We evaluate various types of sub-
feature structure (Sec. 3.1 and Fig. 1) with fixing the simi-
larity measure S=Sorg (10). The performance is compared
on the basis of TENSOR structure which is of our main in-
terest. As shown in Fig. 2, the TENSOR structure is superior
to the other types of structure; in particular, it significantly
outperforms the VECTOR structure. Actually, the VECTOR
structure which simply applies SSIM to feature vectors is
inferior even to the standard L2 metric (Fig. 3). The MA-
TRIX structure performs relatively well, though being still
inferior to the TENSOR one, and both the structures surpass
the VECTOR and ELEMENT ones which do not take into ac-
count the structure of SIFT feature at all. This result demon-
strates effectiveness of incorporating the feature structure
into similarity measurement. Although the CUBE structure
slightly exploits such structure characteristics, it is neces-
sary to form consistent sub-features for similarity measure-
ment; in the TENSOR structure, the sub-features are consis-
tent along respective dimensions, while CUBE one mixes up
all the three dimensions in the sub-features.

To further demonstrate the effectiveness to incorporate
intrinsic SIFT structure, we additionally tested the method
that randomly permutes feature elements in the identical
TENSOR structure. The random permutation of feature el-
ements largely degrades inherent physical meaning of the
SIFT structure, harming consistency in the sub-feature, and
accordingly pollutes the performance as shown in Fig. 2.
This experimental result shows that it is important to deal
with the intrinsic feature structure as it is.
Similarity measure. Next, we go into the similarity mea-
surement S used in the TENSOR structure. Various types
of similarity measurement functions (10-14) are compared
with Sadd of our main interest. Fig. 4 shows that Sadd

is superior to Sorg while producing comparable perfor-
mance with the other methods based on additive forms
(S+µ,S+σ,S+c). Unfolding the original SSIM formulation
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Therefore, we can obtain
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√
1

2
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πλ

2

)
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b(a) = [[a = 0]].
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Feature structure. We evaluate various types of sub-
feature structure (Sec. 3.1 and Fig. 1) with fixing the simi-
larity measure S=Sorg (10). The performance is compared
on the basis of TENSOR structure which is of our main in-
terest. As shown in Fig. 2, the TENSOR structure is superior
to the other types of structure; in particular, it significantly
outperforms the VECTOR structure. Actually, the VECTOR
structure which simply applies SSIM to feature vectors is
inferior even to the standard L2 metric (Fig. 3). The MA-
TRIX structure performs relatively well, though being still
inferior to the TENSOR one, and both the structures surpass
the VECTOR and ELEMENT ones which do not take into ac-
count the structure of SIFT feature at all. This result demon-
strates effectiveness of incorporating the feature structure
into similarity measurement. Although the CUBE structure
slightly exploits such structure characteristics, it is neces-
sary to form consistent sub-features for similarity measure-
ment; in the TENSOR structure, the sub-features are consis-
tent along respective dimensions, while CUBE one mixes up
all the three dimensions in the sub-features.

To further demonstrate the effectiveness to incorporate
intrinsic SIFT structure, we additionally tested the method
that randomly permutes feature elements in the identical
TENSOR structure. The random permutation of feature el-
ements largely degrades inherent physical meaning of the
SIFT structure, harming consistency in the sub-feature, and
accordingly pollutes the performance as shown in Fig. 2.
This experimental result shows that it is important to deal
with the intrinsic feature structure as it is.
Similarity measure. Next, we go into the similarity mea-
surement S used in the TENSOR structure. Various types
of similarity measurement functions (10-14) are compared
with Sadd of our main interest. Fig. 4 shows that Sadd

is superior to Sorg while producing comparable perfor-
mance with the other methods based on additive forms
(S+µ,S+σ,S+c). Unfolding the original SSIM formulation
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as VECTOR<MATRIX<TENSOR<ELEMENT. By consid-
ering that the ELEMENT approach (8) lacks structural infor-
mation, the TENSOR one (7) is expected to work better.

3.2. Similarity measure
The original SSIM (1) is defined as the product of the

three types of similarity function regarding mean M, stan-
dard deviation V and correlation C. The joint product is
sensitive to any distortion of these statistics, which is favor-
able for image assessment but lacks robustness in feature
matching. From the perspective of robustness, we have the
following variants of SSIM measurement for S in (5):

Sorg = M× V × C (original) (10)
S+µ = wMM+ wC(V × C) (separating M) (11)
S+σ = wVV + wC(M× C) (separating V) (12)
S+c = wCC + wM(M× V) (separating C) (13)
Sadd = wMM+ wVV + wCC (fully additive), (14)

where we introduce weights to balance the terms of addi-
tive forms. Note that (11) is the same configuration as the
Euclidean one (4) by pushing out the similarity M of mean
into the additive term.

Though the weights might be optimized by MKL [20],
in this study, they are determined based on the value range
of the similarity functions;

M∈
{

[ 0, +1] : non-neg. feat.
[-1,+1] : real feat. , V∈ [0,+1], C∈ [−1,+1],

(15)
where M takes a different range according to whether
u(x) ∈ [0,+∞] or [−∞,+∞]. The weights can be set
so as to make the similarity measures consistent in terms
of value range. That is, in the case of non-negative fea-
tures, (wM, wV , wC) = (2, 2, 1), while for real-valued fea-
tures, (wM, wV , wC) = (1, 2, 1)1. Note that those weights
are finally normalized to ensure S(x̂l, x̂l) = 1, resulting in
S̄(x,x)=1 in (5); they are divided by wM + wV + wC .
Discussion. As to the robustness, if the perturbation ap-
pears independently in the three terms M,V and C, the fully
additive form Sadd (14) maximally suppresses the influence
on the final similarity measure based on the similar discus-
sion in Table 1. As a result, we recommend the fully addi-
tive similarity measurement Sadd (14) in the TENSOR struc-
ture (7) which increases robustness by exploiting the addi-
tive formulation. Besides, the additive form has a merit of
reducing dimensionality in explicit feature map (Sec. 3.3).

3.3. Explicit feature map
As in the previous methods [16, 13, 17], the proposed

similarity measurement basically operates on pair-wise fea-
1In real-valued features, M, 2V−1 and C have the identical value rage

of [−1,+1], and the constant bias in 2V − 1 is inessential and removed.

tures {x,y} and, empirically speaking, such pair-wise op-
eration requires significant computation time for plenty of
samples. In contrast, L2 metric can be efficiently computed
by taking advantage of matrix multiplication such as via
BLAS library. Especially for matching features, the fast
computation of similarity measure is highly demanded. To
reduce the computation time, we provide the explicit feature
map g(x)∈RDg such that S̄(x,y)≈g(x)⊤g(y) where the
similarity computation results in simple matrix multiplica-
tion which is efficiently performed as in L2 metric.

We first consider to decompose the similarity measure-
ment function S̄ in a functional form.

Theorem 1. For the proposed method of any similarity
measure (10-14) under any structure (6-9), there exists
the explicit functional map g(λ;x) such that S̄(x,y) =∫∞
−∞ g(λ;x)∗g(λ;y)dλ.

The proposed similarity S̄ (5) of any configuration
(Sec. 3.1, 3.2) is composed of addition and/or multiplica-
tion of M,V and C2. And, C(x,y) (3) is the dot product
of the vectors gC(x) =

x−u(x)
∥x−u(x)∥2 and gC(y) =

y−u(y)
∥y−u(y)∥2 .

Therefore, the only issue for proving Theorem 1 is to prove
that k(a, b) = 2ab

a2+b2 used in M and V has the explicit func-
tional map.

Lemma 2. There exists the explicit functional map
gk(λ; a) = g̃k(λ; a) ⊕ b(a), where b(a) ∈ R, such that
k(a, b) =

∫∞
−∞ g̃k(λ; a)∗g̃k(λ; b)dλ+ b(a)b(b).

Proof. We show the concrete form of gk by following the
approach [25] of the explicit map for χ2 kernel.

In the case of ab ̸= 0,

k(a, b)=
2sgn(ab)∣∣a
b

∣∣+
∣∣ b
a

∣∣=
2sgn(ab)
e−ω + eω

= sgn(ab)sech(ω), (16)

where ω = log
∣∣ b
a

∣∣ and sgn(·) is the sign function. Based
on the Fourier expansion of sech, k is further rewritten as

k(a, b) = sgn(ab)sech(ω) = sgn(ab)
∫ ∞

−∞
e−iωλκ(λ)dλ

=

∫ ∞

−∞
[sgn(a)e−iλ log |a|

√
κ(λ)]∗[sgn(b)e−iλ log |b|

√
κ(λ)]dλ,

(17)

where κ(λ) is the inverse Fourier transform of sech(ω),
κ(λ) = 1

2 sech(πλ2 ). In the case of ab = 0, 2ab
a2+b2 = [[a =

0]][[b = 0]] where [[·]] is the Iverson bracket that equals to 1
if the condition in the brackets is satisfied and 0 otherwise.

2In the explicit mapping, + and × in (5, 10-14) are replaced with ⊕
(direct sum) and ⊗ (direct product), respectively. And note that in the
mapping the square root is applied to the weights wl, wM, wV , wC .
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Figure 6. Comparison with the other methods on the basis of the proposed method which is shown in the vertical axes.
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Figure 7. Comparison in SURF descriptor [1]. The �2

distance is applied by force just for a reference, though
it is unsuitable to this type of feature.

Table 2. Computation time per
sample pair in M =N =4096
samples.

Method Time (nsec)
L2 15.2
�2 569.0

DiffuseDist [13] 17898.6
SiftDist [16] 1260.3
fEMD [17] 2105396.0

Ours w/o map 1146.5
Ours with map 65.7

Number of samples
1024 4096 16384 65536
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Figure 8. Computation time in multi-threading.

the SSIM-based measure is suitable for extracting cross-bin
similarity compared to diffusion distance [13].

In addition to SIFT descriptors, we apply the proposed
similarity metric to the SURF detector&descriptor (SURF-
128) [1]. The SURF descriptor characterizes a local image
region by means of 8-dimensional gradient filter responses
on 4⇥ 4 spatial grids, allowing negative feature values.
Thereby, it produces the structured feature x 2 R8⇥4⇥4

which is the same three-way tensor structure as in SIFT
but defined in a real-valued feature, not a (non-negative)
histogram. It is unsuitable to apply the previous meth-
ods [2, 13, 16, 17] based on a histogram form to this type of
descriptor; for example, the �2 distance obviously degrades
performance as shown in Fig. 7. The proposed method sig-
nificantly outperforms the L

2

metric.
We also show the computation time in measuring the

similarity between sets of M and N samples (MN pairs
to be compared). The proposed method is composed of two
steps of (1) computing the explicit feature map of the input
features in O((M+N)D) and then (2) performing matrix
multiplication in O(MND

g

) where D = IJK is the in-
put feature dimensionality. Therein, the first step of feature
mapping is negligible and the second one of matrix multi-
plication dominates the computation time, which can be ef-
ficiently performed such as by BLAS library. Table 2 shows
the computation time3 per sample pair and we can see that
the proposed method is significantly speeded up by the ex-
plicit feature map (Sec. 3.3) and is much faster than the
other methods except for L

2

metric; this is, of course, due to
3The methods are implemented in MATLAB mex-C, and the computa-

tion time is measured on Xeon 3.4GHz PC for x 2 R8⇥4⇥4.

the dimensionality of the features which corresponds to D
in L

2

and {3+D
k

(

1

I

+

1

J

+

1

K

)}D in the proposed method.
In addition, the method can be easily parallelized such as
by applying multi-thread BLAS as shown in Fig. 8. As a
result, we can say that the proposed method achieves high
performance in fast computation time for feature matching.

4.1.2 Feature matching vs. image assessment

As an aside, we mention the (in)applicability of the method
to image quality assessment which is the main target of the
original SSIM, though such task is out of our focus. The
proposed method can produce similarity between images
in a manner similar to SSIM (Sec. 2). On the TID2008
dataset [19], the method produces the evaluation score4

of 0.5489 which is slightly inferior to that of the original
SSIM, 0.5768. This result contrasts with the above ex-
perimental results of feature matching, due to the differ-
ent objectives of those tasks. As described in Sec. 3, it is
necessary for image assessment to extract detailed differ-
ence (distortion) affecting human perception, while feature
matching demands high robustness to inessential difference
with extracting discriminativity of the targets. The proposed
method (Sec. 3) is carefully constructed for enhancing ro-
bustness according to the objective of feature matching.

4.2. Image retrieval

The proposed method is then tested on an image retrieval
task which picks up similar images based on the descrip-

4The performance is measure based on Kendall’s rank correlation co-
efficient between the estimated similarity and manually annotated one.
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the SSIM-based measure is suitable for extracting cross-bin
similarity compared to diffusion distance [13].

In addition to SIFT descriptors, we apply the proposed
similarity metric to the SURF detector&descriptor (SURF-
128) [1]. The SURF descriptor characterizes a local image
region by means of 8-dimensional gradient filter responses
on 4⇥ 4 spatial grids, allowing negative feature values.
Thereby, it produces the structured feature x 2 R8⇥4⇥4

which is the same three-way tensor structure as in SIFT
but defined in a real-valued feature, not a (non-negative)
histogram. It is unsuitable to apply the previous meth-
ods [2, 13, 16, 17] based on a histogram form to this type of
descriptor; for example, the �2 distance obviously degrades
performance as shown in Fig. 7. The proposed method sig-
nificantly outperforms the L
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metric.
We also show the computation time in measuring the

similarity between sets of M and N samples (MN pairs
to be compared). The proposed method is composed of two
steps of (1) computing the explicit feature map of the input
features in O((M+N)D) and then (2) performing matrix
multiplication in O(MND
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) where D = IJK is the in-
put feature dimensionality. Therein, the first step of feature
mapping is negligible and the second one of matrix multi-
plication dominates the computation time, which can be ef-
ficiently performed such as by BLAS library. Table 2 shows
the computation time3 per sample pair and we can see that
the proposed method is significantly speeded up by the ex-
plicit feature map (Sec. 3.3) and is much faster than the
other methods except for L
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metric; this is, of course, due to
3The methods are implemented in MATLAB mex-C, and the computa-
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In addition, the method can be easily parallelized such as
by applying multi-thread BLAS as shown in Fig. 8. As a
result, we can say that the proposed method achieves high
performance in fast computation time for feature matching.

4.1.2 Feature matching vs. image assessment

As an aside, we mention the (in)applicability of the method
to image quality assessment which is the main target of the
original SSIM, though such task is out of our focus. The
proposed method can produce similarity between images
in a manner similar to SSIM (Sec. 2). On the TID2008
dataset [19], the method produces the evaluation score4

of 0.5489 which is slightly inferior to that of the original
SSIM, 0.5768. This result contrasts with the above ex-
perimental results of feature matching, due to the differ-
ent objectives of those tasks. As described in Sec. 3, it is
necessary for image assessment to extract detailed differ-
ence (distortion) affecting human perception, while feature
matching demands high robustness to inessential difference
with extracting discriminativity of the targets. The proposed
method (Sec. 3) is carefully constructed for enhancing ro-
bustness according to the objective of feature matching.

4.2. Image retrieval

The proposed method is then tested on an image retrieval
task which picks up similar images based on the descrip-

4The performance is measure based on Kendall’s rank correlation co-
efficient between the estimated similarity and manually annotated one.
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S
org

into additive forms improves the performance with in-
creasing the robustness. Among the additive forms (11-14),
S
add

is preferable from the viewpoint of computation effi-
ciency since it produces the smallest dimensionality of the
explicit feature map (Sec. 3.3).

In S
add

, we further investigate the roles of the three
ingredient functions M,V and C through controlling the
weights {wM, wV , wC}, which were set to {2, 2, 1} in the
above experiment as described in Sec. 3.2. As shown
in Fig. 5, any single function poorly works while the
performance is significantly improved by combining two
of them, being comparable to the full combination with
{wM, wV , wC} = {2, 2, 1}. For the computation efficiency,
it is preferable to construct the similarity measurement S

add

by using less number of ingredients for reducing the di-
mensionality of the explicit feature map (Sec. 3.3). Thus,
we employ simpler configuration of S

add

with wM = 0 or
wV =0; the dimensionality of those explicit feature maps is
3IJK+(

˜D
k

+1)(IJ+JK+KI), and in this case of SIFT
descriptor, it results in 1024-dimensional feature vector by

˜D
k

= 7. More practically speaking, the method composed
only of V and C is favorable since we can use fixed weights
of {wM, wV , wC} = {0, 2, 1} regardless of feature domain
(non-negative or real-valued).

As a conclusion, from perspectives of performance and
practical use, it is advantageous to employ the proposed
method of S

add

with {wM, wV , wC} = {0, 2, 1} in the
TENSOR structure, which is thus applied in what follows.

4.1.1 Comparison with the other methods

Then, the proposed method is compared to the other meth-
ods of distance (similarity) measurement including the stan-
dard L

2

metric, �2 distance [2], diffusion distance (Dif-
fuseDist) [13], SIFT distance (SiftDist) [16] and fast Earth
Mover’s Distance (fEMD) [17]. The performance results
are shown in Fig. 6 on the basis of the proposed method
which favorably outperforms the others. This result demon-
strates that (1) the feature structure (tensor) in the proposed
method is a favorable standpoint than a histogram form im-
posed on the previous methods except for L

2

metric, and (2)

L 2
 is

 b
et

te
r

three-way tensor. As mentioned in [11], most image fea-
tures extracted on spatial domain are essentially formulated
in a tensor (or matrix) rather than in a simple vector. The
proposed method exploits the intrinsic feature structure and
reconsiders similarity measurement functions for enhancing
robustness.

3.1. Feature structure

For enhancing robustness to feature perturbations, the
whole feature x is represented by an ensemble of n sub-
features ˆ

x

l

on which the similarity measure is computed
and then summed up as follows:

¯S(x,y) =
nX

l=1

w
l

S(ˆx
l

, ˆy
l

), (5)

where ˆ

x

l

and ˆ

y

l

are the l-th sub-features assigned with the
weight w

l

(

P
n

l=1

w
l

= 1), and S is a similarity function de-
fined in Sec. 3.2. Most of features extracted from the spatial
domain (image) are intrinsically formulated in a three-way
tensor of I⇥J ⇥K, x = {x

ijk

}I,J,K
i=1,j=1,k=1

, where I indi-
cates the dimensionality of local primitive feature and J,K
are the number of spatial bins along x, y-axes; for example,
SIFT [15] consists of 8(I)-dimensional gradient orientation
histogram extracted on 4(J)⇥4(K) spatial grids. Based on
the tensor structure, there are four conceivable ways to de-
fine the form of sub-features as follows (Fig. 1):
1. VECTOR: This is the same as the above-mentioned
naive approach that simply computes SSIM by regarding
the whole feature as only one sub-feature: ¯S = S(x,y).
2. MATRIX: From the viewpoint that the features are ex-
tracted from the spatial domain, the whole feature can be re-
shaped into a two-dimensional matrix of I⇥JK [11]. In this
structure, we define the sub-features along the respective di-
mensions; ˆx

i

={x
ijk

}J,K
j=1,k=1

2 RJK , ˆ

x

jk

={x
ijk

}I
i=1

2
RI . The similarity measure is accordingly formulated as

¯S(x,y) =
IX

i=1

S(ˆx
i

, ˆy
i

)

2I
+

J,KX

j,k=1

S(ˆx
jk

, ˆy
jk

)

2JK
. (6)

Note that each feature element x
ijk

is counted twice in this
similarity measurement.
3. TENSOR: We treat the essential feature structure of
three-way tensor as it is. The sub-features are conse-
quently formulated along the respective three dimensions;
ˆ

x

ij

= {x
ijk

}K
k=1

2 RK , ˆ

x

jk

= {x
ijk

}I
i=1

2 RI , ˆ

x

ik

=

{x
ijk

}J
j=1

2 RJ . The feature elements in each sub-feature
are consistent along one dimension. The similarity measure
is given by
¯S(x,y) = (7)
I,JX

i,j=1

S(ˆx
ij

, ˆy
ij

)

3IJ
+

J,KX

j,k=1

S(ˆx
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, ˆy
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)

3JK
+
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S(ˆx
ik
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ik

)
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x

ˆ

xi ˆ

xjk ˆ

xij ˆ

xjk ˆ
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VECTOR MATRIX TENSOR ELEMENT / CUBE

Figure 1. Structural representation of the sub-features in the pro-
posed method. Each block indicates the sub-feature.

Table 1. Comparison of the sub-feature structures in terms of ro-
bustness, showing the ratio of the sub-features affected by one-
element perturbation. The smaller ratio means higher robustness.

Structure Ratio Robustness rank
VECTOR 1

1 4th
MATRIX 2

I+JK

3rd
TENSOR 3

IJ+JK+KI

2nd
ELEMENT 1

IJK

1st

where each feature element x
ijk

is counted three times.
4. ELEMENT: At the minimum case, we set each feature
element x

ijk

as the sub-feature, resulting in the simple sim-
ilarity measure of

¯S(x,y)=
I,J,KX

i,j,k=1

S(x
ijk

, y
ijk

)

IJK
=

I,J,KX

i,j,k=1

M(u(x
ijk

), u(y
ijk

))

IJK

=

I,J,KX

i,j,k=1

1

IJK

2x
ijk

y
ijk

x2

ijk

+ y2
ijk

. (8)

where V and C are removed since the sub-feature is a scalar.
This similarity measurement (8) is closely related to �2

distance
P

i,j,k

1

2

(xijk�yijk)
2

xijk+yijk
, ignoring cross-bin relation-

ships. And, as in the VECTOR structure, the ELEMENT ap-
proach does not take into account the structure of the feature
at all. It is also possible to extend ELEMENT to CUBE by re-
placing point-wise element with a cube of V⇥V⇥V volume;
ˆ

x

ijk

= {x
i

0
j

0
k

0}
ii

0
<i+V, jj

0
<j+V, kk

0
<k+V

2 RV

3

. The
similarity measure is formulated in a manner similar to slid-
ing window approach by

¯S(x,y)=

I�V+1,
J�V+1,
K�V+1X

i,j,k=1

S(ˆx
ijk

, ˆy
ijk

)

(I�V +1)(J�V +1)(K�V +1)

. (9)

Discussion. We can characterize these approaches from the
viewpoint of robustness. Suppose one feature element is
changed such as due to noise. The proposed similarity mea-
sure (5) is based on an ensemble of sub-features. Thus, de-
gree of the effect by the one-element perturbation can be
estimated as the number (ratio) of the sub-feature stained
by it. This is summarized in Table 1. On the assumption
that the local feature dimensionality I is generally larger
than the numbers of spatial bins J and K, the above four
approaches are ranked in terms of the robustness (ratio)

L2
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Figure 6. Comparison with the other methods on the basis of the proposed method which is shown in the vertical axes.
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Figure 7. Comparison in SURF descriptor [1]. The �2

distance is applied by force just for a reference, though
it is unsuitable to this type of feature.

Table 2. Computation time per
sample pair in M =N =4096
samples.

Method Time (nsec)
L2 15.2
�2 569.0

DiffuseDist [13] 17898.6
SiftDist [16] 1260.3
fEMD [17] 2105396.0

Ours w/o map 1146.5
Ours with map 65.7

Number of samples
1024 4096 16384 65536
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Figure 8. Computation time in multi-threading.

the SSIM-based measure is suitable for extracting cross-bin
similarity compared to diffusion distance [13].

In addition to SIFT descriptors, we apply the proposed
similarity metric to the SURF detector&descriptor (SURF-
128) [1]. The SURF descriptor characterizes a local image
region by means of 8-dimensional gradient filter responses
on 4⇥ 4 spatial grids, allowing negative feature values.
Thereby, it produces the structured feature x 2 R8⇥4⇥4

which is the same three-way tensor structure as in SIFT
but defined in a real-valued feature, not a (non-negative)
histogram. It is unsuitable to apply the previous meth-
ods [2, 13, 16, 17] based on a histogram form to this type of
descriptor; for example, the �2 distance obviously degrades
performance as shown in Fig. 7. The proposed method sig-
nificantly outperforms the L

2

metric.
We also show the computation time in measuring the

similarity between sets of M and N samples (MN pairs
to be compared). The proposed method is composed of two
steps of (1) computing the explicit feature map of the input
features in O((M+N)D) and then (2) performing matrix
multiplication in O(MND

g

) where D = IJK is the in-
put feature dimensionality. Therein, the first step of feature
mapping is negligible and the second one of matrix multi-
plication dominates the computation time, which can be ef-
ficiently performed such as by BLAS library. Table 2 shows
the computation time3 per sample pair and we can see that
the proposed method is significantly speeded up by the ex-
plicit feature map (Sec. 3.3) and is much faster than the
other methods except for L

2

metric; this is, of course, due to
3The methods are implemented in MATLAB mex-C, and the computa-

tion time is measured on Xeon 3.4GHz PC for x 2 R8⇥4⇥4.

the dimensionality of the features which corresponds to D
in L

2

and {3+D
k

(

1

I

+

1

J

+

1

K

)}D in the proposed method.
In addition, the method can be easily parallelized such as
by applying multi-thread BLAS as shown in Fig. 8. As a
result, we can say that the proposed method achieves high
performance in fast computation time for feature matching.

4.1.2 Feature matching vs. image assessment

As an aside, we mention the (in)applicability of the method
to image quality assessment which is the main target of the
original SSIM, though such task is out of our focus. The
proposed method can produce similarity between images
in a manner similar to SSIM (Sec. 2). On the TID2008
dataset [19], the method produces the evaluation score4

of 0.5489 which is slightly inferior to that of the original
SSIM, 0.5768. This result contrasts with the above ex-
perimental results of feature matching, due to the differ-
ent objectives of those tasks. As described in Sec. 3, it is
necessary for image assessment to extract detailed differ-
ence (distortion) affecting human perception, while feature
matching demands high robustness to inessential difference
with extracting discriminativity of the targets. The proposed
method (Sec. 3) is carefully constructed for enhancing ro-
bustness according to the objective of feature matching.

4.2. Image retrieval

The proposed method is then tested on an image retrieval
task which picks up similar images based on the descrip-

4The performance is measure based on Kendall’s rank correlation co-
efficient between the estimated similarity and manually annotated one.

L2 �2 DiffuseDist SiftDist EMD

O
ur
s

O
ur

s

��

0 0.2 0.4 0.6 0.8 1

O
ur

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
+0.078190 increase

��
0 0.2 0.4 0.6 0.8 1

O
ur

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
+0.036295 increase

Diffuse dist.
0 0.2 0.4 0.6 0.8 1

O
ur

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
+0.076703 increase

SIFT dist.
0 0.2 0.4 0.6 0.8 1

O
ur

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
+0.082251 increase

Fast EMD
0 0.2 0.4 0.6 0.8 1

O
ur

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
+0.074161 increase

L2 �2 DiffuseDist [13] SiftDist [16] fEMD [17]
Figure 6. Comparison with the other methods on the basis of the proposed method which is shown in the vertical axes.
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Table 2. Computation time per
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the SSIM-based measure is suitable for extracting cross-bin
similarity compared to diffusion distance [13].

In addition to SIFT descriptors, we apply the proposed
similarity metric to the SURF detector&descriptor (SURF-
128) [1]. The SURF descriptor characterizes a local image
region by means of 8-dimensional gradient filter responses
on 4⇥ 4 spatial grids, allowing negative feature values.
Thereby, it produces the structured feature x 2 R8⇥4⇥4

which is the same three-way tensor structure as in SIFT
but defined in a real-valued feature, not a (non-negative)
histogram. It is unsuitable to apply the previous meth-
ods [2, 13, 16, 17] based on a histogram form to this type of
descriptor; for example, the �2 distance obviously degrades
performance as shown in Fig. 7. The proposed method sig-
nificantly outperforms the L

2

metric.
We also show the computation time in measuring the

similarity between sets of M and N samples (MN pairs
to be compared). The proposed method is composed of two
steps of (1) computing the explicit feature map of the input
features in O((M+N)D) and then (2) performing matrix
multiplication in O(MND

g

) where D = IJK is the in-
put feature dimensionality. Therein, the first step of feature
mapping is negligible and the second one of matrix multi-
plication dominates the computation time, which can be ef-
ficiently performed such as by BLAS library. Table 2 shows
the computation time3 per sample pair and we can see that
the proposed method is significantly speeded up by the ex-
plicit feature map (Sec. 3.3) and is much faster than the
other methods except for L

2

metric; this is, of course, due to
3The methods are implemented in MATLAB mex-C, and the computa-

tion time is measured on Xeon 3.4GHz PC for x 2 R8⇥4⇥4.

the dimensionality of the features which corresponds to D
in L
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and {3+D
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(
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+
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)}D in the proposed method.
In addition, the method can be easily parallelized such as
by applying multi-thread BLAS as shown in Fig. 8. As a
result, we can say that the proposed method achieves high
performance in fast computation time for feature matching.

4.1.2 Feature matching vs. image assessment

As an aside, we mention the (in)applicability of the method
to image quality assessment which is the main target of the
original SSIM, though such task is out of our focus. The
proposed method can produce similarity between images
in a manner similar to SSIM (Sec. 2). On the TID2008
dataset [19], the method produces the evaluation score4

of 0.5489 which is slightly inferior to that of the original
SSIM, 0.5768. This result contrasts with the above ex-
perimental results of feature matching, due to the differ-
ent objectives of those tasks. As described in Sec. 3, it is
necessary for image assessment to extract detailed differ-
ence (distortion) affecting human perception, while feature
matching demands high robustness to inessential difference
with extracting discriminativity of the targets. The proposed
method (Sec. 3) is carefully constructed for enhancing ro-
bustness according to the objective of feature matching.

4.2. Image retrieval

The proposed method is then tested on an image retrieval
task which picks up similar images based on the descrip-

4The performance is measure based on Kendall’s rank correlation co-
efficient between the estimated similarity and manually annotated one.
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学習的特徴量の変換



学習的特徴量では？
ヒストグラムなどの人為的特徴量では特徴変換はうまくい
くが、学習的特徴量（CNN特徴）でもうまくいくか？ 

• 実はあまりうまくいかない…
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なぜか？
距離尺度＝非線形（kernel）関数は、対象の特徴量の特性
に沿って決めていた。 

CNN特徴のような”よくわからない”特徴に対して強引に 
適用するのは困難であるらしい。 

そこで、学習的特徴量に対する距離尺度も学習する
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1. 距離尺度のデータからの学習 
2. 弁別性・汎化性の高い変換方式

ポイント



加法的カーネル表現
加法的カーネルから出発
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加法的カーネル:

2 T. KOBAYASHI: LEARNING ADDITIVE KERNEL

Dirichlet Fisher kernel [9] are effective for histogram (BoW) features, and Hellinger kernel
(square root) [2, 26] successfully works in Fisher kernel feature representation. However,
the non-linear kernel function which implicitly transforms features leads to the kernel-based
classifier requiring substantial computation cost both in training and test [27], which prevents
the application to large-scale samples. Additive kernels remedy the problem by providing ex-

plicit feature mapping [32] which serves feature transformation. The additive kernel consists
of component-wise kernel functions which can be well approximated by the inner product of
a finite dimensional explicit mapping, and thereby linear classifiers are efficiently applicable
to so transformed features [32]; the kernels listed above except for RBF belong to a fam-
ily of the additive kernels. Thus, through the feature transformation via the additive kernel,
especially its explicit mapping, we can leverage the discriminative power embedded in the
non-linear kernel function in an explicit form of finite dimension while keeping computa-
tional efficiency.

However, since the additive kernels equipped with explicit mapping are pre-defined in a
top-down manner taking into account the nature of the features, it is difficult to determine
which types of additive kernel function should be applied to the features whose characteris-
tics are not fully disclosed, and we do not know how the pre-defined kernels work for such
features at all. In this paper, we propose a method to learn the additive kernel of high gen-
erality and discriminative power in a bottom-up manner based on actual (annotated) data.
The bottom-up learning approach endows the kernel function with discriminative power,
adapting it even to the features of unknown characteristics; this is the case of CNN fea-
tures [11, 28, 30] which are of our main interest in this paper, though the enthusiastic studies
are now underway to explore the CNN features’ nature [15, 18]. Through such data-driven
learning process, however, the learned kernel function is prone to over-fitting to the dataset
that is used for training, deteriorating generalization performance. We construct data-driven
yet generic kernel functions by harnessing the simple formulation of additive kernels in
which the kernel function operates on a pair of scalar feature component. The explicit map-
ping of the learned additive kernel serves as transforming features, especially pre-trained
CNN features in this work.

2 Proposed Method

We begin with a brief review of additive kernels and then detail the proposed method to learn
the additive kernel based on data. In contrast to the top-down additive kernel method [32], we
first establish the explicit mapping which consequently shapes the additive kernel function.

2.1 Additive Kernel

Given a pair of feature vectors, x

x

x and y

y

y 2 RD, the additive kernel is defined as follows,

k̄(xxx,yyy) =
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Â
i=1

k(x
i

,y
i

), (1)

where x

i

and y

i

are the i-th elements of x

x

x and y

y

y, respectively. In this formulation, the positive
definite kernel function k operates on each feature component and the responses are summed
up for the additive kernel response k̄; thus the additive kernel is characterized by the kernel
function k. A family of the additive kernel includes the simplest linear one k(x
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,y
i

) = x
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and Hellinger kernel k(x
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) = sgn(x
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)sgn(y
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| [2] as well as c2 kernel k(x
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) =

要素毎のカーネル関数の和
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[32] and intersection kernel k(x
i

,y
i

) = min(x
i

,y
i

) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
Z

f(g;x)f(g;y)dl ⇡
K

Â
l=1

f(g
l

;x)f(g
l

;y)D
l

=
K

Â
l=1

f̂(g
l

;x)f̂(g
l

;y)=fff(x)>fff(y), (2)

where fff(x) = [f̂(g1;x), · · · , f̂(g
K

;x)]> 2 RK approximates the (continuous) function f(g;x)
using K control points, which we call K-rank approximation. Given the function f and the
control points {g

l

}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
fff(x) =W

W

W

>[f1(x), · · · ,fM

(x)]> =W

W

W

>f(x), (3)
where W

W

W 2RM⇥K is the coefficient matrix for the basis functions and f(x)2RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>W

W

WW

W

W

>f(y), k̄(xxx,yyy) =
D

Â
i=1

f(x
i

)>W

W

WW

W

W

>f(y
i

) = tr{F(xxx)>W

W

WW

W

W

>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD

)] 2 RM⇥D. (5)
The coefficient matrix W

W

W defines the additive kernel function as well as its explicit mapping,
W

W

W

>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W

W

W in a
supervised framework using annotated data given basis functions {f

m

}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W

W

W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W

W

W

>F(xxx)AAA}+b, (6)
where A

A

A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A

A

A and W

W

W are optimized, the classifier (6) is a bilinear form [10] regarding A

A

A and W

W

W

which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
A

A

A is dependent on classification tasks/datasets while the coefficient W

W

W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W

W

W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x

x

j

,z
j

}ND
j=1 of ND samples
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2.2 Learning Kernel Function
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to built fff from scratch, we resort to the approximated representation of fff by using basis
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We can find that k̄ in (4) is regarded as just the inner product of the matrix features W
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>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:
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>F(xxx)AAA}+b, (6)
where A
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A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A
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A and W
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W are optimized, the classifier (6) is a bilinear form [10] regarding A
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A and W
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which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
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A is dependent on classification tasks/datasets while the coefficient W
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W for basis functions
should be general relying only on the type of feature x
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x. In order to enhance generality of
the coefficient W
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W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W
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W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W
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W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x
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j=1 of ND samples
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2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
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D次元特徴ベクトル　　　　　　に対してx,y 2 RD



加法的カーネル表現の学習（１）
関数　　  を一から学習するのは困難。 

そこで、フーリエ展開的に基底関数      を導入して 
関数　　  を表現する。 

基底関数が与えられているとすると
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l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
fff(x) =W

W

W

>[f1(x), · · · ,fM

(x)]> =W

W

W

>f(x), (3)
where W

W

W 2RM⇥K is the coefficient matrix for the basis functions and f(x)2RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>W

W

WW

W

W

>f(y), k̄(xxx,yyy) =
D

Â
i=1

f(x
i

)>W

W

WW

W

W

>f(y
i

) = tr{F(xxx)>W

W

WW

W

W

>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD

)] 2 RM⇥D. (5)
The coefficient matrix W

W

W defines the additive kernel function as well as its explicit mapping,
W

W

W

>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W

W

W in a
supervised framework using annotated data given basis functions {f

m

}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W

W

W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W

W

W

>F(xxx)AAA}+b, (6)
where A

A

A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A

A

A and W

W

W are optimized, the classifier (6) is a bilinear form [10] regarding A

A

A and W

W

W

which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
A

A

A is dependent on classification tasks/datasets while the coefficient W

W

W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W

W

W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x

x

j

,z
j

}ND
j=1 of ND samples
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[32] and intersection kernel k(x
i

,y
i

) = min(x
i

,y
i

) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
Z

f(g;x)f(g;y)dl ⇡
K

Â
l=1

f(g
l

;x)f(g
l

;y)D
l

=
K

Â
l=1

f̂(g
l

;x)f̂(g
l

;y)=fff(x)>fff(y), (2)

where fff(x) = [f̂(g1;x), · · · , f̂(g
K

;x)]> 2 RK approximates the (continuous) function f(g;x)
using K control points, which we call K-rank approximation. Given the function f and the
control points {g

l

}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
fff(x) =W

W

W

>[f1(x), · · · ,fM

(x)]> =W

W

W

>f(x), (3)
where W

W

W 2RM⇥K is the coefficient matrix for the basis functions and f(x)2RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>W

W

WW

W

W

>f(y), k̄(xxx,yyy) =
D

Â
i=1

f(x
i

)>W

W

WW

W

W

>f(y
i

) = tr{F(xxx)>W

W

WW

W

W

>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD

)] 2 RM⇥D. (5)
The coefficient matrix W

W

W defines the additive kernel function as well as its explicit mapping,
W

W

W

>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W

W

W in a
supervised framework using annotated data given basis functions {f

m

}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W

W

W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W

W

W

>F(xxx)AAA}+b, (6)
where A

A

A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A

A

A and W

W

W are optimized, the classifier (6) is a bilinear form [10] regarding A

A

A and W

W

W

which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
A

A

A is dependent on classification tasks/datasets while the coefficient W

W

W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W

W

W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x

x

j

,z
j

}ND
j=1 of ND samples
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[32] and intersection kernel k(x
i

,y
i

) = min(x
i

,y
i

) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
Z

f(g;x)f(g;y)dl ⇡
K

Â
l=1

f(g
l

;x)f(g
l

;y)D
l

=
K

Â
l=1

f̂(g
l

;x)f̂(g
l

;y)=fff(x)>fff(y), (2)

where fff(x) = [f̂(g1;x), · · · , f̂(g
K

;x)]> 2 RK approximates the (continuous) function f(g;x)
using K control points, which we call K-rank approximation. Given the function f and the
control points {g

l

}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
fff(x) =W

W

W

>[f1(x), · · · ,fM

(x)]> =W

W

W

>f(x), (3)
where W

W

W 2RM⇥K is the coefficient matrix for the basis functions and f(x)2RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>W

W

WW

W

W

>f(y), k̄(xxx,yyy) =
D

Â
i=1

f(x
i

)>W

W

WW

W

W

>f(y
i

) = tr{F(xxx)>W

W

WW

W

W

>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD

)] 2 RM⇥D. (5)
The coefficient matrix W

W

W defines the additive kernel function as well as its explicit mapping,
W

W

W

>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W

W

W in a
supervised framework using annotated data given basis functions {f

m

}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W

W

W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W

W

W

>F(xxx)AAA}+b, (6)
where A

A

A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A

A

A and W

W

W are optimized, the classifier (6) is a bilinear form [10] regarding A

A

A and W

W

W

which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
A

A

A is dependent on classification tasks/datasets while the coefficient W

W

W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W

W

W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x

x

j

,z
j

}ND
j=1 of ND samples
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[32] and intersection kernel k(x
i

,y
i

) = min(x
i

,y
i

) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
Z

f(g;x)f(g;y)dl ⇡
K

Â
l=1

f(g
l

;x)f(g
l

;y)D
l

=
K

Â
l=1

f̂(g
l

;x)f̂(g
l

;y)=fff(x)>fff(y), (2)

where fff(x) = [f̂(g1;x), · · · , f̂(g
K

;x)]> 2 RK approximates the (continuous) function f(g;x)
using K control points, which we call K-rank approximation. Given the function f and the
control points {g

l

}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
fff(x) =W

W

W

>[f1(x), · · · ,fM

(x)]> =W

W

W

>f(x), (3)
where W

W

W 2RM⇥K is the coefficient matrix for the basis functions and f(x)2RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>W

W

WW

W

W

>f(y), k̄(xxx,yyy) =
D

Â
i=1

f(x
i

)>W

W

WW

W

W

>f(y
i

) = tr{F(xxx)>W

W

WW

W

W

>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD

)] 2 RM⇥D. (5)
The coefficient matrix W

W

W defines the additive kernel function as well as its explicit mapping,
W

W

W

>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W

W

W in a
supervised framework using annotated data given basis functions {f

m

}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W

W

W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W

W

W

>F(xxx)AAA}+b, (6)
where A

A

A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A

A

A and W

W

W are optimized, the classifier (6) is a bilinear form [10] regarding A

A

A and W

W

W

which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
A

A

A is dependent on classification tasks/datasets while the coefficient W

W

W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W

W

W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x

x

j

,z
j

}ND
j=1 of ND samples
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[32] and intersection kernel k(x
i

,y
i

) = min(x
i

,y
i

) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
Z

f(g;x)f(g;y)dl ⇡
K

Â
l=1

f(g
l

;x)f(g
l

;y)D
l

=
K

Â
l=1

f̂(g
l

;x)f̂(g
l

;y)=fff(x)>fff(y), (2)

where fff(x) = [f̂(g1;x), · · · , f̂(g
K

;x)]> 2 RK approximates the (continuous) function f(g;x)
using K control points, which we call K-rank approximation. Given the function f and the
control points {g

l

}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
fff(x) =W

W

W

>[f1(x), · · · ,fM

(x)]> =W

W

W

>f(x), (3)
where W

W

W 2RM⇥K is the coefficient matrix for the basis functions and f(x)2RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>W

W

WW

W

W

>f(y), k̄(xxx,yyy) =
D

Â
i=1

f(x
i

)>W

W

WW

W

W

>f(y
i

) = tr{F(xxx)>W

W

WW

W

W

>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD

)] 2 RM⇥D. (5)
The coefficient matrix W

W

W defines the additive kernel function as well as its explicit mapping,
W

W

W

>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W

W

W in a
supervised framework using annotated data given basis functions {f

m

}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W

W

W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W

W

W

>F(xxx)AAA}+b, (6)
where A

A

A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A

A

A and W

W

W are optimized, the classifier (6) is a bilinear form [10] regarding A

A

A and W

W

W

which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
A

A

A is dependent on classification tasks/datasets while the coefficient W

W

W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W

W

W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x

x

j

,z
j

}ND
j=1 of ND samples
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[32] and intersection kernel k(x
i

,y
i

) = min(x
i

,y
i

) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
Z

f(g;x)f(g;y)dl ⇡
K

Â
l=1

f(g
l

;x)f(g
l

;y)D
l

=
K

Â
l=1

f̂(g
l

;x)f̂(g
l

;y)=fff(x)>fff(y), (2)

where fff(x) = [f̂(g1;x), · · · , f̂(g
K

;x)]> 2 RK approximates the (continuous) function f(g;x)
using K control points, which we call K-rank approximation. Given the function f and the
control points {g

l

}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
fff(x) =W

W

W

>[f1(x), · · · ,fM

(x)]> =W

W

W

>f(x), (3)
where W

W

W 2RM⇥K is the coefficient matrix for the basis functions and f(x)2RM is the vector
composed of the basis function outputs at x. Thereby the kernel function is described as

k(x,y) = f(x)>W
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W
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>f(y), k̄(xxx,yyy) =
D
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)>W
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) = tr{F(xxx)>W
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>F(yyy)}, (4)

where tr is the operator of matrix trace and
F(xxx) = [f(x1), · · · , f(xD

)] 2 RM⇥D. (5)
The coefficient matrix W

W

W defines the additive kernel function as well as its explicit mapping,
W

W

W

>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W

W

W in a
supervised framework using annotated data given basis functions {f

m

}M

m=1.

2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W

W

W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W

W

W

>F(xxx)AAA}+b, (6)
where A

A

A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A

A

A and W

W

W are optimized, the classifier (6) is a bilinear form [10] regarding A

A

A and W

W

W

which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
A

A

A is dependent on classification tasks/datasets while the coefficient W

W

W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W

W

W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x

x

j

,z
j

}ND
j=1 of ND samples

bilinear形式: 

係数行列Wと識別重み行列Aの同時学習
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[32] and intersection kernel k(x
i

,y
i

) = min(x
i

,y
i

) [16] for (non-negative) histogram
features.

And, the kernel function k is represented by the following decomposed form for achiev-
ing the positive definiteness,

k(x,y)=
Z

f(g;x)f(g;y)dl ⇡
K

Â
l=1

f(g
l

;x)f(g
l

;y)D
l

=
K
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l=1

f̂(g
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;x)f̂(g
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;y)=fff(x)>fff(y), (2)

where fff(x) = [f̂(g1;x), · · · , f̂(g
K

;x)]> 2 RK approximates the (continuous) function f(g;x)
using K control points, which we call K-rank approximation. Given the function f and the
control points {g

l

}K

l=1, the explicit mapping of the non-linear additive kernel k̄ is described
by [fff(x1)>, · · · ,fff(xD

)>]>; in [32], those two ingredients f and g
l

are theoretically provided
even for c2 kernel to realize the explicit feature mapping.

2.2 Learning Kernel Function
Our objective is to learn the non-linear functions fff based on data. Since it is quite difficult
to built fff from scratch, we resort to the approximated representation of fff by using basis
functions in a manner similar to Fourier expansion. Suppose we have M basis functions
f

m

,m = 1, · · · ,M, then the non-linear functions fff can be represented by
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The coefficient matrix W
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W defines the additive kernel function as well as its explicit mapping,
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>F(xxx) 2RK⇥D. Therefore, discriminative learning of fff is reduced into optimizing W
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W in a
supervised framework using annotated data given basis functions {f
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2.2.1 Optimization

We can find that k̄ in (4) is regarded as just the inner product of the matrix features W
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W

>F(xxx),
and thus the classifier using the kernel (4) is eventually described by the following form:

tr{W
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>F(xxx)AAA}+b, (6)
where A
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A 2RD⇥K is the classifier weight matrix and b is a classifier bias. From the viewpoint
that both A
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A and W
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W are optimized, the classifier (6) is a bilinear form [10] regarding A
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A and W
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which are column and row weights for the feature matrix F(xxx). Note that the classifier weight
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A is dependent on classification tasks/datasets while the coefficient W
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W for basis functions
should be general relying only on the type of feature x

x

x. In order to enhance generality of
the coefficient W

W

W , it is necessary to learn it on larger-scaled and a variety of data as much
as possible. However, the methods [10, 21] which can optimize the bilinear model (6) are
neither well scaled due to solving SVM-based quadratic programming substantial times nor
suitable for improving generality of W

W

W by aggressively minimizing the rank K of W
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W on the
particular dataset that is used for learning.

We apply an efficient approach to learn W

W

W , providing a good trade-off between the gen-
erality and discriminativity. Suppose we have a dataset D = {x

x
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,z
j

}ND
j=1 of ND samples
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加法的カーネル表現の学習（４）
識別器の共通表現をSVDで抽出することで汎化性を高める
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comprising a feature vector x

x

x

j

and a label z

j

for a specific task; on classification, the label
indicates membership to a certain class, z

j

2 {�1,+1}. By integrating the weights A

A

AD
1 and

W

W

W into V

V

VD =W

W

WA

A

A

>
D 2 RM⇥D, the classifier (6) is accordingly rewritten into

z = tr{V

V

V

>
DF(xxx)}+b, (7)

and thereby we can obtain the standard (linear) SVM optimization problem [31] for V

V

VD,

min
V

V

VD ,b

1
2
tr(VVV>

DV

V

VD)+
ND

Â
j=1

max[0,1� z

j

{tr(VVV>
DF(xxx

j

))+b}]. (8)

The optimizer of (8) is denoted by V

V

V

⇤
D=W

W

W

⇤
A

A

A

⇤>
D where only A

A

A

⇤
D depends on the dataset D.

For enhancing the generality of W

W

W , we prepare various datasets {D
c

}C

c=1 such as by
decomposing a dataset of multi-class tasks in a one-vs-rest manner regarding classes as well
as collecting datasets, e.g., MIT67 [22] and VOC2007 [1]. Solving (8) in the respective
datasets produces multiple optimizers {V

V

V

⇤
D

c

}C

c=1 which share W

W

W

⇤ and are unified into

V

V

V

⇤ = [VVV ⇤
D1

, · · ·VVV ⇤
D

C

] =W

W

W

⇤[AAA⇤>
D1

, · · · ,AAA⇤>
D

C

] 2 RM⇥CD. (9)
This shows that the coefficient matrix W

W

W

⇤ can be retrieved by decomposing the unified clas-
sifier V

V

V

⇤. We decompose V

V

V

⇤ by means of singular value decomposition (SVD);
V

V

V

⇤ = P

P

PLLLQ

Q

Q

>, (10)
where the orthonormal matrix P

P

P = [ppp1, · · · , p

p

p

M

] 2 RM⇥M is related to W

W

W

⇤ and LLL is the diag-
onal matrix of singular values {l

i

}M

i=1 where i < j ) l
i

� l
j

(decreasing order). Even for
the unified classifier V

V

V

⇤ of large column size CD, we can efficiently compute both P

P

P and LLL
by the following eigen decomposition,

V

V

V

⇤
V

V

V

⇤>
P

P

P =

 
C

Â
c=1

V

V

V

⇤
D

c

V

V

V

⇤>
D

c

!
P

P

P = P

P

PLLL2, (11)

where V

V

V

⇤
D

c

V

V

V

⇤>
D

c

is a matrix of small size M⇥M. Finally, from the viewpoint of minimizing
the cost tr(AAAA

A

A

>+W

W

WW

W

W

>) used in bilinear optimization [10], the optimum W

W

W

⇤ is obtained by

W

W

W

⇤ = P

P

P

K

LLL
1
2
K

, (12)

where P

P

P

K

= [ppp1, · · · , p

p

p

K

] and LLL
1
2
K

= diag(
p

l1, · · · ,
p

l
K

). The rank K could be determined

based on the contributing rate t = ÂK

k=1 l 2
k

ÂM

k=1 l 2
k

in the decomposition (11). Note again that the

feature vector x

x

x is transformed into W

W

W

⇤>F(xxx)2 which is then unfolded into a vector.
The proposed method is related to the multiple kernel learning (MKL) [13, 23] by regard-

ing each of the basis function as a basis kernel function. However, the MKL optimizes only
M weights for the basis kernels corresponding to the diagonal weights in W

W

W which signifi-
cantly degrades capability to describe the additive kernel. In contrast, the proposed method
optimizes the full weight matrix W

W

W which can represent various types of additive kernel.

2.2.2 Basis Function

From the perspective of approximating the continuous functions fff , it is natural to employ
Fourier-based functions as bases. In addition, we can make use of the following generic prior
knowledge on features. The feature values of larger magnitude convey distinct information

1We add the subscript D to the weight A

A

A in order to emphasize its dependency on the dataset D, while W

W

W is not.
2For faster computation, we constructed look-up tables by pre-computing the transformed values.

4 T. KOBAYASHI: LEARNING ADDITIVE KERNEL

comprising a feature vector x

x

x

j

and a label z

j

for a specific task; on classification, the label
indicates membership to a certain class, z

j

2 {�1,+1}. By integrating the weights A

A

AD
1 and

W

W

W into V

V

VD =W

W

WA

A

A

>
D 2 RM⇥D, the classifier (6) is accordingly rewritten into

z = tr{V

V

V

>
DF(xxx)}+b, (7)

and thereby we can obtain the standard (linear) SVM optimization problem [31] for V

V

VD,

min
V

V

VD ,b

1
2
tr(VVV>

DV

V

VD)+
ND

Â
j=1

max[0,1� z

j

{tr(VVV>
DF(xxx

j

))+b}]. (8)

The optimizer of (8) is denoted by V

V

V

⇤
D=W

W

W

⇤
A

A

A

⇤>
D where only A

A

A

⇤
D depends on the dataset D.

For enhancing the generality of W

W

W , we prepare various datasets {D
c

}C

c=1 such as by
decomposing a dataset of multi-class tasks in a one-vs-rest manner regarding classes as well
as collecting datasets, e.g., MIT67 [22] and VOC2007 [1]. Solving (8) in the respective
datasets produces multiple optimizers {V

V

V

⇤
D

c

}C

c=1 which share W

W

W

⇤ and are unified into

V

V

V

⇤ = [VVV ⇤
D1

, · · ·VVV ⇤
D

C

] =W

W

W

⇤[AAA⇤>
D1

, · · · ,AAA⇤>
D

C

] 2 RM⇥CD. (9)
This shows that the coefficient matrix W

W

W

⇤ can be retrieved by decomposing the unified clas-
sifier V

V

V

⇤. We decompose V

V

V

⇤ by means of singular value decomposition (SVD);
V

V

V

⇤ = P

P

PLLLQ

Q

Q

>, (10)
where the orthonormal matrix P

P

P = [ppp1, · · · , p

p

p

M

] 2 RM⇥M is related to W

W

W

⇤ and LLL is the diag-
onal matrix of singular values {l

i

}M

i=1 where i < j ) l
i

� l
j

(decreasing order). Even for
the unified classifier V

V

V

⇤ of large column size CD, we can efficiently compute both P

P

P and LLL
by the following eigen decomposition,

V

V

V

⇤
V

V

V

⇤>
P

P

P =

 
C

Â
c=1

V

V

V

⇤
D

c

V

V

V

⇤>
D

c

!
P

P

P = P

P

PLLL2, (11)

where V

V

V

⇤
D

c

V

V

V

⇤>
D

c

is a matrix of small size M⇥M. Finally, from the viewpoint of minimizing
the cost tr(AAAA

A

A

>+W

W

WW

W

W

>) used in bilinear optimization [10], the optimum W

W

W

⇤ is obtained by

W

W

W

⇤ = P

P

P

K

LLL
1
2
K

, (12)

where P

P

P

K

= [ppp1, · · · , p

p

p

K

] and LLL
1
2
K

= diag(
p

l1, · · · ,
p

l
K

). The rank K could be determined

based on the contributing rate t = ÂK

k=1 l 2
k

ÂM

k=1 l 2
k

in the decomposition (11). Note again that the

feature vector x

x

x is transformed into W

W

W

⇤>F(xxx)2 which is then unfolded into a vector.
The proposed method is related to the multiple kernel learning (MKL) [13, 23] by regard-

ing each of the basis function as a basis kernel function. However, the MKL optimizes only
M weights for the basis kernels corresponding to the diagonal weights in W

W

W which signifi-
cantly degrades capability to describe the additive kernel. In contrast, the proposed method
optimizes the full weight matrix W

W

W which can represent various types of additive kernel.

2.2.2 Basis Function

From the perspective of approximating the continuous functions fff , it is natural to employ
Fourier-based functions as bases. In addition, we can make use of the following generic prior
knowledge on features. The feature values of larger magnitude convey distinct information

1We add the subscript D to the weight A

A

A in order to emphasize its dependency on the dataset D, while W

W

W is not.
2For faster computation, we constructed look-up tables by pre-computing the transformed values.

P⇤
1
2

⇤
1
2Q>=

=

V ⇤
D1

V ⇤
DC

V ⇤
D2

共通部分
W ⇤

SVD

識別器群

線形SVM

D = {F (xj), zj}ND
j=1

基底により 
変換された 
特徴行列

タスク１ 
の識別器

タスク２ 
の識別器

タスクC 
の識別器

· · ·

· · ·



基底関数
フーリエ基底を考えるのが自然。 

ここではさらに、特徴の根本的な性質を考慮
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（magnitudeの）大きい特徴値はより特徴的な情報を含む
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about the target while those of lower (or zero) magnitude provide less (or no) information;
this would also be the case of the CNN features. By incorporating the prior knowledge into
the Fourier functions, we determine the basis functions f as

f2m�1(x) = xcos(2ph
m

x), f2m

(x) = xsin(2ph
m

x), (13)
where h

m

are the frequency parameters; in this study, we set h 2 {0,0.1, · · · ,0.9,1, · · · ,10}3

to produce M = 39 basis functions. These basis functions reflect the significance of the
feature value x, which contributes to efficiently approximate fff by using a fewer number of
bases; in particular, x = 0 is always mapped into zeros. Note that the feature vectors x

x

x are
normalized in a unit L1 norm in advance, x

x

x x

x

x

kxxxk1 , for effectively bounding the range of
feature values in [0,1] without loss of generality4.

3 Experimental Results
We apply the proposed method to transform the pre-trained CNN features. The CNN meth-
ods have exhibited excellent performance on image classifications in the last five years [11,
28] and recently applied to extract spatio-temporal features from videos [30]. As in [5], we
employ as feature extractors the CNNs pre-trained on the large-scale datasets. We focus on
three types of widely used CNN models, C3D [30], Alex [11] and VGG [28]; C3D is trained
on sports-1M dataset [7] for extracting motion features, while Alex and VGG are trained on
ImageNet dataset [4] for extracting image features. In these CNNs, the outputs of the first
fully connected layer (fc6) are diverted to features of D = 4096 dimension; for detailed
CNN architectures, refer to the respective papers.

In classification, all the features with/without feature transformation are normalized in
a unit L2 norm and subsequently the linear SVM classifier [31] is applied. We follow the
evaluation protocol provided together with datasets; in CALTECH256 we randomly draw 60
training samples per category and use the rest for test, while in the other datasets the provided
training/test splits are used.

3.1 Performance Analysis
We first analyze the proposed method from various aspects by using C3D features.

3.1.1 Generality of Learned Additive Kernel Across Datasets

The kernel function trained in a certain dataset is obviously applicable to the identical dataset,
but it is unclear how the learned kernel function is applicable to the other datasets of different
task and subjects. It is highly demanded to construct the generic additive kernel which can be
applied to various types of data without re-training. Thus, we first investigate the generality
of the learned additive kernel on C3D feature for action classification on the datasets of
HMDB51 [12], HOLLYWOOD2 [17], UCF101 [29] and UCF50 [25].

We assess the generality by measuring similarity among the additive kernels trained on
different datasets. For that purpose, the proposed method is applied to learn the additive
kernel in a leave-‘one dataset’-out manner; on the above-mentioned four datasets, we can

3In case of h = 0, the basis function is f(x) = x.
4After applying L1 normalization to CNN features of D = 4096 dimension, we find that the maximum feature

value is around 0.005. For further fitting the feature value distribution to [0,1], we scale them as x

x

x 200x

x

x

kxxxk1
.

where                                         ,
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実験結果
３種類のCNNモデル 

データセット 
Video: HMDB51, UCF101/50, Hollywood2（動作認識） 
Image: Caltech256, VOC2007, (物体認識) 
              MIT67, SUN397, (シーン認識)  
              CatDog37, Dog120 (詳細な種別認識）
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Video Datasets
HMDB51 

UCF101/50 

Hollywood2
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Image Datasets
Caltech256 (物体) 

SUN397 (シーン） 

Dog120 (種別)
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実験結果
baseline: L2 

• 提案法により性能向上
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SUN397 48.25 48.64 47.80 49.38 56.80 57.44 56.54 57.99

CATDOG37 80.83 80.42 79.83 81.82 89.83 89.68 89.35 90.17
DOG120 63.99 63.49 62.20 65.58 78.76 78.50 78.02 78.98

(a) C3D (d) Classification accuracies (%)
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Figure 3: Performance comparison on various CNN features and datasets.

ods to Alex and VGG features on six image datasets: CALTECH256 [6], VOC2007 [1],
MIT67 [22], SUN397 [33], CATDOG37 [20] and DOG120 [8]. As is the case with C3D
(Sec.3.1.1), the learned additive kernels for these CNN image features are found to be gen-
eral across datasets, and thus we use the additive kernel learned on the composite of the first
four datasets (CALTECH256, VOC2007, MIT67 and SUN397) for Alex and VGG features.

For fair comparison, we apply the proposed method of the ranks K  7; the rank K = 7
produces the same dimensionality as the explicitly mapped features of c2 [32], while the
Hellinger transformation does not increase the original feature dimensionality. The perfor-
mance results are shown in Fig. 3. In contrast to the case of hand-crafted features, the c2

and Hellinger transformations do not work well; the c2-based transformation [32] failed to
improve performance in many cases and to make matters worse, the Hellinger transforma-
tion [2] degrades performance in all cases. On the other hand, the learned additive kernel
favorably boosts the performance, outperforming the other methods; our method of even
rank K = 2 surpasses the c2-based method and that of K = 6 produces better performance
on average. The learned additive kernel function is adapted to the CNN features whose
characteristics are not fully revealed unlike the hand-crafted features to which the c2 and
Hellinger kernels are favorably applied.

3.3 Generality Across CNN Models

Lastly, we discuss the generality of the learned additive kernel across CNN models, while
in Sec.3.1.1 the generality over datasets is shown. We first qualitatively compare the ad-
ditive kernels learned on respective types of CNN features, C3D, Alex and VGG. Fig. 4
shows the learned kernel function k(x,y) on (x,y) 2 [0,1]2 together with the distribution of
feature component value x after L1 normalization. One can see that all the learned kernel
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ods to Alex and VGG features on six image datasets: CALTECH256 [6], VOC2007 [1],
MIT67 [22], SUN397 [33], CATDOG37 [20] and DOG120 [8]. As is the case with C3D
(Sec.3.1.1), the learned additive kernels for these CNN image features are found to be gen-
eral across datasets, and thus we use the additive kernel learned on the composite of the first
four datasets (CALTECH256, VOC2007, MIT67 and SUN397) for Alex and VGG features.

For fair comparison, we apply the proposed method of the ranks K  7; the rank K = 7
produces the same dimensionality as the explicitly mapped features of c2 [32], while the
Hellinger transformation does not increase the original feature dimensionality. The perfor-
mance results are shown in Fig. 3. In contrast to the case of hand-crafted features, the c2

and Hellinger transformations do not work well; the c2-based transformation [32] failed to
improve performance in many cases and to make matters worse, the Hellinger transforma-
tion [2] degrades performance in all cases. On the other hand, the learned additive kernel
favorably boosts the performance, outperforming the other methods; our method of even
rank K = 2 surpasses the c2-based method and that of K = 6 produces better performance
on average. The learned additive kernel function is adapted to the CNN features whose
characteristics are not fully revealed unlike the hand-crafted features to which the c2 and
Hellinger kernels are favorably applied.

3.3 Generality Across CNN Models

Lastly, we discuss the generality of the learned additive kernel across CNN models, while
in Sec.3.1.1 the generality over datasets is shown. We first qualitatively compare the ad-
ditive kernels learned on respective types of CNN features, C3D, Alex and VGG. Fig. 4
shows the learned kernel function k(x,y) on (x,y) 2 [0,1]2 together with the distribution of
feature component value x after L1 normalization. One can see that all the learned kernel
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Figure 3: Performance comparison on various CNN features and datasets.

ods to Alex and VGG features on six image datasets: CALTECH256 [6], VOC2007 [1],
MIT67 [22], SUN397 [33], CATDOG37 [20] and DOG120 [8]. As is the case with C3D
(Sec.3.1.1), the learned additive kernels for these CNN image features are found to be gen-
eral across datasets, and thus we use the additive kernel learned on the composite of the first
four datasets (CALTECH256, VOC2007, MIT67 and SUN397) for Alex and VGG features.

For fair comparison, we apply the proposed method of the ranks K  7; the rank K = 7
produces the same dimensionality as the explicitly mapped features of c2 [32], while the
Hellinger transformation does not increase the original feature dimensionality. The perfor-
mance results are shown in Fig. 3. In contrast to the case of hand-crafted features, the c2

and Hellinger transformations do not work well; the c2-based transformation [32] failed to
improve performance in many cases and to make matters worse, the Hellinger transforma-
tion [2] degrades performance in all cases. On the other hand, the learned additive kernel
favorably boosts the performance, outperforming the other methods; our method of even
rank K = 2 surpasses the c2-based method and that of K = 6 produces better performance
on average. The learned additive kernel function is adapted to the CNN features whose
characteristics are not fully revealed unlike the hand-crafted features to which the c2 and
Hellinger kernels are favorably applied.

3.3 Generality Across CNN Models

Lastly, we discuss the generality of the learned additive kernel across CNN models, while
in Sec.3.1.1 the generality over datasets is shown. We first qualitatively compare the ad-
ditive kernels learned on respective types of CNN features, C3D, Alex and VGG. Fig. 4
shows the learned kernel function k(x,y) on (x,y) 2 [0,1]2 together with the distribution of
feature component value x after L1 normalization. One can see that all the learned kernel
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学習されたカーネル関数
CNNモデル間で大体似通ったカーネル関数が得られた
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Figure 4: Learned additive kernel function with feature distribution. The relationship among
the kernels leaned on the CNNs is guessed as (d). This figure is best viewed in color.

functions are formed in a similar shape across the CNN features, assigning larger weights on
moderately higher feature values which are significantly less frequent as shown in the fea-
ture value distribution. The major difference is that the phases are shifted according to the
feature distributions. It would be caused by the difference of data modality; that is, C3D fea-
tures are extracted from videos (spatio-temporal volume) while Alex and VGG are applied
to images (spatial pixel). From this viewpoint, the kernels on Alex and VGG exhibit some
sort of similarity. On the other hand, by considering the architecture of CNN models, the
C3D model [30] is defined similarly to that of VGG [28], containing deeply stacked convo-
lution layers. Thus, in disregard of the phase shift, the two kernel functions learned on C3D
and VGG are similarly shaped. Based on these discussions, we can guess the relationship
shown in Fig. 4d between the kernels adapted to those CNN features; the kernel on VGG has
connection to those of C3D and Alex.

For quantitatively investigating the generality of the learned kernels across CNN models,
we also apply the learned kernel function to the features that are different from the one used
for learning kernel functions; there are three types of features, producing nine combination
of features and kernels in total. The performance results are shown in Table 2. While the
kernels produce the best performance at the corresponding (consistent) features on which
the kernels are learned, they also work well on the other types of feature, outperforming
the original feature (‘Orig.’ in Fig. 3d). As discussed above, the kernel that is leaned on
a similar type of feature is effective; for examples, VGG kernel works well for C3D feature
(similar CNN architecture) and Alex feature (same data modality), whereas the C3D kernel
is less effective for Alex feature which has less connection to C3D. Therefore, among these
CNN models, the kernel trained on VGG is effective exhibiting high generality (Table 2d), in
accordance with the relationship shown in Fig. 4d.

4 Conclusion
We have proposed a method to learn additive kernels in a bottom-up manner based on data for
feature transformation. The non-linear feature transformation is realized by the explicit map-
ping of the additive kernel and the proposed method directly constructs the mapping function
by using proper basis functions derived from Fourier functions, which consequently shapes
the additive kernel function. For enhancing discriminativity and generality, the coefficients
of the bases are learned in the SVM framework by exploiting the shared component across
the linear classifier weights via SVD. In the experiments on various datasets using various

k(x, y)



CNN特徴の関係性
CNN構造と学習データの特性を反映している
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CNN特徴の関係性
CNN構造と学習データの特性を反映している
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まとめ
人為的特徴量と学習的特徴量に対しての特徴変換 
人為的特徴 = hand-crafted特徴：SIFT, HOGなど 
学習的特徴 = CNN特徴 : AlexNet, VGGなど 

人為的特徴量に対しては内在しているテンソル構造に着目
し、学習的特徴量に対しては距離尺度の学習を通して、そ
れぞれの特徴変換手法を示した。 

学習されたカーネル関数（の類似性）は、CNN特徴の 
特性解析に使えるかも…
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