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What is Optimal Transport?

A geometric toolbox to  
compare probability measures  
supported on a metric space.
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Why is it relevant to ML?

• New geometry for statistical modeling 
• Information geometry is crucial in stats. 
• That geometry is often KL (e.g. MLE). 

• New algorithms to study histogram data 
• Bags-of-features are everywhere. 
• Knowledge on these features is often 

known but not used. 
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Why now?

• Key results in maths since ’95~ 
• [McCann’95], [JKO’98], [Benamou’98], 

[Ambrosio’06], [Villani’03/’09] 

• More work in CV/TCS/Graphics since ’98~ 
• Earth Mover’s Distance [Rubner’98], 

Embeddings [Indyk’03] 

• Longstanding roadblock: computation 
• Regularization [C.’13] can provide the key
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Outline

• Definitions: The Wasserstein Distances 

• Fast computations with regularization 

• Wasserstein variational problems 
• barycenters 
• dictionary learning 
• PCA 
• minimum Kantorovich estimation
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Definitions: Couplings & Wasserstein
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Assume (⌦,D) is a probability space

endowed with a metric.

For µ,⌫ probability measures in P(⌦),

⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),

P (⌦⇥B) = ⌫(B)}



Couplings
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Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})
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Couplings
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Joint Probabilities of (µ, ν)

Π(µ,ν) = probability measures on Ω2

with marginals µ and ν.
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Wasserstein Distance
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Def. For p � 1, the p-Wasserstein distance

between µ,⌫ in P(⌦) is

Wp(µ,⌫)
def
=

✓
inf

P2⇧(µ,⌫)
EP [D(X,Y )

p
]

◆1/p

.



Wasserstein on 2 Diracs
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Wasserstein on Uniform Measures
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Wasserstein on Uniform Measures
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Optimal Assignment ⊂ Wasserstein
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Wasserstein on Empirical Measures
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U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}

MXY
def
= [D(xi,yj)

p]ij
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U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}

MXY
def
= [D(xi,yj)

p]ij

Assume µ =
nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

Def. Optimal Transport Problem

W p
p (µ,⌫) = min

P2U(a,b)
hP ,MXY i



Wasserstein on Empirical Measures
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Transportation: Ingredients

MXY

U(a, b)

In the space of matrices n×m...
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Wasserstein on Empirical Measures
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Transportation: Computation

MXY
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Transportation: Computation

MXY

Wp
p (µ,ν) = ⟨P ⋆,MXY ⟩

= min
P∈U(a,b)

⟨P,MXY ⟩

U(a, b)P ⋆

In the space of matrices n×m...

O(n3
log(n))

network flow solver 
used in practice.P

?Solution       unstable 
and not always unique.

W p
p (µ,⌫) = max

↵2Rn,�2Rm
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Regularized Optimal Transport
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Wishlist:  
faster & scalable, more stable.  

approximate optimality is OK.



Entropic Regularization [Wilson’62]
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E(P )

def
=

nmX

i,j=1

Pij(logPij � 1) + ◆R+(Pij)

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )

Note. Unique optimal solution because of strong concavity of Entropy



Entropic Regularization [Wilson’62]

21

E(P )

def
=

nmX

i,j=1

Pij(logPij � 1) + ◆R+(Pij)

EMD Entropy

Discrete analog:  Cuturi, NIPS 2013

�
µ

⌫

P�

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )

Note. Unique optimal solution because of strong concavity of Entropy



Fast & Scalable Algorithm
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• [Sinkhorn’64] fixed-point iterations for           

!

• Fast,             or less, GPU parallel [C’13] .

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = D(u) KKD(v), KK
def
= e�MXY /�

(u,v)

O(nm)

u a/ KKv, v  b/ KKTu



Regularized Transport: Fast
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FastEMD

Rubner’s emd

Sink. CPU λ=50

Sink. GPU λ=50

Sink. CPU λ=10

Sink. GPU λ=10

Sink. CPU λ=1

Sink. GPU λ=1

Figure 4: Average computational time required to com-
pute a distance between two histograms sampled uni-
formly in the d dimensional simplex for varying values
of d. Dual-Sinkhorn divergences are run both on a sin-
gle CPU and on a GPU card.

Several Orders of Magnitude Faster
We measure the computational speed of
classic optimal transport distances vs. that
of dual-Sinkhorn divergences using Rub-
ner et al.’s (1997) and Pele and Wer-
man’s (2009) publicly available imple-
mentations. We pick a random distance
matrix M by generating a random graph
of d vertices with edge presence probabil-
ity 1/2 and edge weights uniformly dis-
tributed between 0 and 1. M is the all-
pairs shortest-path matrix obtained from
this connectivity matrix using the Floyd-
Warshall algorithm (Ahuja et al., 1993,
§5.6). Using this procedure, M is likely
to be an extreme ray of the cone M (Avis,
1980, p.138). The elements of M are
then normalized to have unit median. We
implemented Algorithm 1 in matlab, and
use emd mex and emd hat gd metric

mex/C files. The EMD distances and
Sinkhorn CPU are run on a single core
(2.66 Ghz Xeon). Sinkhorn GPU is run
on a NVidia Quadro K5000 card. We con-
sider � in {1, 10, 50}. � = 1 results in
a relatively dense matrix K, with results
comparable to that of the Independence kernel, while for � = 10 or 50 K = e��M has very small
values. Rubner et al.’s implementation cannot be run for histograms larger than d = 512. As can be
expected, the competitive advantage of dual-Sinkhorn divergences over EMD solvers increases with
the dimension. Using a GPU results in a speed-up of an additional order of magnitude.

Figure 5: The influence of � on the number of
iterations required to converge on histograms uni-
formly sampled from the simplex.

Empirical Complexity To provide an accu-
rate picture of the actual cost of the algorithm,
we replicate the experiments above but focus
now on the number of iterations (matrix-matrix
products) typically needed to obtain the conver-
gence of a set of N divergences from a given
point r, all uniformly sampled on the simplex.
As can be seen in Figure 5, the number of it-
erations required for vector d to converge in-
creases as e��M becomes diagonally dominant.
However, the total number of iterations does
not seem to vary with respect to the dimen-
sion. This observation can explain why we do
observe a quadratic (empirical) time complex-
ity O(d2) with respect to the dimension d in
Figure 4 above. These results suggest that the
costly action of keeping track of the actual ap-
proximation error (computing variations in d)
is not required, and that simply predefining a
fixed number of iterations can work well and
yield even additional speedups.

6 Conclusion

We have shown that regularizing the optimal transport problem with an entropic penalty opens the
door for new numerical approaches to compute OT. This regularization yields speed-ups that are
effective regardless of any assumptions on the ground metric M . Based on preliminary evidence, it

7



Regularized Transport: differentiable
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[CD’14]Prop. Gradients w.r.t a,X:

1. W� = max

↵,�
↵Ta+�T b� 1

�
(e↵/�)T KKe�/�

2. W� is convex w.r.t. a; raW� = � log(u).

3. If p = 2,⌦ = Rd
,

rXW� = XD(a
1
2
)� Y PT

� D(a� 1
2
)



Regularized Transport: duality
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[CP’15]Prop. Writing H⌫ : a 7! W�(µ,⌫),

1. The Legendre transform of H⌫ has a

closed form:

H⇤
⌫ : g 2 Rn 7! �

⇣
E(b) + bT log(KKeg/�)

⌘

2. By Fenchel duality, if f concave on ⌃n,

min

a2⌃n

W�(µ,⌫)�f(a) = max

g2Rn
f⇤(g)�H⇤

⌫(g)
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[CP’15]Prop. Writing H⌫ : a 7! W�(µ,⌫),

1. The Legendre transform of H⌫ has a

closed form:

H⇤
⌫ : g 2 Rn 7! �

⇣
E(b) + bT log(KKeg/�)

⌘

2. By Fenchel duality, if f concave on ⌃n,

min

a2⌃n

W�(µ,⌫)�f(a) = max

g2Rn
f⇤(g)�H⇤

⌫(g)

Relevance? 
!

Optimizing over measures with the 
Wasserstein metric is crucial to use OT 

in statistics / machine learning.



Variational Wasserstein Problems
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min
µ2Q⇢P(⌦)

F
�
µ,W p

p (µ,⌫1),W
p
p (µ,⌫2), · · · ,W p

p (µ,⌫N )
�

• k-means Algorithm [Lloyd’82] 

!

!

• [McCann’95] Interpolant 

! min
µ2P(⌦)

(1� t)W 2
2 (µ,⌫1) + tW 2

2 (µ,⌫2)

min
µ2P(Rd)

| suppµ|=k

W 2
2 (µ,⌫data)



Variational Wasserstein Problems
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• [JKO’98] gradient flow 

!

!

1. [Agueh’11] Wasserstein barycenters 
2. Wasserstein Dictionary Learning [RCP’15]  
3. [Bigot’15] Wasserstein PCA [SC’15] 
4. [Bassetti’06] Min. Kantorovich Estimation 
[MMC’15]

µt+1 = argmin
µ2P(⌦)

J(µ) + �tW
p
p (µ, µt)



1. Wasserstein Barycenters
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p✓0

p✓00

Wasserstein  
Barycenter 
[Agueh’11]

min
µ2P(⌦)

NX

i=1

�iW
p
p (µ,⌫i)

P (⌦)



LP Formulations

• Can solve exactly this problem with empirical 
measures in 2-Wasserstein case, MM-OT:
If | supp⌫i| = ni, LP of size (

Q
i ni,

P
i ni)



LP Formulations

• If solving on a grid (all locations fixed), LP:

min
P1,··· ,PN ,a

NX

i=1

�ihPi,M i

s.t. PT
i 1d = bi, 8i  N,

P11d = · · · = PN1d = a.



Primal Descent on Regularized W
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Averaging 30 Measures

30 measures on R2.

50

[CD’14]
min

µ2P(⌦)

NX

i=1

W�(µ,⌫i)



Primal Descent on Regularized W
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Averaging 30 Measures

30 measures on R2.
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Euclidean Mean

51

[CD’14]
min

µ2P(⌦)

NX

i=1

W�(µ,⌫i)



Primal Descent on Regularized W
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Averaging 30 Measures

30 measures on R2.

50

Euclidean Mean

51

2-Wasserstein

53

[CD’14]
min

µ2P(⌦)

NX

i=1

W�(µ,⌫i)



Regularized OT as KL Projection
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KL(P | KK) =

X

ij

Pij log (Pij/ KKij)

Prop. P� = ProjCa\C0
b
(KK)

Ca = {P |P1m = a} , C 0
b =

�
P |PT1n = b

 

hP,MXY i � �E(P ) = �KL(P | KK)



Regularized OT = KL Projections
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1. Sinkhorn = Dykstra’s alternate projection 
2. Only need to store & update diagonal multipliers

KK P�

ProjCa
(P ) = D

✓
a

P1m

◆
P,

ProjC0
b
(P ) = P D

✓
b

PT1n

◆
.

Prop. P� = ProjCa\C0
b
(KK)

Ca = {P |P1m = a} , C 0
b =

�
P |PT1n = b

 



Wasserstein Barycenter = KL Projections
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[BCCNP’15]

min
a

NX

i=1

W�(a, bi) = min
P=[P1,...,PN ]

P2C1\C2

NX

i=1

�iKL(Pi|KK)

C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi
 

hP,MXY i � �E(P ) = �KL(P | KK)



Wasserstein Barycenter = KL Projections
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[ KK · · · KK] P�

[BCCNP’15]

min
a

NX

i=1

W�(a, bi) = min
P=[P1,...,PN ]

P2C1\C2

NX

i=1

�iKL(Pi|KK)

C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi
 



Wasserstein Barycenter = KL Projections

34

[ KK · · · KK] P�

u=ones(size(B)); % d x N matrix	
while not converged	
	 v=u.*(K’*(B./(K*u))); % 2(Nd^2) cost  	
	 u=bsxfun(@times,u,exp(log(v)*weights))./v;	
end	
a=mean(v,2);

[BCCNP’15]

min
a

NX

i=1

W�(a, bi) = min
P=[P1,...,PN ]

P2C1\C2

NX

i=1

�iKL(Pi|KK)

C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi
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Convolutional Wasserstein Distances: Efficient 
Optimal Transportation on Geometric Domains, 
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!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$

H0=∞
!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""$

H0=max{H(µ0),H(µ1)}

Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.
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Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.
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Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.
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Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.
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Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣
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P (X )

Wasserstein Principal Geodesics
Euclidean Principal Components
Principal Curve

Figure 1: (top-left) Dataset: 60 ⇥ 60 images of a single Chinese character randomly translated,
scaled and slightly rotated (36 images displayed out of 300 used). Each image is handled as a
normalized histogram of 3, 600 non-negative intensities. (middle-left) Dataset schematically drawn
on P (X ). The Wasserstein principal geodesics of this dataset are depicted in red, its Euclidean
components in blue, and its principal curve (Verbeek et al., 2002) in yellow. (right) Actual curves
(blue colors depict negative intensities, green intensities � 1). Neither the Euclidean components
nor the principal curve belong to P (X ), nor can they be interpreted as meaningful axis of variation.

Foundations of PCA and Riemannian Extensions Carrying out PCA on a family (x1, . . . , xn

)

of points taken in a space X can be described in abstract terms as: (i) define a mean element x̄
for that dataset; (ii) define a family of components in X , typically geodesic curves, that contain x̄;
(iii) fit a component by making it follow the x

i

’s as closely as possible, in the sense that the sum
of the distances of each point x

i

to that component is minimized; (iv) fit additional components
by iterating step (iii) several times, with the added constraint that each new component is different
(orthogonal) enough to the previous components. When X is Euclidean and the x

i

’s are vectors in
Rd, the (n+ 1)-th component v

n+1 can be computed iteratively by solving:

v

n+1 2 argmin

v2V

?
n ,||v||2=1

NX

i=1

min

t2R
kx

i

� (x̄+ tv)k

2
2, where V0

def.
= ;, and V

n

def.
= span{v1, · · · , vn}. (1)

Since PCA is known to boil down to a simple eigen-decomposition when X is Euclidean or Hilber-
tian (Schölkopf et al., 1997), Eq. (1) looks artificially complicated. This formulation is, however,
extremely useful to generalize PCA to Riemannian manifolds (Fletcher et al., 2004). This gen-
eralization proceeds first by replacing vector means, lines and orthogonality conditions using re-
spectively Fréchet means (1948), geodesics, and orthogonality in tangent spaces. Riemannian PCA
builds then upon the knowledge of the exponential map at each point x of the manifold X . Each ex-
ponential map exp

x

is locally bijective between the tangent space T

x

of x and X . After computing
the Fréchet mean x̄ of the dataset, the logarithmic map log

x̄

at x̄ (the inverse of exp
x̄

) is used to map
all data points x

i

onto T

x̄

. Because T

x̄

is a Euclidean space by definition of Riemannian manifolds,
the dataset (log

x̄

x

i

)

i

can be studied using Euclidean PCA. Principal geodesics in X can then be
recovered by applying the exponential map to a principal component v?, {exp

x̄

(tv

?

), |t| < "}.

From Riemannian PCA to Wasserstein PCA: Related Work As remarked by Bigot et al.
(2015), Fletcher et al.’s approach cannot be used as it is to define Wasserstein geodesic PCA, be-
cause P (X ) is infinite dimensional and because there are no known ways to define exponential
maps which are locally bijective between Wasserstein tangent spaces and the manifold of probabil-
ity measures. To circumvent this problem, Boissard et al. (2015), Bigot et al. (2015) have proposed
to formulate the geodesic PCA problem directly as an optimization problem over curves in P (X ).

2
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5 Experiments

-1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1
µ̄

µ1

µ2

µ3

µ4

pca1

-5 0 5
-4

-3

-2

-1

0

1

2

3

4
µ̄

µ1

µ2

µ3

pca1

pca2

a) b)

Figure 3: Wasserstein mean µ̄ and first PC computed on a dataset of four (left) and three (right)
empirical measures. The second PC is also displayed in the right figure.

Toy samples: We first run our algorithm on 2 simple synthetic examples. We consider respectively
4 and 3 empirical measures supported on a small number of locations in X = R2, so that we can
compute their exact Wasserstein means, using the multi-marginal linear programming formulation
given in (Agueh and Carlier, 2011, §4). These measures and their mean (displayed in black dots)
are shown in Fig. 3. The first principal component computed on the left example is able to capture
both the variability of the measure locations, from left to right, and also the variability in the spread
of the locations. On the right example, the first principal component captures the overall elliptic
shape of the supports of all considered measures. The second principal component reflects the
variability in the parameters of each ellipse on which measures are located. The variability in the
weights of each location is also captured through the Wasserstein mean, since each single line of
the generalized geodesics has a corresponding location and weight in the Wasserstein mean.

MNIST: For each of the digits ranging from 0 to 9, we sample 1,000 images in the MNIST
database representing that digit. Each image, originally a 20x20 greyscale image, is converted into
a probability distribution on that grid by normalizing each intensity by the total intensity in the
image. We compute the Wasserstein mean for each digit using the approach of Benamou et al.
(2015). We then follow our approach to compute the first (generalized) principal geodesics for each
digit. These 10 principal geodesics are displayed in Fig. 4 by showing intermediary (rasterized)
measures appearing at regularly sampled time intervals. While some deformations in these curves
can be attributed to relatively simple rotations around the digit center, more interesting deformations
appear in some of the curves, such as the the loop on the bottom left of digit 2. Fig. 4 displays the
first PC obtained on a subset of MNIST composed of 2,000 images of 4 and 2 in equal proportions.

Figure 4: First PC sampled at times tk = k/8, k = 0, . . . , 8. Top images correspond to t = 0 and
bottom ones to t = 1. Each dataset was made of 1000 images sampled from MNIST database.
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[Ambrosio’06] Generalized Geodesics

min

v1,v22L2(⌫̄,⌦)

PN
i=1 min

t2[0,1]
W 2

2 (gt(v1,v2),⌫i) + �R(v1,v2),

subject to

⇢
gt(v1,v2) = (Id� v1 + t(v1 + v2))#¯⌫
Id� v1 and Id + v2 are Monge maps from ⌫̄

Tangent Space and Tangent Vectors Let µ : I ⇢ R ! P (X ) be an absolutely continuous curve
in P (X ). Ambrosio et al. (2006, Theorem 8.3.2) state that for any t 2 I , there exists a unique vector
field (or velocity field) vt 2 L

2(µt,X ) which verifies the continuity equation in the distribution
sense with a condition of norm minimality,

@µt

@t

+r · (vtµt) = 0, kvtkL2(µ
t

,X ) 6 |µ

0
|(t),

where |µ

0
|(t) = limt!s W (t, s)/|t � s| is the metric derivative of (µt) at t. This velocity field

vt 2 L

2(µt,X ) can be defined as the tangent vector of (µt) at t. If X is a Euclidean space, the
corresponding tangent space can be defined as a subset of the Lebesgue space L2(µt,X ) (Ambrosio
et al., 2006, Definition 8.4.1). For curves in P (X ) which are geodesics parameterized through
Eq. (3), the tangent vector at time zero is deduced from the optimal mapping T by v = T � id.

3 Geodesic PCA in the 2-Wasserstein Space

Geodesic Parameterization and PCA Formulation The goal of geodesic principal component
analysis is to define geodesic curves in P (X) that go through the mean µ̄ and which pass closely
enough to all target measures µi. An important part of our approach lies thus in the way we param-
eterize and optimize over the space of such geodesics. Geodesic curves can be of course parameter-
ized by their two end points ⌫ and ⌘. However, to avoid dealing explicitly with the constraint that
the geodesic needs to go through the mean µ̄, one can start directly from µ̄, and consider a velocity
field v 2 L

2(µ̄,X ) which displaces all of its mass in both directions:

gt(v) = (id + tv)#µ̄, t 2 [�1, 1]. (4)

Lemma 7.2.1 of Ambrosio et al. (2006) implies that any geodesic going through µ̄ can be written
as Eq. (4), so that we do not lose any generality using this parameterization. However, given an
arbitrary vector field v, the curve (gt(v))t is not necessarily a geodesic.

A trivial way to ensure that (gt(v))t is geodesic is to impose that the vector field v is a translation,
namely that v is uniformly equal to a vector ⌧ for all elements of Supp(µ̄). One can show in that
case that the Wasserstein PCA problem described later in Eq. (6) boils down to an optimal velocity
vector ⌧ which is the first principal component of the set of means of all measures µi.

Ensuring at each step of our algorithm that v is still such that (gt(v))t is a geodesic curve is the main
challenge in this work. To facilitate this task, we propose to use a more general concept of geodesics
introduced by Ambrosio et al. (2006, §9.2):
Definition 2. (adapted from (Ambrosio et al., 2006, §9.2)) Let �, ⌫, ⌘ 2 P (X ), and assume there
is an optimal mapping T

(�,⌫) from � to ⌫ and an optimal mapping T

(�,⌘) from � to ⌘. A generalized
geodesic, illustrated in Fig. 2 between ⌫ and ⌘ with base � is defined by,

gt =
⇣
(1� t)T (�,⌫) + tT

(�,⌘)
⌘
#�, t 2 [0, 1].
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Figure 2: Generalized geodesic interpolation between two empirical measures ⌫ and ⌘ using the
base measure �, all defined on X = R2.
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Figure 3: Wasserstein mean µ̄ and first PC computed on a dataset of four (left) and three (right)
empirical measures. The second PC is also displayed in the right figure.

Toy samples: We first run our algorithm on 2 simple synthetic examples. We consider respectively
4 and 3 empirical measures supported on a small number of locations in X = R2, so that we can
compute their exact Wasserstein means, using the multi-marginal linear programming formulation
given in (Agueh and Carlier, 2011, §4). These measures and their mean (displayed in black dots)
are shown in Fig. 3. The first principal component computed on the left example is able to capture
both the variability of the measure locations, from left to right, and also the variability in the spread
of the locations. On the right example, the first principal component captures the overall elliptic
shape of the supports of all considered measures. The second principal component reflects the
variability in the parameters of each ellipse on which measures are located. The variability in the
weights of each location is also captured through the Wasserstein mean, since each single line of
the generalized geodesics has a corresponding location and weight in the Wasserstein mean.

MNIST: For each of the digits ranging from 0 to 9, we sample 1,000 images in the MNIST
database representing that digit. Each image, originally a 20x20 greyscale image, is converted into
a probability distribution on that grid by normalizing each intensity by the total intensity in the
image. We compute the Wasserstein mean for each digit using the approach of Benamou et al.
(2015). We then follow our approach to compute the first (generalized) principal geodesics for each
digit. These 10 principal geodesics are displayed in Fig. 4 by showing intermediary (rasterized)
measures appearing at regularly sampled time intervals. While some deformations in these curves
can be attributed to relatively simple rotations around the digit center, more interesting deformations
appear in some of the curves, such as the the loop on the bottom left of digit 2. Fig. 4 displays the
first PC obtained on a subset of MNIST composed of 2,000 images of 4 and 2 in equal proportions.

Figure 4: First PC sampled at times tk = k/8, k = 0, . . . , 8. Top images correspond to t = 0 and
bottom ones to t = 1. Each dataset was made of 1000 images sampled from MNIST database.
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• Application to Boltzmann machines [MMC’15] 
using contrastive divergence, better performance in 
denoising, data completion. 

• Important statistical regularization / stochastic 
optimization problems.
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MNIST Data MNIST RBM MNIST RBM-W

PLANTS Data PLANTS RBM PLANTS RBM-W

Figure 4: Samples of the MNIST and PLANTS dataset, and samples generated by the standard and the
Wasserstein RBMs. (Images for the PLANTS data are automatically generated from the Wikimedia Commons
template https://commons.wikimedia.org/wiki/File:BlankMap-USA-states-Canada-provinces.

svg created by user Lokal Profil.)

Data Completion The setting of the data completion experiment is illustrated in Figure 5 (top). The distribution
p✓(x|v) over possible reconstructions can be sampled from using an alternate Gibbs sampler, or by enumeration.
The expected Hamming distance between the true state x

? and the reconstructed state modeled by the distribution
p✓(x|v) is given by iterating on the 2

k possible reconstructions: E =

P
h2{0,1}k p✓(x |v) · H(x,x?

). Since the
reconstruction is a probability distribution, we can compute the expected Hamming error, but also its bias-variance
decomposition. On MNIST, we hide randomly located image patches of size 3 ⇥ 3 (i.e. k = 9). On PLANTS,
we hide random subsets of k = 9 variables. Results are shown in Figure 6 (left), where we compare three types
of models: Kernel density estimation (KDE), standard RBM (RBM) and Wasserstein RBM (RBM-W). The KDE
estimation model uses a Gaussian kernel, with the Gaussian scale parameter chosen such that the KL divergence
of the model from the validation data is minimized. The RBM-W is better or comparable the other models. Of
particular interest is the structure of the expected Hamming error: For the standard RBM, a large part of the error
comes from the variance (or entropy), while for the Wasserstein RBM, the bias term is the most contributing. This
can be related to what is observed in Figure 3: For a data point outside the area covered by the red points, the
reconstruction is systematically redirected towards the nearest red cluster, thus, incurring a systematic bias.

Data Denoising Here, we consider a simple noise process where for a predefined subset of k variables, denoted
by h a known number l of bits flips occur randomly. Remaining d � k variables are denoted by v. The setting
of the experiment is illustrated in Figure 5 (bottom). Denoting x

? the original and e
x its noisy version resulting

from flipping l variables of h, the expected Hamming error is given by iterating over the
�k
l

�
states x with same

visible variables v and that are at distance l of ex: E =

P
h2{0,1}k p✓(x |v,H(x, ex) = l) ·H(x,x?

). Note that the
original example x? is necessarily part of this set of states under the noise model assumption. For the MNIST data,
we choose randomly located images patches of size 4 ⇥ 3 or 3 ⇥ 4 (i.e. k = 12), and generate l = 4 random bit
flips within the selected patch. For the PLANTS data, we generate l = 4 bit flips in k = 12 randomly preselected
input variables. Figure 6 (right) shows the denoising error in terms of expected Hamming distance on the same two
datasets. The RBM-W is better or comparable to other models. Like for the completion task, the main difference
between the two RBMs is the bias/variance ratio, where again the Wasserstein RBM tends to have larger bias. This
experiment has considered a very simple noise model consisting of a fixed number of l random bit flips over a
small predefined subset of variables. Denoising highly corrupted complex data will however require to combine
Wasserstein models with more flexible noise models such as the ones proposed by [15].

7



To conclude

• OT has deep/rich mathematical foundations. 

• Regularized OT [C.’13] provides a convenient 
idea to import these ideas into stats/ML. 

• Adopted in graphics/imaging, now in stats, 
ML, data fusion, Bayesian computation.
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