Fast Computation of Wasserstein Distances and Applications to Parameter Estimation

Marco Cuturi Kyoto University

Joint work with G. Peyré, G. Carlier (Dauphine), J. Solomon (Princeton/MIT), F. de Goes (Pixar), A. Gramfort (ParisTech), J.D. Benamou (INRIA), V. Seguy, A. Rolet (Kyoto), G. Montavon and K.R. Müller (TU Berlin) and more...

A geometric toolbox to compare probability measures supported on a metric space.

Monge

Kantorovich

Dantzig

Wasserstein

McCann

Villani

Why is it relevant to ML?

- New geometry for statistical modeling
 - Information geometry is crucial in stats.
 - That geometry is often KL (e.g. MLE).
- New algorithms to study histogram data
 - Bags-of-features are everywhere.
 - Knowledge on these features is often known but not used.

Why now?

- Key results in maths since '95~
 - [McCann'95], [JKO'98], [Benamou'98],
 [Ambrosio'06], [Villani'03/'09]
- More work in CV/TCS/Graphics since '98~
 - Earth Mover's Distance [Rubner'98], Embeddings [Indyk'03] Google "earth mover"
 - Scholar

About 8,640 results

- Longstanding roadblock: computation
 - Regularization [C.'13] can provide the key

Outline

- Definitions: The Wasserstein Distances
- Fast computations with regularization
- Wasserstein variational problems
 - barycenters
 - dictionary learning
 - PCA
 - minimum Kantorovich estimation

Definitions: Couplings & Wasserstein

Assume (Ω, \mathbf{D}) is a probability space endowed with a metric.

For μ, ν probability measures in $\mathcal{P}(\Omega)$,

 $\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ \boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) | \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\ \boldsymbol{P}(\boldsymbol{A} \times \Omega) = \boldsymbol{\mu}(\boldsymbol{A}), \\ \boldsymbol{P}(\Omega \times \boldsymbol{B}) = \boldsymbol{\nu}(\boldsymbol{B}) \}$

Couplings

Couplings

Wasserstein Distance

Def. For
$$p \ge 1$$
, the *p*-Wasserstein distance
between $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$ is
 $W_p(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \left(\inf_{\boldsymbol{P} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \mathbb{E}_{\boldsymbol{P}}[D(X, Y)^p] \right)^{1/p}.$

Wasserstein on 2 Diracs

Wasserstein on Uniform Measures

Wasserstein on Uniform Measures

Optimal Assignment C Wasserstein

Assume
$$\boldsymbol{\mu} = \sum_{i=1}^{n} a_i \delta_{x_i}$$
 and $\boldsymbol{\nu} = \sum_{j=1}^{m} b_j \delta_{y_j}$.
 $M_{\boldsymbol{X}\boldsymbol{Y}} \stackrel{\text{def}}{=} [D(\boldsymbol{x}_i, \boldsymbol{y}_j)^p]_{ij}$
 $U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text{def}}{=} \{\boldsymbol{P} \in \mathbb{R}^{n \times m}_+ | \boldsymbol{P} \boldsymbol{1}_m = \boldsymbol{a}, \boldsymbol{P}^T \boldsymbol{1}_n = \boldsymbol{b} \}$

Assume
$$\boldsymbol{\mu} = \sum_{i=1}^{n} a_i \delta_{x_i}$$
 and $\boldsymbol{\nu} = \sum_{j=1}^{m} b_j \delta_{y_j}$.
 $M_{\boldsymbol{X}\boldsymbol{Y}} \stackrel{\text{def}}{=} [D(\boldsymbol{x}_i, \boldsymbol{y}_j)^p]_{ij}$
 $U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text{def}}{=} \{\boldsymbol{P} \in \mathbb{R}^{n \times m}_+ | \boldsymbol{P} \boldsymbol{1}_m = \boldsymbol{a}, \boldsymbol{P}^T \boldsymbol{1}_n = \boldsymbol{b} \}$

Assume
$$\boldsymbol{\mu} = \sum_{i=1}^{n} a_i \delta_{x_i}$$
 and $\boldsymbol{\nu} = \sum_{j=1}^{m} b_j \delta_{y_j}$.
 $M_{\boldsymbol{X}\boldsymbol{Y}} \stackrel{\text{def}}{=} [D(\boldsymbol{x}_i, \boldsymbol{y}_j)^p]_{ij}$
 $U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text{def}}{=} \{\boldsymbol{P} \in \mathbb{R}^{n \times m}_+ | \boldsymbol{P} \boldsymbol{1}_m = \boldsymbol{a}, \boldsymbol{P}^T \boldsymbol{1}_n = \boldsymbol{b}\}$
Def. Optimal Transport Problem
 $W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle$

Regularized Optimal Transport

Entropic Regularization [Wilson'62]

$$E(P) \stackrel{\text{def}}{=} \sum_{i,j=1}^{nm} P_{ij} (\log P_{ij} - 1) + \iota_{\mathbb{R}_+}(P_{ij})$$

Def. Regularized Wasserstein,
$$\gamma \ge 0$$

 $W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$

Note. Unique optimal solution because of strong concavity of Entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \ge 0$

$$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

Note. Unique optimal solution because of strong concavity of Entropy

Fast & Scalable Algorithm

Prop. If
$$P_{\gamma} \stackrel{\text{def}}{=} \operatorname{argmin}_{P \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

then $\exists ! \boldsymbol{u} \in \mathbb{R}^{n}_{+}, \boldsymbol{v} \in \mathbb{R}^{m}_{+}$, such that
 $P_{\gamma} = \mathbf{D}(\boldsymbol{u}) \ K \mathbf{D}(\boldsymbol{v}), \quad K \stackrel{\text{def}}{=} e^{-M_{\boldsymbol{X}\boldsymbol{Y}}/\gamma}$

• [Sinkhorn'64] fixed-point iterations for (u, v)

$$\boldsymbol{u} \leftarrow \boldsymbol{a} / \boldsymbol{K} \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / \boldsymbol{K}^T \boldsymbol{u}$$

• Fast, O(nm) or less, GPU parallel [C'13].

Regularized Transport: Fast

Regularized Transport: differentiable

Prop. Gradients w.r.t
$$\boldsymbol{a}, \boldsymbol{X}$$
: [CD'14]
1. $W_{\gamma} = \max_{\alpha,\beta} \alpha^{T} \boldsymbol{a} + \beta^{T} \boldsymbol{b} - \frac{1}{\gamma} (e^{\alpha/\gamma})^{T} K e^{\beta/\gamma}$
2. W_{γ} is convex w.r.t. \boldsymbol{a} ; $\nabla_{\boldsymbol{a}} W_{\gamma} = \gamma \log(\boldsymbol{u})$.
3. If $p = 2, \Omega = \mathbb{R}^{d}$,
 $\nabla_{\boldsymbol{X}} W_{\gamma} = \boldsymbol{X} \mathbf{D}(\boldsymbol{a}^{\frac{1}{2}}) - \boldsymbol{Y} P_{\gamma}^{T} \mathbf{D}(\boldsymbol{a}^{-\frac{1}{2}})$

Regularized Transport: duality

Prop. Writing $H_{\nu} : a \mapsto W_{\gamma}(\mu, \nu), [CP'15]$

1. The Legendre transform of H_{ν} has a **closed form**:

$$H^*_{\boldsymbol{\nu}}: \boldsymbol{g} \in \mathbb{R}^n \mapsto \gamma \left(E(\boldsymbol{b}) + \boldsymbol{b}^T \log(\boldsymbol{K} e^{\boldsymbol{g}/\gamma}) \right)$$

2. By Fenchel duality, if f concave on Σ_n ,

$$\min_{\boldsymbol{a}\in\Sigma_n} W_{\gamma}(\boldsymbol{\mu},\boldsymbol{\nu}) - f(\boldsymbol{a}) = \max_{\boldsymbol{g}\in\mathbb{R}^n} f_*(\boldsymbol{g}) - H_{\boldsymbol{\nu}}^*(\boldsymbol{g})$$

Regularized Transport: duality

Prop. Writing $H_{\nu} : a \mapsto W_{\gamma}(\mu, \nu), [CP'15]$

1. The Legendre transform of H_{ν} has a closed form:

Optimizing over measures with the Wasserstein metric is crucial to use OT in statistics / machine learning.

Variational Wasserstein Problems

$$\min_{\boldsymbol{\mu}\in Q\subset\mathcal{P}(\Omega)}F\left(\boldsymbol{\mu},W_{p}^{p}(\boldsymbol{\mu},\boldsymbol{\nu_{1}}),W_{p}^{p}(\boldsymbol{\mu},\boldsymbol{\nu_{2}}),\cdots,W_{p}^{p}(\boldsymbol{\mu},\boldsymbol{\nu_{N}})\right)$$

• k-means Algorithm [Lloyd'82]

$$\min_{\substack{\boldsymbol{\mu} \in \mathcal{P}(\mathbb{R}^d) \\ |\operatorname{supp} \boldsymbol{\mu}| = k}} W_2^2(\boldsymbol{\mu}, \boldsymbol{\nu}_{data})$$

• [McCann'95] Interpolant

$$\min_{\boldsymbol{\mu}\in\mathcal{P}(\Omega)}(1-t)W_2^2(\boldsymbol{\mu},\boldsymbol{\nu_1})+tW_2^2(\boldsymbol{\mu},\boldsymbol{\nu_2})$$

Variational Wasserstein Problems

• [JKO'98] gradient flow

$$\mu_{t+1} = \operatorname*{argmin}_{\boldsymbol{\mu} \in \mathcal{P}(\Omega)} J(\boldsymbol{\mu}) + \lambda_t W_p^p(\boldsymbol{\mu}, \mu_t)$$

[Agueh'11] Wasserstein barycenters
 Wasserstein Dictionary Learning [RCP'15]
 [Bigot'15] Wasserstein PCA [SC'15]
 [Bassetti'06] Min. Kantorovich Estimation
 [MMC'15]

1. Wasserstein Barycenters

N $\min_{\boldsymbol{\mu}\in\mathcal{P}(\Omega)}\sum_{i=1}^{\infty}\lambda_i W_p^p(\boldsymbol{\mu},\boldsymbol{\nu_i})$ $p_{\theta'}$ Wasserstein $P(\Omega)$ Barycenter [Agueh'11] $p_{ heta^{\prime\prime}}$ 28

LP Formulations

Can solve exactly this problem with empirical measures in 2-Wasserstein case, MM-OT:
 If | supp *ν_i* | = *n_i*, LP of size (∏_i *n_i*, ∑_i *n_i*)

LP Formulations

• If solving on a grid (all locations fixed), LP:

$$\min_{P_1, \cdots, P_N, \boldsymbol{a}} \sum_{i=1}^N \lambda_i \langle P_i, M \rangle$$

s.t. $P_i^T \mathbf{1}_d = \boldsymbol{b_i}, \forall i \leq N,$
 $P_1 \mathbf{1}_d = \cdots = P_N \mathbf{1}_d = \boldsymbol{a}.$

Primal Descent on Regularized W

Primal Descent on Regularized W

[CD'14]

Primal Descent on Regularized W

Regularized OT as KL Projection

$$\mathbf{KL}(P \mid \mathbf{K}) = \sum_{ij} P_{ij} \log (P_{ij} / \mathbf{K}_{ij})$$
$$\langle P, M_{\mathbf{XY}} \rangle - \gamma E(P) = \gamma \mathbf{KL}(P \mid \mathbf{K})$$

Prop.
$$P_{\gamma} = \operatorname{Proj}_{C_{a} \cap C_{b}'}(K)$$

 $C_{a} = \{P | P\mathbf{1}_{m} = a\}, C_{b}' = \{P | P^{T}\mathbf{1}_{n} = b\}$

$$\begin{vmatrix} \mathbf{Prop.} \ P_{\gamma} = \operatorname{Proj}_{C_{a} \cap C_{b}'}(\mathbf{K}) \\ C_{a} = \{P | P\mathbf{1}_{m} = \mathbf{a}\}, \ C_{b}' = \{P | P^{T}\mathbf{1}_{n} = \mathbf{b}\} \end{vmatrix}$$

$$\operatorname{Proj}_{C_{a}}(P) = \mathbf{D}\left(\frac{a}{P\mathbf{1}_{m}}\right)P,$$
$$\operatorname{Proj}_{C_{b}'}(P) = P \mathbf{D}\left(\frac{b}{P^{T}\mathbf{1}_{n}}\right).$$

Sinkhorn = Dykstra's alternate projection K •
 Only need to store & update diagonal multipliers

Wasserstein Barycenter = KL Projections

$$\langle P, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(P) = \gamma \mathbf{KL}(P \mid \boldsymbol{K})$$
$$\min_{\boldsymbol{a}} \sum_{i=1}^{N} W_{\gamma}(\boldsymbol{a}, \boldsymbol{b}_{i}) = \min_{\substack{\mathbf{P} = [\boldsymbol{P}_{1}, \dots, \boldsymbol{P}_{N}]\\ \mathbf{P} \in \boldsymbol{C}_{1} \cap \boldsymbol{C}_{2}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{KL}(\boldsymbol{P}_{i} \mid \boldsymbol{K})$$
$$\boldsymbol{C_{1}} = \{\mathbf{P} \mid \exists \boldsymbol{a}, \forall i, P_{i} \mathbf{1}_{m} = \boldsymbol{a}\}$$
$$\boldsymbol{C_{2}} = \{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n} = \boldsymbol{b}_{i}\}$$

Wasserstein Barycenter = KL Projections

Wasserstein Barycenter = KL Projections

$$\min_{\boldsymbol{a}} \sum_{i=1}^{N} W_{\gamma}(\boldsymbol{a}, \boldsymbol{b}_{i}) = \min_{\substack{\mathbf{P} = [\boldsymbol{P}_{1}, \dots, \boldsymbol{P}_{N}]\\ \mathbf{P} \in \boldsymbol{C}_{1} \cap \boldsymbol{C}_{2}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{KL}(\boldsymbol{P}_{i} | \boldsymbol{K})$$
$$\boldsymbol{C}_{1} = \{\mathbf{P} | \exists \boldsymbol{a}, \forall i, P_{i} \mathbf{1}_{m} = \boldsymbol{a} \}$$
$$\boldsymbol{C}_{2} = \{\mathbf{P} | \forall i, P_{i}^{T} \mathbf{1}_{n} = \boldsymbol{b}_{i} \}$$

u=ones(size(B)); % d x N matrix
while not converged
v=u.*(K'*(B./(K*u))); % 2(Nd^2) cost
u=bsxfun(@times,u,exp(log(v)*weights))./v;
end
a=mean(v,2);

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains, SIGGRAPH'15

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains, SIGGRAPH'15

35

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains, SIGGRAPH'15

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains, SIGGRAPH'15

Applications: Brain Imaging

Fast Optimal Transport Averaging of Neuroimaging Data Information Processing in Medical Imaging 2015

Applications: Brain Imaging

A Smoothed Dual Approach for Variational Wasserstein Problems to appear in SIAM Imaging Sciences 37

2. Dictionary Learning

$$\min_{\boldsymbol{A}\in(\Sigma_n)^K,\boldsymbol{\Lambda}\in(\Sigma_K)^N}\sum_{i=1}^N W_{\gamma}\left(\boldsymbol{b_i},\sum_{k=1}^K\boldsymbol{\Lambda_k^i\boldsymbol{a_k}}\right)$$

2. Dictionary Learning

2. Dictionary Learning

3. Wasserstein PCA

Wasserstein PCA vs. Euclidean PCA

Generalized Principal Geodesics

[Ambrosio'06] Generalized Geodesics

$$\min_{\boldsymbol{v_1}, \boldsymbol{v_2} \in L^2(\bar{\boldsymbol{\nu}}, \Omega) } \sum_{i=1}^N \min_{t \in [0,1]} W_2^2 \left(g_t(\boldsymbol{v_1}, \boldsymbol{v_2}), \boldsymbol{\nu_i} \right) + \lambda R(\boldsymbol{v_1}, \boldsymbol{v_2}),$$
subject to
$$\begin{cases} g_t(\boldsymbol{v_1}, \boldsymbol{v_2}) = \left(\operatorname{Id} - \boldsymbol{v_1} + t(\boldsymbol{v_1} + \boldsymbol{v_2}) \right) \# \bar{\boldsymbol{\nu}} \\ \operatorname{Id} - \boldsymbol{v_1} \text{ and } \operatorname{Id} + \boldsymbol{v_2} \end{cases}$$
are Monge maps from $\bar{\boldsymbol{\nu}}$

Generalized Principal Geodesics

MNIST data

4. Minimum Kantorovich Estimation

$$\theta^{\star} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} W_p^p(\boldsymbol{p_{\theta}}, \boldsymbol{\nu_{\text{data}}})$$

4. Minimum Kantorovich Estimation

$$W_{\gamma}(p_{\theta}, \nu_{\text{data}}) = \max_{\alpha, \beta} \langle \alpha, p_{\theta} \rangle + \langle \beta, \nu_{\text{data}} \rangle - \gamma \langle e^{\alpha/\gamma}, K e^{\beta/\gamma} \rangle$$

$$\nabla_{\theta} W_{\gamma} = \left(\frac{\partial p_{\theta}}{\partial \theta}\right)^T \boldsymbol{\alpha}^{\star}$$

- Application to Boltzmann machines [MMC'15] using contrastive divergence, better performance in denoising, data completion.
- Important statistical regularization / stochastic optimization problems.

Minimum Kantorovich Estimation

To conclude

- OT has deep/rich mathematical foundations.
- Regularized OT [C.'13] provides a convenient idea to import these ideas into stats/ML.
- Adopted in graphics/imaging, now in stats, ML, data fusion, Bayesian computation.