T-32

Learning from Positive and Unlabeled Data 2: Computationally Efficient Estimation of Class Priors

Marthinus C. du Plessis (UTokyo), Gang Niu (Baidu Inc.) and Masashi Sugiyama (UTokyo)

Task: Estimate the class prior π from the *positive and unlabeled* data

We show that π can be estimated by partially matching two distributions

Overestimation is avoided by penalization, giving a simple estimator

Why is π needed?

To train a classifier we need to know π (**T-31**)

$$\mathcal{X} := \{\boldsymbol{x}_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y=1)$$

$$\mathcal{X}' := \left\{ oldsymbol{x}_i'
ight\}_{i=1}^{n'} \overset{ ext{i.i.d.}}{\sim} p(oldsymbol{x})$$

$$p(\mathbf{x}) = \pi p(\mathbf{x}|y=1) + (1-\pi)p(\mathbf{x}|y=-1)$$

$$\pi = p(y = 1)$$
 Class prior?

