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機械学習を使って
脳から夢の内容を解読する
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“Brain decoding”, “Mind-reading”

Reading minds

By scanning blobs 
of brain activity, 
scientists may 
be able to decode 
people’s thoughts, 
their dreams 
and even their 
intentions. 

B Y  K E R R I  S M I T H

Jack Gallant perches on the edge of a swivel chair in his lab at the 
University of California, Berkeley, fixated on the screen of a com-
puter that is trying to decode someone’s thoughts. 

On the left-hand side of the screen is a reel of film clips that 
Gallant showed to a study participant during a brain scan. And on the 
right side of the screen, the computer program uses only the details of 
that scan to guess what the participant was watching at the time.

Anne Hathaway’s face appears in a clip from the film Bride Wars, 
engaged in heated conversation with Kate Hudson. The algorithm con-
fidently labels them with the words ‘woman’ and ‘talk’, in large type. 
Another clip appears — an underwater scene from a wildlife documen-
tary. The program struggles, and eventually offers ‘whale’ and ‘swim’ 
in a small, tentative font.

“This is a manatee, but it doesn’t know what that is,” says Gallant, 
talking about the program as one might a recalcitrant student. They 
had trained the program, he explains, by showing it patterns of brain 

activity elicited by a range of images and film clips. His program had 
encountered large aquatic mammals before, but never a manatee.

Groups around the world are using techniques like these to try to 
decode brain scans and decipher what people are seeing, hearing and 
feeling, as well as what they remember or even dream about. 

Media reports have suggested that such techniques bring mind- 
reading “from the realms of fantasy to fact”, and “could influence the 
way we do just about everything”. The Economist in London even  
cautioned its readers to “be afraid”, and speculated on how long it will 
be until scientists promise telepathy through brain scans.

Although companies are starting to pursue brain decoding for a few 
applications, such as market research and lie detection, scientists are 
far more interested in using this process to learn about the brain itself. 
Gallant’s group and others are trying to find out what underlies those 
different brain patterns and want to work out the codes and algorithms 
the brain uses to make sense of the world around it. They hope that IL
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Robot control by fMRI decoding
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(Kimura, Imamizu, Shimada, Oztop, Harner, Kamitani, 2006;

Collaboration with Honda Research Institute) 
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Let the machine learn!
Machine learning-based decoding

Decoding

€ 

r
Stimulus/Behavior/Mind Brain activity 

(= “Code”)
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Supervised learning:
1. Collect training data: Brain activity (r) labeled by stimulus/task(s)
2. Train a decoding model using the training data: s = f(r)
3. Test the trained model with independent data 

~100,000 voxels  vs.  100–1,000 samples
→ linear and/or sparse models



From mapping to decoding
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Task A − Task B

• Voxel-by-voxel analysis
• Statistical parameter 
estimation with whole data
• Evaluation by p-value

Brain decoding 
• Multi-voxel pattern
• Trial-by-trial prediction
• Evaluation by prediction 
accuracy/error

Functional brain mapping



Trained 
decoder

(linear SVM)

Decoded 
orientation

Novel data

Decoding of visual orientation
(Kamitani and Tong, Nat Neurosci 2005; Curr Biol 2006; Kamitani and 

Sawahata, Neuroimage 2008; Tong et al. Neuroimage 2012)
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400 voxels 
from V1/2



“Hyperacuity” in fMRI decoding

(cf., Boynton, 2005; Rojer and 
Schwartz, 1990)

Information from subvoxel representation via random bias of voxel 
sampling due to irregular columnar and/or vasculature structure 
(Kamitani and Tong, 2005)

(See also: Op de Beeck, 2009; Kamitani & Sawahata, 2009; Gardner, 2009; Shmuel 
et al. 2009; Kriegeskorte et al 2009; Mannion et al., 2009; Swisher et al. 2010; 
Freeman et al. 2011; Clifford et al., 2011; Chaimow et al 2011)
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Ensemble feature selectivity
(Kamitani & Tong, 2005, 2006)
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Voxel sampling of columns: 
1D Simulation

100
Voxels

10,000
Columns 

Decoder
output

(true orientation 
= vertical)

θpref.shifts by 18° θpref. shifts by 18°+noise 
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Regular Irregular

Jitter



Decoder
Decoding subjective state

(Kamitani and Tong, 2005, 2006; Stokes et al.,2009; Harrison et al., 2009) 8

Common neural representation 
for perception and imagery



…

~30 zeros

10 x 10 binary pixels

2100  =
10000000・・・ possible images

Classification of all possible visual 
images
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Modular decoding

Brain
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Mind

Decoder #1

Decoder #2

・
・
・

Decoder #3

Elemental 
features
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(Miyawaki, Uchida, Yamashita, Sato, Morito,Tanabe, Sadato, Kamitani, Neuron 2008; 
Fujiwara, Miyawaki, Kamitani, NIPS 2009, Neural Computation 2013)



Multi-scale 
Image bases

+ ++

Presented image 
(contrast)

Reconstructed image

fMRI signals

Reconstruction model
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Training
~400 random images (~ 1 hour)

Test
Geometric shapes, alphabets, random images (not used in training)
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All voxels in V1 and V2 served as input, and sparse estimation (ARD) automatically 
selected relevant voxels (Yamashita, Sato, Yoshioka, Tong, Kamitani, Neuroimage 2008).

Experimental procedure



Reconstruction results

17

(Miyawaki, Uchida, Yamashita, Sato, Morito,Tanabe, Sadato, Kamitani, Neuron 2008)
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provide the first reconstructions of natural movies from human
brain activity. This is a critical step toward the creation of brain
reading devices that can reconstruct dynamic perceptual
experiences. Our solution to this problem rests on two key
innovations. The first is a new motion-energy encoding model
that is optimized for use with fMRI and that aims to reflect the
separate contributions of the underlying neuronal population
and hemodynamic coupling (Figure 1). This encoding model
recovers fine temporal information from relatively slow BOLD

signals. The second is a sampled natural movie prior that is
embedded within a Bayesian decoding framework. This
approach provides a simple method for reconstructing spatio-
temporal stimuli from the sparsely sampled and slow BOLD
signals.
Our results provide the first evidence that there is a positive

correlation between eccentricity and optimal speed in human
early visual areas. This provides a functional explanation for
previous behavioral studies indicating that speed sensitivity
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Figure 3. Identification Analysis

(A) Identification accuracy for one subject (S1). The test data in our experiment consisted of 486 volumes (s) of BOLD signals evoked by the test movies. The
estimatedmodel yielded 486 volumes of BOLD signals predicted for the samemovies. The brightness of the point in themth column and nth row represents
the log-likelihood (see Supplemental Experimental Procedures) of the BOLD signals evoked at the mth second given the BOLD signal predicted at the nth
second. The highest log-likelihood in each column is designated by a red circle and thus indicates the choice of the identification algorithm.
(B) Temporal offset between the correct timing and the timing identified by the algorithm for the same subject shown in (A). The algorithm was correct to
within 6 one volume (s) 95% of the time (464 of 486 volumes); chance performance is <1% (3 of 486 volumes; i.e., three volumes centered at the correct
timing).
(C) Scaling of identification accuracy with set size. To understand how identification accuracy scales with size of stimulus set, we enlarged the identification
stimulus set to include additional stimuli drawn from a natural movie database (which was not actually used in the experiment). For all three subjects, iden-
tification accuracy (within 6 one volume) was >75% even when the set of potential movies included 1,000,000 clips. This is far above chance (gray dashed
line).
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Figure 4. Reconstructions of Natural Movies from BOLD Signals

(A) The first (top) row shows three frames from a natural movie used in the experiment, taken 1 s apart. The second through sixth rows show frames from the
five clips with the highest posterior probability. The maximum a posteriori (MAP) reconstruction is shown in the second row. The seventh (bottom) row
shows the averaged high posterior (AHP) reconstruction. The MAP provides a good reconstruction of the second and third frames, whereas the AHP
provides more robust reconstructions across frames.
(B and C) Additional examples of reconstructions, in the same format as (A).
(D) Reconstruction accuracy (correlation in motion-energy; see Supplemental Experimental Procedures) for all three subjects. Error bars indicate61 stan-
dard error of the mean across 1 s clips. Both the MAP and AHP reconstructions are significant, though the AHP reconstructions are significantly better than
the MAP reconstructions. Dashed lines show chance performance (p = 0.01). See also Figure S2.

Current Biology Vol 21 No 19
4

Please cite this article in press as: Nishimoto et al., Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies,
Current Biology (2011), doi:10.1016/j.cub.2011.08.031

(Nishimoto, Gallant et al., Curr Biol 2011)

Matching with Youtube video database



Encode and decode models

Brain

$#%^&*(()
+*&^%$#@

Mind

Encode 
model

(Kay et al. Nature 2008; 
Mitchell et al. Science 2008;
Nishimoto et al., Curr Biol 2011)

Decode 
model

~

(Miyawaki et al. Neuron 2008)
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Encode and decode models derived 
from Bayesian CCA

(Fujiwara, Miyawaki, 
Kamitani, NIPS 2009, 

Neural Computation 2013)
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Figure 1: The model to estimate a modular representation. (a) Illustration of the model framework. The 

visual image I (pixels) and an fMRI activity pattern r (voxels) are linked by latent variables z. The 

links from each latent variable to image pixels define an image basis (column vector of 

� 

WI). The 

links from each latent variable to fMRI voxels represent a voxel weight (column vector of 

� 

Wr ). (b) 

Graphical representation of the model. Circles indicate model parameters to be estimated and squares 

indicate observations. The matrices 

� 

WI  and 

� 

Wr , the latent variable z, and the inverse variances 

� 

α I and 

� 

αr  are simultaneously estimated using the variational Bayesian method. (c) The encoding 

model to predict brain activity patterns (thick line) can be derived using the estimated image bases and 

voxel weights. (d) The decoding model to predict visual images (thick line) can be derived in a 

symmetric fashion to the encoding model. 
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Figure 2: Estimated image bases and fMRI voxel weights. (A) Representative 
estimated bases (left, sorted by the number of pixels) and their frequency as a function of 
eccentricity (right; two subjects pooled). Pixel weight values are represented by a gray 
scale. (B) Representative estimated fMRI voxel weights corresponding to 1x1 image 
bases (shown in the top left inset). The absolute values of voxel weights are mapped on 
the cortical surface of area V1. The left and right maps correspond to the left and right 
hemispheres, respectively. Eccentricity is indicated by white lines, which are identified 
by the conventional retinotopic mapping procedure. (C) Summary of voxel weight 
distribution. Image bases in right visual field are sorted by the eccentricities and polar 
angles (horizontal axis, 0.5 deg bins for eccentricity and 10 deg bins for polar angle). 
Contralateral voxels (left hemisphere) were sorted by the corresponding eccentricity and 
polar angles identified by the conventional retinotopic mapping procedure (vertical axis, 
0.5 deg bins for eccentricity and 10 deg bins for polar angle). The magnitude of voxel 
weights was averaged in each image basis location and cortical location for ten models 
generated by cross-validation analysis (two subjects pooled). Similar results were 
observed for image bases in left visual field and contralateral voxels (right hemisphere). 
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Figure 4: Visual image reconstruction. (A) Presented images (first row, alphabet letters 
and geometric shapes) and the reconstructed images obtained from the Bayesian CCA 
model (second row), and the fixed basis model (third row). (B) Reconstruction errors 
were evaluated by calculating mean square errors between presented and reconstructed 
images at each eccentricity (error bar, 95% confidence interval; two subjects pooled).
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Ocean

Neural decoding

?

Can visual dream contents be decoded?

(Horikawa, Miyawaki, Tamaki, Kamitani, Science 2013)



Time [h]
1 2 3 4 5 6 7

Stage 1

Stage 2

Stage 3

Stage 4

Awake

REM periodSleep-onset
(Hypnagogic) period

Sleep-onset (hypnagogic) dream

23

Similar dream report to REM in frequency, length, and content (Foulkes and 
Vogel,1965; Vogel et al. 1972; Oudiette et al., 2012)
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Verbal report example 1
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Verbal report example 2



Verbal report statistics
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Figure 2 | Data labeling procedures. a, Mapping from words to synsets in WordNet tree. From the collected visual reports, words describing visual objects or 
scenes were extracted and mapped on “WordNet,” a lexical database in which words with a similar meaning are grouped as “synsets” in a hierarchical structure.
 The synsets that describe the most appropriate meaning of the words in the context and their hypernyms were identified for each word. The synsets (both synset
 assigned to each word and their hypernyms) that were found in 10 or more visual reports independently of at least one of the other synsets were selected as 
“base synsets”. The number of base synsets obtained for each subject was 26, 18, and 16 for S1-3 respectively (See Supplementary Fig.xxx for definition of the 
base synsets). b, Label matrix of the base synsets for fMRI data of sleep experiments and web images corresponds to the base synsets. The fMRI data during 
sleeping were labeled by the base synsets according to whether the visual contents corresponding to the base synsets were appeared in the subsequent reports or
not. For decoder construction, images depicting each base synset were collected from “ImageNet” and Google images for the synset whose images were not 
provided from ImageNet.

• Repeated exps until > 200 visual reports in each subject
• Visual report in > 75% of total awakenings
• ~ 8 visual reports / hour
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“I saw Taylor was talking to me...”

Visual image reconstruction?



Figure 2
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(cf., brain mapping using WordNet: Huth et al. 2012)
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Semantic labeling and
web images for decoder training

Dream indexスト



Multilabel decoding
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Score of each synset
(linear discriminant function 

derived from linear SVM)

Stimulus-trained 
decoder
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ROC analysis

Ventral higher visual 
cortex (1000 voxels)
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Single-trial time course
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Fig. S14. Examples for the time courses of synset scores. The time courses of synset scores from multilabel 
decoding are shown for four individual dream examples. The plots represent the scores for the synset(s) reported in 
the dream (red) and the unreported synsets with high (top 15% conditional probability; blue) and low (gray) general 
co-occurrence with the synset(s) reported in the same dream. 
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Fig. S14. Examples for the time courses of synset scores. The time courses of synset scores from multilabel 
decoding are shown for four individual dream examples. The plots represent the scores for the synset(s) reported in 
the dream (red) and the unreported synsets with high (top 15% conditional probability; blue) and low (gray) general 
co-occurrence with the synset(s) reported in the same dream. 
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“What I was just looking at was some kind of characters. There was 
something like a form for composing an essay....”
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Pooled time course
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Fig. 4. Multilabel decoding analysis. (A) Schematic view of multilabel decoding analysis. The decoder provides continuous scores indicating how 
likely each base synset was to be present in the dream given an arbitrary fMRI activity pattern. (B) ROC analysis for individual base synsets. 
ROC curves (left) and AUCs (right) are shown for each synset  (S2; asterisks, Wilcoxon rank-sum test, p < 0.05). (C) AUC averaged within 
each meta-category for different visual areas (three subjects pooled; number of pooled synsets in parentheses). (D) Time courses of synset scores. 
The scores from 9-s time windows are shown for the synsets reported at each awakening (red) and for those unreported (blue and gray), which 
were averaged across all awakenings and subjects (no correction for hemodynamic delays). Unreported synsets were further divided into those 
with high co-occurrence with the reported ones (blue; top 15% conditional probability among all synset combinations) and the others (gray). The 
entire time courses were normalized by dividing the scores by the root mean square of the scores obtained from the time window just before 
awakening for each subject. (E) Dream identification. Identification accuracies are plotted against candidate set size for the original and the 
extended dream content vectors (averaged across dreams and subjects). Since Pearson’s correlation could not be calculated for vectors with 
identical elements, such samples were excluded. For all results, error bars or shades indicate 95% CI, and dashed lines denote the chance level. 
 

- High scores for reported synsets toward awakening
- High scores fore unreported but relevant synsets (w. high co-
occurrence), potentially reflecting unreported dream contents
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“What I was just looking at was some kind of characters. There was 
something like a form for composing an essay....”
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“Yes, there were people, about 3 people, inside some sort of hall. There 
was a male, a female, and maybe like a child. Ah, it was like a boy, a 
girl, and a mother...”



Brain-web interface 
Generating contents from brain signal using web data 
as raw materials with assistance of CV, NLP, and ML 

？

Web data as
the collective unconscious?



Big brain data

(Van Essen et al., 2013)
ECoG recording from ALS patient
96 channels, 10KHz , 6.57G/hour

(Osaka University)



Summary
1. Machine learning-based 
decoding of neuroimaging data
2. Neural mind-reading 
3. Modular decoding and visual 
image reconstruction
4. Decoding dream contents
5. Brain-web interface and big 
brain data
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Predictive models in neuroscience
with assistance of ML, CV, NLP, and big data

Reading minds

By scanning blobs 
of brain activity, 
scientists may 
be able to decode 
people’s thoughts, 
their dreams 
and even their 
intentions. 

B Y  K E R R I  S M I T H

Jack Gallant perches on the edge of a swivel chair in his lab at the 
University of California, Berkeley, fixated on the screen of a com-
puter that is trying to decode someone’s thoughts. 

On the left-hand side of the screen is a reel of film clips that 
Gallant showed to a study participant during a brain scan. And on the 
right side of the screen, the computer program uses only the details of 
that scan to guess what the participant was watching at the time.

Anne Hathaway’s face appears in a clip from the film Bride Wars, 
engaged in heated conversation with Kate Hudson. The algorithm con-
fidently labels them with the words ‘woman’ and ‘talk’, in large type. 
Another clip appears — an underwater scene from a wildlife documen-
tary. The program struggles, and eventually offers ‘whale’ and ‘swim’ 
in a small, tentative font.

“This is a manatee, but it doesn’t know what that is,” says Gallant, 
talking about the program as one might a recalcitrant student. They 
had trained the program, he explains, by showing it patterns of brain 

activity elicited by a range of images and film clips. His program had 
encountered large aquatic mammals before, but never a manatee.

Groups around the world are using techniques like these to try to 
decode brain scans and decipher what people are seeing, hearing and 
feeling, as well as what they remember or even dream about. 

Media reports have suggested that such techniques bring mind- 
reading “from the realms of fantasy to fact”, and “could influence the 
way we do just about everything”. The Economist in London even  
cautioned its readers to “be afraid”, and speculated on how long it will 
be until scientists promise telepathy through brain scans.

Although companies are starting to pursue brain decoding for a few 
applications, such as market research and lie detection, scientists are 
far more interested in using this process to learn about the brain itself. 
Gallant’s group and others are trying to find out what underlies those 
different brain patterns and want to work out the codes and algorithms 
the brain uses to make sense of the world around it. They hope that IL
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2013.05.13 ガリレオ第2シーズン第五話
“Galileo” Season 2, Episode 5
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