機械学習を使って 脳から夢の内容を解読する

book building character computer-screen covering commodi electronic-equipment dwelling female male food furniture mercantile-establishment point representation street region

ATR脳情報研究所 神谷之康

"Brain decoding", "Mind-reading"

Reading minds

Nature, Vol 502, 24 October, 2013

ack Gallant perches on the edge of a swivel chair in his lab at the University of California, Berkeley, fixated on the screen of a computer that is trying to decode someone's thoughts. On the left-hand side of the screen is a reel of film clins that

activity elicited by a range of images and film clips. His program had encountered large aquatic mammals before, but never a manatee. Groups around the world are using techniques like these to try to decode brain scans and decipher what people are seeing hearing and

Robot control by fMRI decoding

(Kimura, Imamizu, Shimada, Oztop, Harner, Kamitani, 2006; Collaboration with Honda Research Institute) ³

Let the machine learn! Machine learning-based decoding

Stimulus/Behavior/Mind

Brain activity (= "Code")

Supervised learning:

- 1. Collect training data: Brain activity (r) labeled by stimulus/task(s)
- 2. Train a decoding model using the training data: $s = f(\mathbf{r})$
- 3. Test the trained model with independent data

~100,000 voxels vs. 100–1,000 samples

 \rightarrow linear and/or sparse models

From mapping to decoding

Functional brain mapping

Task A – Task B

- Voxel-by-voxel analysis
- Statistical parameter estimation with whole data
- Evaluation by p-value

Brain decoding

- Multi-voxel pattern
- Trial-by-trial prediction
- Evaluation by prediction accuracy/error

Decoding of visual orientation

(Kamitani and Tong, *Nat Neurosci* 2005; *Curr Biol* 2006; Kamitani and Sawahata, *Neuroimage* 2008; Tong et al. *Neuroimage* 2012)

"Hyperacuity" in fMRI decoding

(cf., Boynton, 2005; Rojer and Schwartz, 1990)

Information from subvoxel representation via random bias of voxel sampling due to irregular columnar and/or vasculature structure (Kamitani and Tong, 2005)

(See also: Op de Beeck, 2009; Kamitani & Sawahata, 2009; Gardner, 2009; Shmuel et al. 2009; Kriegeskorte et al 2009; Mannion et al., 2009; Swisher et al. 2010; Freeman et al. 2011; Clifford et al., 2011; Chaimow et al 2011)

Ensemble feature selectivity

(Kamitani & Tong, 2005, 2006)

10

Voxel sampling of columns: 1D Simulation

Decoding subjective state

Common neural representation for perception and imagery

(Kamitani and Tong, 2005, 2006; Stokes et al., 2009; Harrison et al., 2009) $_{\rm 8}$

Classification of all possible visual images

Modular decoding

(Miyawaki, Uchida, Yamashita, Sato, Morito, Tanabe, Sadato, Kamitani, *Neuron* 2008; Fujiwara, Miyawaki, Kamitani, *NIPS* 2009, *Neural Computation* 2013)

Reconstruction model

fMRI signals

Reconstructed image

Experimental procedure

All voxels in V1 and V2 served as input, and sparse estimation (ARD) automatically selected relevant voxels (Yamashita, Sato, Yoshioka, Tong, Kamitani, *Neuroimage* 2008).

Reconstruction results

(Miyawaki, Uchida, Yamashita, Sato, Morito, Tanabe, Sadato, Kamitani, Neuron 2008)

Matching with Youtube video database

(Nishimoto, Gallant et al., Curr Biol 2011)

Encode and decode models

Encode and decode models derived from Bayesian CCA r Visual images fMRI signals Es es **e**(Wr W Image bases Voxel weights Ζ Latent variables (Fujiwara, Miyawaki, Kamitani, NIPS 2009, Neural Computation 2013) Decode model P 20

Can visual dream contents be decoded?

(Horikawa, Miyawaki, Tamaki, Kamitani, Science 2013)

Sleep-onset (hypnagogic) dream

Similar dream report to REM in frequency, length, and content (Foulkes and Vogel, 1965; Vogel et al. 1972; Oudiette et al., 2012)

Experimental overview

Yes, well, I saw a person. Yes. What it was... It was something like a scene that I hid a key in a place between a chair and a bed and someone took it.

Protocols of the sleep experiment

Verbal report example 1

Verbal report example 2

Verbal report statistics

- Repeated exps until > 200 visual reports in each subject
- Visual report in > 75% of total awakenings
- ~ 8 visual reports / hour

Visual image reconstruction?

"I saw Taylor was talking to me..."

Mapping of visual words on WordNet

(cf., brain mapping using *WordNet*: Huth et al. 2012)

Semantic labeling and web images for decoder training

Multilabel decoding

ROC analysis

Single-trial time course

"What I was just looking at was some kind of characters. There was something like a form for composing an essay...."

Pooled time course

- High scores for reported synsets toward awakening
- High scores fore unreported but relevant synsets (w. high cooccurrence), potentially reflecting unreported dream contents

"What I was just looking at was some kind of characters. There was something like a form for composing an essay...."

"Yes, there were people, about 3 people, inside some sort of hall. There was a male, a female, and maybe like a child. Ah, it was like a boy, a girl, and a mother..."

Web data as the collective unconscious?

Brain-web interface

Generating contents from brain signal using web data as raw materials with assistance of CV, NLP, and ML

Big brain data

(Van Essen et al., 2013)

ECoG recording from ALS patient 96 channels, 10KHz , **6.57G/hour** (Osaka University)

Summary

- 1. Machine learning-based decoding of neuroimaging data
- 2. Neural mind-reading
- 3. Modular decoding and visual image reconstruction
- 4. Decoding dream contents
- 5. Brain-web interface and big brain data

Predictive models in neuroscience

with assistance of ML, CV, NLP, and big data

2013.05.13 ガリレオ第2シーズン第五話 "Galileo" Season 2, Episode 5

Acknowledgments

<u>ATR</u> Okito Yamashita Yoichi Miyawaki Hajime Uchida Masako Tamaki Tomoyasu Horikawa Yukuke Fujiwara

<u>Vanderbilt</u> Frank Tong

<u>NIPS</u> Norihito Sadato

Data and codes are available at: http://www.cns.atr.jp/dni/ (Department of Neuroinformatics, ATR)