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Motivation for Climate Informatics

The threat of climate change:
one of the greatest challenges
currently facing society.

We face an explosion in data!
Climate model outputs
Satellite measurements
Environmental sensors

Machine Learning has made profound impacts on:
websearch, internet advertising, Bioinformatics, etc.

Challenge: accelerate discovery in Climate Science with ML



Climate Data is Big Data

GCMs/ESMs (CMIP3/5) (Tb/day)
Satellite retrievals (Tb/day)

Next-gen reanalysis products (Tb/day)
In-situ data

Paleo-data

Regional models

with credit to G. Schmidt



Climate Informatics: related work

* ML and data mining collaborations with climate science
— Atmospheric chemistry, e.g. Musicant et al. ’07 (‘05)
— Meteorology, e.g. Fox-Rabinovitz et al. ‘06
— Seismology, e.g. Kohler et al. ‘08
— Oceanography, e.g. Lima et al. ‘09
— Mining/modeling climate data, e.g. Steinbach et al. ‘03,
Steinhaeuser et al. ‘10, Kumar 10
* ML and climate modeling
— Data-driven climate models, Lozano et al. ‘09

— Machine learning techniqgues inside a climate model, or for
calibration, e.g. Braverman et al. 06, Krasnopolsky et al. ‘10

— ML techniques with ensembles of climate models:
* Regional models: Sain et al. ‘10
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The First International Workshop on Climate Informatics, 2011

— New York Academy of Sciences, New York, NY, August 2011

* The Second International Workshop on Climate Informatics, 2012
— National Center for Atmospheric Research, Boulder, CO, September 2012

e Climate Informatics wiki:
http://sites.google.com/site/1stclimateinformatics/materials
— Data sources and descriptions

— Challenge problems
— Links to tutorials and materials

e Climate Informatics book chapter [M, Schmidt et al. 2012]

— Challenge problems
— Data descriptions
— Success stories and related work



Paleo-temperature

Problem:

— To understand climate change we need to understand past
climates.

— NOTE: climate has fluctuated at much greater scales in the
past than in the 20t Century.

— However the variance on measurements is higher in the past.
* We did not have a global grid of measurements

* Measurements corrupted or lost

Challenge: use paleo-proxies to reconstruct temps
e.g. tree rings, ice cores, water isotopes.
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Climate extremes

There is evidence that even with a warming trend, variance is
predicted to increase.

= Increasingly extreme events e.g.

— cold spells

— droughts

Challenge: detecting, predicting climate extremes.

Drought detection over the past century with MRFs
[Q. Fu, A. Banerjee, S. Liess, and P. K. Snyder, SDM 2012]
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Each panel shows the drought starting from a particular decade: 1905-1920 (top left),
1921-1930 (top right), 1941-1950 (bottom left), and 1961-1970 (bottom right). The regions in

black rectangles indicate the common droughts found by previous work in climate science.

credit: A. Banerjee




Climate change
attribution

Challenge: which factors have
contributed to temperature
changes and to what extent?

[Lozano et al. KDD 2009]:

Which factors granger-caused
extreme temperatures?

Approach using group elastic nets
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Figure 4: Attributing the change in 1-year return level for tem-
perature extremes using annual data. Output causal structures
for decreasing degrees of sparsity. Edge thickness represents
the causality strength.



Climate modeling

Climate model: a complex system of interacting mathematical models

e Not data-driven
e Based on scientific first principles
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A climate model (image credit: G. Schmidt)
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Climate forcings
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Climate models

* |[PCC: Intergovernmental Panel on Climate Change

— Nobel Peace Prize 2007 (shared with Al Gore).
— Interdisciplinary scientific body, formed by UN in 1988.

— Fourth Assessment Report 2007, on global climate change
450 lead authors from 130 countries, 800 contributing authors,
over 2,500 reviewers.

— Next Assessment Report is due in 2013.

Climate models contributing to IPCC reports include:

Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis, Centre National de Recherches Météorologiques (France), Commonwealth
Scientific and Industrial Research Organisation (Australia), Geophysical Fluid Dynamics
Laboratory (Princeton University), Goddard Institute for Space Studies (NASA), Hadley
Centre for Climate Change (United Kingdom Meteorology Office), Institute of Atmospheric
Physics (Chinese Academy of Sciences), Institute of Numerical Mathematics Climate
Model (Russian Academy of Sciences), Istituto Nazionale di Geofisica e Vulcanologia
(Italy), Max Planck Institute (Germany), Meteorological Institute at the University of Bonn
(Germany), Meteorological Research Institute (Japan), Model for Interdisciplinary
Research on Climate (Japan), National Center for Atmospheric Research (Colorado),
among others.



Climate model predictions

Global mean temperature anomalies. Temperature anomaly: difference w.r.t.
the temperature at a benchmark time. Magnitude of temperature change.
Averaged over many geographical locations, per year.
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Improving predictions of Multi-Model
Ensemble of GCMs

 No one model predicts best all the time.

* Average prediction over all models is best predictor over
time. [Reichler & Kim, Bull. AMS ‘08], [Reifen & Toumi, GRL ’09]

* |IPCC held 2010 Expert Meeting on how to better combine
model predictions.

Can we do better, using Machine Learning?

Challenge: How should we predict future climates?

— While taking into account the 20 climate models’ predictions



Tracking climate models

[M, Schmidt, Saroha, & Asplund, SAM 2011 (CIDU 2010)]:
* Application of Learn-a algorithm [M & Jaakkola, NIPS ‘03]

— Online learning to track a set of “expert” predictors under changing
observations.

* Tracking global climate models, on mean temperature anomaly
predictions.

— Experiments at global and regional scales, annual and monthly time-scales.
* Experiments on historical data

— Valid, since climate models are not data-driven.

* Future simulations using “perfect model” assumption from
climate science.



Online learning with
expert advice poom @)

Learner maintains
distribution over n “experts.”

pt(i)

'
Experts 1...n| ] { ) cee | )

R 4 < \ 4

Experts are black boxes: need not be good b_r“edictor;can vary with
time, and depend on one another. We use GCM temp. predictions.

Learner maintains/updates probability distribution p,(i) over experts, i,
representing how well each expert has predicted recently.

— Used to inform learner’s prediction.
L(i, t) is prediction loss of expert i at time t. We use squared loss.

Family of Multiplicative Updates algorithms (cf. “Hedge,” “Weighted
Majority”), descended from “Winnow,” [Littlestone 1988],[Littlestone &
Warmuth’89].



Online learning: time-varying data
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* For a family of these algorithms, [M & Jaakkola, 2003] derived
p,(i) as Bayesian updates of a generalized Hidden Markov Model

 Hidden variable: identity of current “best expert”
* Transition dynamics, p(i [ j), model non-stationarity



Online learning: time-varying data

Fixed-Share Algorithm [Herbster & Warmuth, 1998]:

 Assumes there is a probability a that the hidden “best expert”
switches at each time step

1—a) £=4
Pl ={ W= ;7



Online learning: time-varying data
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Learn-a Algorithm [M & Jaakkola, 2003]:

* Learns the a parameter by tracking a set of meta-experts, Fixed-Share
algorithms, each with a different a value



Performance guarantees

[M & Jaakkola, NIPS 2003]: Bounds on “regret” for using wrong
value of o for the observed sequence of length T:

Theorem. O(T) upper bound for Fixed-Share(a.) algorithms.

Theorem. Q(T) sequence dependent lower bound for
Fixed-Share(a) algorithms.

Theorem. O(log T) upper bound for Learn-o. algorithm.

* Regret-optimal discretization of o for fixed sequence length, T.

* Using previous algorithms with wrong o can also lead to poor
empirical performance.



Tracking climate models: experiments

Model predictions from 20 climate models
— Mean temperature anomaly predictions (1900-2098) — CMIP3 archive

* Historical experiments with NASA temperature data — GISTEMP

* Future simulations with “perfect model” assumption.
— Ran 10 such global simulations to observe general trends

— Collected detailed statistics on 4 representative ones: best and worst
model on historical data, and 2 in between.

* Regional experiments: data from KNMI Climate Explorer
— Africa (-15-55E, -40 — 40N)
— Europe (0-30E, 40 — 70N)
— North America (-60 —-180E, 15 — 70N)

— Annual and monthly time-scales; historical & 2 future simulations/region.



Learning curves
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Global results

| Algorithm: Historical | Future Sim. 1 | Future Sim. 2 | Future Sim. 3 | Future Sim. 4 |
Learn-a Algorithm 0.0119 0.0085 0.0125 0.0252 0.0401
o? = 0.0002 o2 = 0.0001 o? = 0.0004 o? = 0.0010 o? =0.0024
Linear Regression* 0.0158 0.0051 0.0144 0.0264 0.0498
02 =0.0005 | o2 =0.0001 02 = 0.0004 02 = 0.0125 02 = 0.0054
Best Climate Model 0.0112 0.0115 0.0286 0.0301 0.0559
(for the observations) | ¢? =0.0002 | o2 = 0.0002 o? = 0.0014 o? = 0.0018 o? =0.0053
Average Prediction 0.0132 0.0700 0.0306 0.0623 0.0497
(over climate models) | ¢2 =0.0003 | o2 =0.0110 o? = 0.0016 o? = 0.0055 o? = 0.0036
Median Prediction 0.0136 0.0689 0.0308 0.0677 0.0527
(over climate models) | 02 =0.0003 | o2 =0.0111 02 = 0.0017 o2 = 0.0070 0?2 = 0.0038
Worst Climate Model 0.0726 1.0153 0.8109 0.3958 0.5004
(for the observations) | ¢2 =0.0068 | o2 = 2.3587 02 =1.4109 02 = 0.5612 02 = 0.5988

TABLE 1. Mean and variance of annual losses. The best score per experiment is
in bold. The Average Prediction over climate models is the benchmark technique.
*Linear Regression cannot form predictions for the first 20 years (19 in the future
simulations), so its mean is over fewer years than all the other algorithms, starting
from the 21st (20th in future simulations) year.

On 10 future simulations (including 1-4 above), Learn-a suffers less
loss than the mean prediction (over remaining models) on 75-90% of the years.




Regional results: historical

Algorithm: Africa Europe North America Africa Europe North America
Learn-a Algorithm 0.0283 0.1794 0.0407 0.0598 0.3048 0.0959
0% =0.0020 | o2 =0.0520 o? =0.0036 02 =0.0085 | o2 = 0.3006 o? =0.0311
Linear Regression*® 0.0391 38.9724** 0.0704 0.0741 1.7442 0.1119
02 =0.0039 | o2 = 134700.0 0?2 = 0.0156 0?2 =0.0301 | 0% = 43.9616 o? = 0.0432
Best Climate Model 0.0254 0.2752 0.0450 0.1144 2.2498 0.1629
(for the observations) | ¢2 = 0.0015 | o2 = 0.1207 o? = 0.0035 0? =0.0285 | 02 = 15.4041 o? = 0.0935
Average Prediction 0.0331 0.2383 0.0493 0.0752 1.4781 0.1101
(over climate models) | o2 =0.0025 | o2 = 0.0868 o? = 0.0058 0?2 =0.0106 | o2 = 7.5964 o? =0.0417
Median Prediction 0.0291 0.2391 0.0502 0.0777 1.5001 0.1116
(over climate models) | o2 =0.0021 | o2 = 0.0964 o? = 0.0066 0% =0.0117 | 0% =8.1498 o? = 0.0456
Worst Climate Model | 0.1430 1.0180 0.1593 0.2333 4.2104 1.1698
(for the observations) | ¢% = 0.0368 | o2 = 2.4702 o? =0.0372 02 =0.1020 | o2 =71.2737 o? = 6.3192
Annual Monthly




Regional results: future simulations

| Algorithm: | Africal | Africa2 | Europel | Europe 2 | N. Amer. 1 | N. Amer. 2 |
Learn-a Algorithm 0.0890 0.1053 0.2812 0.6624 0.0968 0.6061
02 =0.0167 | 02 =0.0249 | 02=0.4134 | 02 =3.6678 | 02 =0.0272 | o2 =1.6429
Linear Regression™® 0.0985 0.1384 1.1487 3.0836 0.0923 1.0458
02 =0.2680 | 02 =0.0455 | 02 =4.2672 | 02 =44.1931 | 02 =0.0365 | o2 =4.4447
Best Expert 0.1912 0.1967 2.1210 3.7893 0.1713 1.0478
(for the observations) | 02 = 0.0757 | 62 = 0.0754 | 02 = 12.6767 | 02 = 39.2087 | 02 =0.0903 | o2 = 3.9090
Average Prediction 0.1388 0.1806 1.1106 2.9353 0.1432 1.0745
(over climate models) | 62 =0.0410 | 02 =0.0716 | 02 =4.4023 | 02 =29.9128 | 02 =0.0478 | 02 =4.1346
Median Prediction 0.1266 0.1711 1.1385 2.9093 0.1835 1.1075
02 =0.0352 | 02 =0.0637 | 02 =4.5734 | 02 =30.3332 | 02 =0.0827 | o2 =4.2544
Worst Expert 0.5236 0.5625 3.8266 5.0029 1.2311 2.2641
(for the observations) | 02 = 0.5782 | 02 = 0.7018 | 02 = 47.7359 | 02 = 76.7785 | 02 =3.3160 | o2 =12.0301

TABLE 4. Regional results on two future simulations per region. Mean and variance
of monthly losses. The best score per experiment is in bold. The Average Prediction
over climate models is the benchmark technique. *Linear Regression cannot form
predictions for the first 18 months, so its mean is over fewer months than all the
other algorithms, starting from the 19th month.




Contributions

* Tracking climate models (TCM)
[M, Schmidt, Saroha, & Asplund, SAM 2011 (CIDU 2010)]:
— Applied online learning with expert advice to track GCMs

— Considered each geospatial region as a separate problem

* Neighborhood-Augmented TCM (NTCM)

[McQuade & M, AAAI 2012]:

— Build a rich modeling framework in which the climate
predictions are made at higher geospatial resolutions

— Model neighborhood influences among geospatial
regions



Neighborhood-Augmented TCM (NTCM)

* Run instances of Learn-a (variant) on multiple sub-regions
that partition the globe

* Global temperature anomaly computed as mean of sub-
region algorithm predictions

* Experiments conducted using several different region
sizes

O O O




Neighborhood-Augmented TCM (NTCM)

Non-homogenous HMM transition matrix:

(1 — ) if 1=k
ko) = (1—73)+ > Pisl if i£k

Z ' SGS (1)

P(i

S(r) - neighborhood scheme: set of “neighbors” of region r

Pt,s(i) - probability of expertiin regions

p - regulates geospatial influence

Z - normalization factor



Neighborhood schemes

* Update is modular with respect to neighborhood
scheme S(r).

* A possible neighborhood scheme below
— Could also be continuous set of neighboring regions, e.g. using

a Gaussian.
® ® ®
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Experimental Setup

* GCM hindcasts from the years 1890-2000
— |IPCC Phase 3 Coupled Model Intercomparison Project (CMIP3)
— Climate of the 20th Century Experiment (20C3M)
— One run from each contributing institution arbitrarily selected
 Observed temperature anomaly data from NASA GISTEMP
e All data converted to temperature anomalies
— Benchmark period 1951-1980



14l Global Learn-Alpha
' — 45 Degree Cells, Beta=0
- w45 Degree Cells, Beta=1

Cumulative Annual Loss
-
o0
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0.2F
%%BD 1900 1920 1940 1960 1980 2000
Year
Mean Annual Loss | Variance | Cumulative Annual Loss (1890-2000)
Global Learn-« 0.0144 0.0003 1.5879
45 Degree Squares 5 =0 0.0138 0.0004 1.5194
45 Degree Squares § =1 0.0129 0.0003 1.4173

Table 1: Cumulative Annual Losses for 45 degree square cells and Global Learn-c.



Results
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Challenges in climate modeling

Challenge: Improve the predictions of the multi-model ensemble

— Extensions to Tracking Climate Models

» Different experts per location; spatial (in addition to temporal) transition
dynamics

* Tracking other climate benchmarks, e.g. carbon dioxide concentrations
— {Semi,un}-supervised learning with experts. Largely open in ML.
— Challenge: try other ML approaches! (e.g. batch, transductive regression?)

Challenge: Improve the predictions of a climate model
— Challenge: resolve scale interactions (“climate model parameterization”)

— Challenge: harness both physics and data!
* Hybrid methods
* Data assimilation

— Challenge: Calibrating and comparing climate models in a principled manner



More challenges in Climate Informatics

Challenge: Clustering / detecting spatiotemporal patterns
e.g. droughts, cyclones

— Algorithms for streaming and online clustering
— Graphical model approaches, e.g. from topic modeling

Challenge: Building theoretical foundations for Climate Informatics

— Coordinating on reasonable assumptions in practice, that allow for the
design of theoretically justified learning algorithms

Challenge: tracking polar ice melt from satellite image data
Challenge: short term climate prediction

Challenge: regional climate prediction



Thank You! And thanks to my coauthors:

“Tracking Climate Models”
Gavin Schmidt, NASA GISS & Columbia University
Shailesh Saroha, Amazon
Eva Asplund, Columbia University
“Global Climate Model Tracking using Geospatial Neighborhoods”
Scott McQuade, George Washington University
“Climate Informatics”
Gavin Schmidt, NASA GISS & Columbia University
Frank Alexander, Los Alamos National Laboratory
Alex Niculescu-Mizil, NEC Laboratories America
Karsten Steinhaeuser, University of Minnesota
Michael Tippett, The International Research Institute for Climate and Society, Columbia
Arindam Banerjee, University of Minnesota
M. Benno Blumenthal, International Research Institute for Climate and Society, Columbia
Auroop R. Ganguly, Civil and Environmental Engineering, Northeastern University
Jason E. Smerdon, Lamont-Doherty Earth Observatory, Columbia University
Marco Tedesco, CUNY City College and Graduate Center

Climate Informatics wiki: http://sites.google.com/site/1stclimateinformatics
data, links, and challenge problems
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