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Approaches toward better climate “prediction”

e Climate prediction community

“model” governed — To obtain prediction data with quantifying
by physical principles and reducing errors and uncertainty.

— Optimization and calculation with keeping
general principles in climate model.

e Climate informatics community

— To extract meaningful information from huge
amounts of observed and/or predicted data.

— Optimization and/or model development
even if breaking general principles of
dynamics and thermodynamics in “model.”

“model”
Empirical, statistical,...



How to perform climate prediction...

Initial condition
(e.g., temperature)

Socioeconomical scenario

Boundary condition ... using predicted|state
(e.g., CO2) as an initial condition ...

input

EARTH SIMULATOR
Calculation of dynamical and
thermodynamical processes

Climate prediction is basically deterministic.



Sources of errors and uncertainty

* Climate model (all timescales)
— Simultaneous partial differential equations for geo-fluid
dynamics and thermodynamics
* Governed by general principles (i.e., not empirical)
* Basically deterministic prediction

— Climate state at initial time of prediction experiments (e.g.,
observations)

* Not always, not everywhere, not every variable
* Not satisfying general principles

— Concentration of CO2, ...
* Based on socioeconomical scenario => not limited into geoscience



Climate model
(weather forecasting, ..., global warming simulations)

* Simultaneous partial differential equations govern climate
processes in atmosphere and ocean (i.e., basically deterministic).

* Probabilistic / stochastic approximation is not needed, if we can
represent (i.e., climate model can resolve) all processes explicitly.
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Climate model
(weather forecasting, ..., global warming simulations)

* In a practical sense, we need implicit (i.e., probabilistic / stochastic) calculations to
take into account contributions from small/short timescale phenomena.
— Atmosphere-ocean interaction
— Wave-mean flow (small-scale and large-scale) interaction
— Parameterizations for cloud, radiation, ...

Deterministic calculation
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Climate model cannot explicitly cover all spatiotemporal-scale phenomena.



Parameterization Issues

Large-scale Small-scale
control feedback
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- We do not explicitly calculate small-scale phenomena (e.g., individual cloud).
- We do implicitly calculate effects of small-scale phenomena on large-scale phenomena
(e.g., heating/cooling by cloud formation, solar radiation changes by clouds).

Parameterization of small-scale (unresolved) effects by using large-scale (resolved) variables.



Probabilistic parameterization (current approach)

Clouds are important elements of climate, but highly inhomogeneous...
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“All or nothing” cloud is too crude for model !
Assumption of a probability distribution of
the sub-grid scale moist fields to represent
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# strictly based on small-scale physics
But it needs assumptions, leading to a
variety of the scheme.
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Stochastic parameterization / physics

Lorenz’s attractor

Third axis replaced

with additive noise
r///:;?\

Palmer (2001)

(challenging issue)

Approach:
Adding random noise (artificial term)
to time tendency of physical processes
(e.g., Stochastic fluctuation from quasi-equilibrium)

Parameters:
Amplitudes of random noise
Time scales of noise (auto-correlation in time)
Spatial scales of noise (auto-correlation in space)

Benefits:
Better estimate of uncertainty
(e.g., Enhanced spread, Reduced bias and errors...)

But... difficulty in numerical reproducibility
Buizza et al. (1999)
Palmer (2009)
Palmer & Williams (2012)



Estimate of uncertainty
(Current approach)

* Rather than stochastic parameterization / physics, we use simpler
ensemble approach to estimate uncertainty due to probabilistic /
stochastic approximation.

— Models with different parameterizations (# values of parameters)
— Models with different initial conditions

1850 1960 70 80 90 2000 10 20 30

N R e

Model A
Model B
Model C

Model D

Boundary conditions (e.g., CO2 concentration):

Historical data Scenario based data



Global mean temperature anomaly (degC)
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Estimate of uncertainty
(Current approach)

Instead of stochastic parameterization / physics, we use ensemble
approach to estimate uncertainty due to probabilistic / stochastic
approximation .

— Models with different parameterizations (# values of parameters)
— Models with different initial conditions

IPCC-AR4 global warming simulation
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Sources of errors and uncertainty

* Climate model (all timescales)
— Simultaneous partial differential equations for geo-fluid
dynamics and thermodynamics
* Governed by general principles (i.e., not empirical)
* Basically deterministic prediction

— Climate state at initial time of prediction experiments (e.g.,
observations)

* Not always, not everywhere, not every variable
* Not satisfying general principles

— Concentration of CO2, ...
* Based on socioeconomical scenario => not limited into geoscience



Uncertainty realized by initial conditions
(New topic in IPCC-ARb5)

?:,0 IPCC-AR4 global warming simulations using a specific model
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Internal fluctuations of climate system are not cared by model ensemble approach.



Fluctuations on interannual (1-2years) timescales
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El Nino / La Nina events

Annual-mean sea
surface temperature
anomaly
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[similar to left bottom]

[similar to right bottm]

Fluctuations on decadal (10-20years) timescales
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How to define initial conditions (initialization)...

* Observed values are unsuitable as they are.
— Not always, not everywhere, not every variable

— Not satisfying general principles (i.e., incompatible with climate model)

e Value: Data assimilation (nudging, optimal interpolation, 3d-var, 4d-var,

Kalman filter/smoother,...)
— Close to observed value

— Almost satisfying general principles in model
 Ensembles: Initial perturbation (singular vector, breeding of growing

modes, ...)

— Assimilated values with slight differences

Example of data assimilation

Starting time of prediction (time)

T
+ (model —Q/t—l/

+ (model — obs.)/t

+ (model — obs.)/t

c:b Obs.

No assimilation... m‘\'

N\

1

I—

+ (model - obs.)/t

Assimilation éPrediction

Initial condition for prediction




How to define initial conditions (initialization)...

* Observed values are unsuitable as they are.
— Not always, not everywhere, not every variable
— Not satisfying general principles (i.e., incompatible with climate model)

e Value: Data assimilation (nudging, optimal interpolation, 3d-var, 4d-var,
Kalman filter/smoother,...)

— Close to observed value
— Almost satisfying general principles in model

 Ensembles: Initial perturbation (singular vector, breeding of growing
modes, ...)

— Assimilated values with slight differences

Example of generating ensembles
1945 1960 70 80 90 2000 10 20 30
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Initial state D ========* ¢ (e.g., prediction starting at 2010)

Initial states of internal fluctuations are cared by data assimilation approach.
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Mochizuki et al. (2010, PNAS)

Sets of ensembles of initialized “prediction”

Global-mean surface air temperature anomaly (degC)
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(ensemble mean and spread)
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10 ensemble prediction

To validate prediction skill, in IPCC
protocol, we perform sets of 10
ensembles of 10-yr-long “prediction”

4 every five years:

When focusing on global-mean state,
initialization has little impact on
prediction...



Mochizuki et al. (2010, PNAS)

Sets of ensembles of initialized prediction

PDO time series
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Prediction w/o initialization is nearly zero,
since we plot deviations from global
warming signal.

When focusing on internal fluctuations, initialization has a large impact on prediction.

PDO index (i.e., projection onto the modeled EOF1 of the North Pacific VAT300) is obtained by an EOF analysis to internal
variations of the model, that are defined using a signal-to-noise maximizing EOF of 10-ensemble 20C3M simulations.



Mochizuki et al. (2010, PNAS)

Sets of ensembles of initialized prediction

Prediction w/o initialization always represents
about 0.5degC errors which is the same as
the amplitude of the observed PDO.

Statistical errors in predictions (degC)

]

On decadal timescales, uncertainty in prediction
w/o initialization is primarily realized by the PDO
(internal fluctuation).

Errors in prediction w/ initialization is smaller
than the amplitude of the observed PDO
during 5-6 years.

If keeping an initial condition as it is
(i.e., so-called persistence prediction), errors
rapidly grow to insufficient levels.
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When focusing on internal fluctuations,

initialization has a large impact on prediction.

PDO index (i.e., projection onto the modeled EOF1 of the North Pacific VAT300) is obtained by an EOF analysis to internal
variations of the model, that are defined using a signal-to-noise maximizing EOF of 10-ensemble 20C3M simulations.



Mochizuki et al. (2010, PNAS)

Predictive areas due to initialization

Areas where errors are significantly reduced
in specific-year-long predictions
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Areas where errors are significantly reduced

in 2, 4, 6, and 8 -year-long predictions

are found over ...

- North Pacific: Pacific Decadal Oscillation (PDO)

- North Atlantic: Atlantic Multi-decadal Oscillation (AMO)

| 1967-1976

Remember!

Predictive areas correspond to
the regions where the PDO
signals are observed strongest.

Predictable regions for 5-yr mean VAT300 (vertically averaged ocean
temperature upper 300m) at specific hindcast years.
(Anomaly Correlation Coefficient > 90% significance levels)



PDO time series

Applying to future climate prediction (2 examples)
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I”

“model” governed
by physical principles

I”

“mode
Empirical, statistical,...

Summary

Climate “model” is generally governed by
general principles.

Climate “prediction” is basically deterministic.

In a practical sense, we need implicit (i.e.,
probabilistic / stochastic) calculations to take
into account contributions from small/short
timescale phenomena.

Rather than stochastic parameterization /
physics, we use simpler ensemble approach to
estimate uncertainty due to probabilistic /
stochastic approximation.

Ensembles of IPCC-AR5 global warming simulations

Long-term (centurial) prediction

— Models / Parameterizations (# values of
parameters)

Near-term (decadal) prediction
— Initial conditions (data assimilation)



