Relation Extraction from the Web ウェブからエンティティ間の意味的関係抽出 ダヌシカ ボレガラ 東京大学 ### 自己紹介 - 氏名:ダヌシカ ボレガラ (Danushka Bollegala) - 国籍:スリランカ - ▶ 研究分野:自然言語処理、Web Intelligence - ▶ WWW, ACL, EMNLP, IJCAI, AAAIを中心に論文発表 - ▶ 経歴: - ▶ 2000年: 文部科学省国費留学生として来日 - ▶ 2005年:東京大学工学部電子情報工学科卒業 - ▶ 2007年:東京大学大学院情報理工学系研究科電子情報学修士課程修了 - ▶ 2009年:東京大学大学院情報理工学系研究科電子情報学博士課程修了 - ▶ 2010~現在:東京大学大学院情報理工学系研究科助教 ### Webから関係抽出の課題 ### Webから関係抽出の課題 複数のentityが同一の名称で参照される(同姓同名問題) D. Bollegala, Y. Matsuo, M. Ishizuka, Disambiguating Personal Names on the Web using Automatically Extracted Keyphrases, ECAI 2006 Netscape創業者 F1チャンピオン ### Webから関係抽出の課題 松井秀喜 松井秀 Godzilla ゴジラ Hideki Matsui 同一のentityが複数の名称で参照される(別名問題) D. Bollegala, Y. Matsuo, M. Ishizuka, Automatic Discovery of Personal Name Aliases from the Web, IEEE TKDE 2010. ### 属性類似性と関係類似性 2つのエンティティが持つ属性が似ていればそれらのエンティティ間には高い属性類似性があると言える。 属性類似性関数は2変数関数となる: sim(X,Y) ### 属性類似性と関係類似性 2つのエンティティ間の関係が別の2つのエンティティ間の関係に似ていれば、 それのエンティティ対間では高い関係類似性があると言える。 (ostrich, bird) Ostrich is a large bird Lion is a large cat 関係類似性関数は4変数の関数となる: sim(A,B,X,Y) ### Entity oriented search の一つの形式: 潜在関係検索 (Latent Relational Search) エンティティ (地名、人名など) 間の関係を利用するエンティティ検索手法 - M.P. Kato et al., Query by Analogical Example: Relational Search using Web Search Engine Indices. CIKM2009 - D. Bollegala et al., Measuring the Similarity between Implicit Semantic Relations from the Web, WWW2009 - ₹. Veale, The Analogical Thesaurus, IAAI 2003. ## 言語の壁への対応: ### 言語横断型の潜在関係検索 異なる言語のテキストから結果を検索: Web空間における言語の壁を越える cross-lingual latent relational search ### 関係類似性計測のチャレンジ How to explicitly state the relation between two entities? How to extract the multiple relations between two entities? Extract lexical patterns from contexts where the two entities co-occur A single semantic relation can be expressed by multiple patterns. - E.g. "ACQUISITION": X acquires Y, Y is bought by X - Cluster the semantically related lexical patterns into separate clusters. Semantic Relations might not be independent. - E.g. IS-A and HAS-A. Ostrich is a bird, Ostrich has feathers - Measure the correlation between various semantic relations - Mahalanobis Distance vs. Euclidian Distance The contribution of different semantic relations towards relational similarity is unknown - Learn the contribution of different semantic relations using training data - Information Theoretic Metric Learning (ITML) (Davis 2008) #### Pattern Extraction - We use prefix-span, a sequential pattern mining algorithm, to extract patterns that describe various relations, from text snippets returned by a web search engine. - query = lion * * * * * * cat - ▶ snippet = .. lion, a large heavy-built social cat of open rocky areas in Africa .. - patterns = X, a large Y / X a large Y / X a Y / X a large Y of - Prefix span algorithm is used to extract patterns because: - It is efficient - It can considers gaps - Extracted patterns can be noisy: - misspellings, ungrammatical sentences, fragmented snippets ### Distribution of patterns in word-pairs ### Sequential Pattern Clustering Algorithm #### **INPUT:** A sorted list of pattern-frequency tuples [(p₁,f₁),...(p_N,f_N)] f₁>...>f_N Clustering Threshold ⊖ $sim(p_1,p_2) \times \Theta$ #### Properties of the clustering algorithm - Scales linearly with the number of patterns O(n) - More general clusters are formed ahead of the more specific clusters - Only one parameter to be adjusted (clustering threshold θ) - No need to specify the number of clusters - Does not require pair-wise comparisons, which are computationally costly - A greedy clustering algorithm #### **Feature Vector Generation** $w_{ij} = \frac{\text{(Frequency of pattern } i \text{ in all word pairs)}}{\sum_{t \in \text{cluster } j} \text{(Frequency of pattern } t \text{ in all word pairs)}}$ ostrich ### Computing Relational Similarity - We represent each word pair by an N dimensional feature vector - N: Total number of clusters - feature value: total frequency of patterns that belong to a cluster - feature vectors are normalized to unit length - Using a labeled dataset of positive and negative instances, we learn a Mahalanobis distance metric. - Mahalanobis distance between two vectors x and y is defined by, $$(x-y)^t A(x-y)$$ #### where A is the Mahalanobis matrix. - We use the Information Theoretic Metric Learning algorithm proposed by Davis et al. 2007. - No eigenvalue or eigenvector computations are required - Scalable to large datasets via lower rank approximations - Can incorporate slack variables ### **ENT Dataset** #### ENT - We created a dataset that has 100 entity-pairs covering five relation types. (20X5 = 100) - ACQUIRER-ACQUIREE (e.g. [Google, YouTube]) - PERSON-BIRTHPLACE (e.g. [Charlie Chaplin, London]) - CEO-COMPANY (e.g. [Eric Schmidt, Google]) - COMPANY-HEADQUARTERS (e.g. [Microsoft, Redmond]) - PERSON-FIELD (e.g. [Einstein, Physics]) #### **Relation Classification Task** - For each word pair (P,Q) in the ENT dataset: - Measure the relational similarity between (P,Q) and the remaining 99 word pairs. - ▶ Rank the most similar k word pairs . (k=10) - Use average precision to measure the ranking. Average Precision = $$\frac{\sum_{r=1}^{k} Pre(r) \times Rel(r)}{No. \text{ of relevant word pairs}}$$ #### Results – Relation Classification Task | Relation | VSM | LRA | EUC | PROPOSED | |-------------------------|-------|-------|-------|----------| | ACQUIRER-ACQUIREE | 92.7 | 92.24 | 91.47 | 94.15 | | COMPANY-
HEADQARTERS | 84.55 | 82.54 | 79.86 | 86.53 | | PERSON-FIELD | 44.70 | 43.96 | 51.95 | 57.15 | | CEO-COMPANY | 95.82 | 96.12 | 90.58 | 95.78 | | PERSON-BIRTHPLACE | 27.47 | 27.95 | 33.43 | 36.48 | | OVERALL | 68.96 | 68.56 | 69.46 | 74.03 | Comparison with baselines and previous work VSM: Vector Space Model (cosine similarity between pattern frequency vectors) LRA: Latent Relational Analysis (Turney '06 ACL, Based on LSA) **EUC**: Euclidean distance between cluster vectors PROPOSED: Proposed method (Learned Mahalanobis distance between entity-pairs) | Cluster 1 (2868) | X acquires Y | X has acquired Y | X's Y acquisition | X, acquisition, Y | Y goes X | |---------------------|-------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------| | Cluster 2
(2711) | Y legend X was | X 's championship Y | Y star X was | X autographed Y ball | Y start X robbed | | Cluster 3
(2615) | Y champion X | world Y champion X | X teaches Y | X 's greatest Y | Y players like X | | Cluster 4
(2008) | X to buy Y | X and Y confirmed | X buy Y is | Y purchase to boost X | X is buying Y | | Cluster 5 (2002) | Y founder X | Y founder and CEO X | X , founder of Y | X says Y | X talks up Y | | Cluster 6
(1364) | X revolutionized Y | X professor of Y | in Y since X | ago, X revolutionized Y | X 's contribution to Y | | Cluster 7
(845) | X and modern Y | genius: X and modern Y | Y in DDDD, X was | on Y by X | X's lectures on Y | | Cluster 8
(280) | X headquarters in Y | X offices in Y | past X offices in Y | the X conference in Y | X headquarters in Y on | | Cluster 9
(144) | X 's childhood in Y | X 's birth in Y | Y born X | Y born X introduced the | sobbing X left Y to | | Cluster 10 (49) | X headquarters in Y . | X's Y headquarters | Y – based X | X works with the Y | Y office of X | | Cluster 1 (2868) | X acquires Y | X has acquired Y | X's Y acquisition | X, acquisition, Y | Y goes X | |---------------------|-------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------| | Cluster 2
(2711) | Y legend X was | X's championship Y | Y star X was tion Relation | X autographed Y ball | Y start X robbed | | Cluster 3
(2615) | Y champion X | world Y champion X | X teaches Y | X 's greatest Y | Y players like X | | Cluster 4
(2008) | X to buy Y | X and Y confirmed | X buy Y is | Y purchase to boost X | X is buying Y | | Cluster 5 (2002) | Y founder X | Y founder and CEO X | X , founder of Y | X says Y | X talks up Y | | Cluster 6
(1364) | X revolutionized Y | X professor of Y | in Y since X | ago, X revolutionized Y | X 's contribution to Y | | Cluster 7
(845) | X and modern Y | genius: X and modern Y | Y in DDDD, X was | on Y by X | X's lectures on Y | | Cluster 8
(280) | X headquarters in Y | X offices in Y | past X offices in Y | the X conference in Y | X headquarters in Y on | | Cluster 9
(144) | X 's childhood in Y | X 's birth in Y | Y born X | Y born X introduced the | sobbing X left Y to | | Cluster 10 (49) | X headquarters in Y . | X's Y headquarters | Y – based X | X works with the Y | Y office of X | | Cluster 1
(2868) | X acquires Y | X has acquired Y | X's Y acquisition | X, acquisition, Y | Y goes X | |---------------------|-------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------| | Cluster 2
(2711) | Y legend X was | X 's championship Y | Y star X was | X autographed Y ball | Y start X robbed | | Cluster 3
(2615) | Y champion X | world Y champion X | X teaches Y | X 's greatest Y | Y players like X | | Cluster 4
(2008) | X to buy Y | X and Y confirmed PERSON-FIE | X buy Y is | Y purchase to boost X | X is buying Y | | Cluster 5 (2002) | Y founder X | Y founder and CEO X | X, founder of Y | X says Y | X talks up Y | | Cluster 6
(1364) | X revolutionized Y | X professor of Y | in Y since X | ago, X revolutionized Y | X 's contribution to Y | | Cluster 7
(845) | X and modern Y | genius: X and modern Y | Y in DDDD, X was | on Y by X | X's lectures on Y | | Cluster 8 (280) | X headquarters in Y | X offices in Y | past X offices in Y | the X conference in Y | X headquarters in Y on | | Cluster 9
(144) | X's childhood in Y | X 's birth in Y | Y born X | Y born X introduced the | sobbing X left Y to | | Cluster 10
(49) | X headquarters in Y . | X's Y headquarters | Y – based X | X works with the Y | Y office of X | | Cluster 1 (2868) | X acquires Y | X has acquired Y | X's Y acquisition | X , acquisition, Y | Y goes X | |---------------------|-------------------------------------|---|--------------------------------|---------------------------------------|--------------------------------------| | Cluster 2 (2711) | Y legend X was | X 's championship Y | Y star X was | X autographed Y ball | Y start X robbed | | Cluster 3 (2615) | Y champion X | world Y champion X | X teaches Y | X 's greatest Y | Y players like X | | Cluster 4
(2008) | X to buy Y | X and Y confirmed | X buy Y is | Y purchase to boost X | X is buying Y | | Cluster 5 (2002) | Y founder X | Y founder and CEO X | X , founder of Y | X says Y | X talks up Y | | Cluster 6
(1364) | X revolutionized Y | X professor of Y | in Y since X | ago, X revolutionized Y | X 's contribution to Y | | Cluster 7
(845) | X and modern Y | genius: X and modern Y | Y in DDDD, X was | on Y by X | X's lectures on Y | | Cluster 8 (280) | X headquarters in Y | PERSON-BIRTHPLACE Relation ference in Y | | X headquarters in Y on | | | Cluster 9
(144) | X 's childhood in Y | X 's birth in Y | Y born X | Y born X introduced the | sobbing X left Y to | | Cluster 10 (49) | X headquarters in Y . | X's Y headquarters | Y – based X | X works with the Y | Y office of X | ### 関係の分野適応 - Relation Adaptation - Given training instances for some source relations S₁,...,S_k and some seed instances for a target relation T, learn a classifier to extract target relation. - Characteristics of relation adaptation - Multiple source relation types - Many training instances for the source relations - Only a few (seeds) for the target relation type - We are only interested in obtaining good performance on the target relation type ### **Relational Mapping** X ceo Y | Melational Mapping | | | | |---|---|--|--| | leaderOf (source relation) | ceoOf (target relation) | | | | President George Bush directed U.S. to an unnecessary war against Iraq. [X direct Y] | Steve Jobs personally directs Apple and make final decisions on various UI designs. [X direct Y] | | | | U.S. president George Bush attended the G8 | Steve Jobs is the CEO of Apple, which he co- | | | | summit last month. | founded in 1976. | | | | [Y president X] | [X ceo Y] | | | | Relation Specific | Relation Independent | | | | Patterns | Patterns | | | | president X 1 | X direct Y | | | Relational Duality: Unsupervised Extraction of Semantic Relations between Entities, WWW 2010. ### Recognizing Relation Independent Patterns - Entropy of a pattern as a measure of independence - Hypothesis - If a pattern co-occurs with numerous entity pairs that have different relation types, then that pattern is relation independent. ### Relational Mapping Algorithm **Input:** An edge-weight matrix, $\mathbf{M} \in \mathbb{R}^{(n-l)\times l}$ of a bipartite graph $G(V_{RS} \cup V_{RI}, E)$, and the number of clusters (latent dimensions) k. **Output:** A projection matrix, $U \in \mathbb{R}^{n \times k}$. 1: Compute the affinity matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$, of the bipartite graph G as $\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{M} \\ \mathbf{M}^{\top} & \mathbf{0} \end{bmatrix}$. creating a bi-partite graph 2: Compute the Laplacian, L, of the bipartite graph G as $\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{A}$, where the diagonal matrix \mathbf{D} has elements $D_{ii} = \sum_{j} A_{ij}$, and $\mathbf{I} \in \mathbb{R}^{n \times n}$ is the unit matrix. spectral clustering 3: Find the eigenvectors corresponding to the k smallest eigenvalues of L, u_1, \ldots, u_k , and arrange them in columns to form the projection matrix $U = [u_1, \ldots, u_k] \in \mathbb{R}^{n \times k}$. matrix $\mathbf{U} = [u_1, \dots, u_k] \in \mathbb{R}^{n \times k}$. 4: return \mathbf{U} lower dimensional mapping ### 今後の課題と展望 - 関係をどう表現するか - ▶ それぞれのエンティティの属性間の対応として表現する - 関係の特徴(属性)として表現する - ▶ 関係の間の関係をどう表現するか - ▶ 4次のテンソルとして表現可能? - ▶ Webのような膨大なデータの場合はどう計算するか - ▶ 多項関係(multinomial relation)をどう抽出するか - 可変多項関係を(テンソルで)どう表現するか - ▶ 関係の分野適応 - ▶ どんな関係ならば分野適応可能か (negative transfer) - SemEval 2012で関係類似性計測タスクをやります # ThankYou #### Contact: Email: danushka@iba.t.u-tokyo.ac.jp Web: www.iba.t.u-tokyo.ac.jp/~danushka Twitter: @Bollegala