
Distributional Learning of Extensions
of Context-Free Grammars

Ryo Yoshinaka
(ERATO Minato Discrete Structure Manipulation System Project,

Japan Science and Technology Agency)

Introduction

Grammatical Inference

• Algorithmic Learning of Formal Languages

• Mathematical model of
natural language acquisition

• Grammar extraction from tagged/untagged corpora

• Biological sequences

• More theoretical rather than heuristic

• Target: (subclasses of) regular, linear, context-free, ...

• Resource: positive/negative examples, queries, ...

• Criteria: exact, probabilistic, ...

• Efficiency: computation time, data size, ...

Chomsky Hierarchy & Learning

Recursively Enumerable

Context-Sensitive

Context-Free

Regular Many positive results

Few positive results

Chomsky Hierarchy & Learning

Recursively Enumerable

Context-Sensitive

Context-Free

Regular Many positive results

Distributional Learning

Distributional Learning

• Models and exploits the distribution of strings in contexts

• Syntactic category of a phrase = Contexts where it occurs

contextscontextscontextscontexts

John □ Mary □ loves kids Adam hits □ Everyone □

strings

John

strings

Mary

strings

she

strings himstrings

loves

strings

loves it

strings

runs

◎ ◎
◎ ◎
◎

◎
◎

◎
◎

John ≡ Mary, him ≦ Mary, loves it ≡ runs, ...

Distributional Learning

• Context-deterministic CFGs by queries
(Shirakawa & Yokomori ’93)

• Substitutable CFLs by positive data (Clark & Eyraud '05)

• k,l-Substitutable CFLs by positive data (Yoshinaka’08)

• Probabilistic learning of Unambiguous
 (k,l-)NTS Languages (Clark’06, Luque’10)

• New formalisms, learning with queries
 (Clark et al.’08, Clark’09)

• etc.

Non-context-free phenomena I

• Swiss-German

• mer em Hans es huus hälfed aastriiche
we helped Hans paint the house

• mer dʼchind em Hans es huus lönd hälfe aastriiche
we let the children help Hans paint the house

Non-context-free phenomena II

• Pseudoknots in biological sequences

CGACU ... GCGAC ... AGUCG ... CGCUG
© Sakurambo via Wikimedia Commons

Mildly Context-Sensitiveness

Recursively Enumerable

Context-Sensitive

Context-Free

Regular

Mildly Context-Sensitiveness

• Cross-serial Dependencies

• Polynomial-time Parsable
Recursively Enumerable

Context-Sensitive

Context-Free

Regular

Mildly Context-Sensitive • Multiple Context-Free Grammars

• Context-Free Tree Grammars

Learning of Mildly Context-Sensitiveness

Context-Free

Mildly Context-Sensitive

Learning of Mildly Context-Sensitiveness

Context-Free

Mildly Context-Sensitive

String
↕

Context

Context-Free

Learning of Mildly Context-Sensitiveness

Context-Free

Mildly Context-Sensitive

String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree

Distributional Learning

of

String
↕

Context

Context-Free

String
↕

Context

Context-Free

String
↕

Context

Context-Free

Learning of Substitutable
Context-Free Languages

from Positive Data

Languages

• Σ = {a,b,c,...} : finite set of symbols

• Σ*: the set of strings over Σ
a, abc, caab ... ∈ Σ*

• Any subset of Σ* is called a language

• Context: pair of strings (u,v) ∈ Σ* × Σ*

• Grammar: finite description for an (infinite) language

Context-Free Grammars
• G = (N, Σ, P, I)

• N: nonterminal symbols

• Σ: terminal symbols

• P ⊆ N x (N ∪ Σ)* : production rules (A → α)

• I ⊆ N: initial symbols

• Derivation (⇒):

• If A → α ∈ P, then A ⇒ α
• If A ⇒ αBγ and B ⇒ β, then A ⇒ αβγ

• Language: L(G) = { w ∈ Σ* | S ⇒ w for some S ∈ I }

Example

• G = (N, Σ, P, I)
• Σ = { a,b,c }

• N = { S, A, B }

• I = { S }

• P = { S → ASB, S → c, A → a, B → b }

• S ⇒ ASB ⇒ AASBB ⇒ aacbb

• L(G) = { ancbn | n ≧ 0 }

S

A S B

A S Ba

a c b
b

Substitutable CFLs

• Clark and Eyraud (’05,’07)

• L is substitutable iff
∀v1, v2 ∈ Σ+ [∃〈u1,w1〉 . u1v1w1, u1v2w1 ∈ L]
 ⇒ [∀〈u2,w2〉 . u2v1w2 ∈ L ⇔ u2v2w2 ∈ L]

Substitutable CFLs

• Clark and Eyraud (’05,’07)

• L is substitutable iff
∀v1, v2 ∈ Σ+ [∃〈u1,w1〉 . u1v1w1, u1v2w1 ∈ L]
 ⇒ [∀〈u2,w2〉 . u2v1w2 ∈ L ⇔ u2v2w2 ∈ L]

• Positive data:

Substitutable CFLs

• Clark and Eyraud (’05,’07)

• L is substitutable iff
∀v1, v2 ∈ Σ+ [∃〈u1,w1〉 . u1v1w1, u1v2w1 ∈ L]
 ⇒ [∀〈u2,w2〉 . u2v1w2 ∈ L ⇔ u2v2w2 ∈ L]

• Positive data:

• A man gave John chocolate.

• A man gave a little girl chocolate.

Substitutable CFLs

• Clark and Eyraud (’05,’07)

• L is substitutable iff
∀v1, v2 ∈ Σ+ [∃〈u1,w1〉 . u1v1w1, u1v2w1 ∈ L]
 ⇒ [∀〈u2,w2〉 . u2v1w2 ∈ L ⇔ u2v2w2 ∈ L]

• Positive data:

• A man gave John chocolate.

• A man gave a little girl chocolate.

• They like John.

Substitutable CFLs

• Clark and Eyraud (’05,’07)

• L is substitutable iff
∀v1, v2 ∈ Σ+ [∃〈u1,w1〉 . u1v1w1, u1v2w1 ∈ L]
 ⇒ [∀〈u2,w2〉 . u2v1w2 ∈ L ⇔ u2v2w2 ∈ L]

• Positive data:

• A man gave John chocolate.

• A man gave a little girl chocolate.

• They like John.

• Generalization: They like a little girl.

Learner

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

Grammar

 was the man who was hungry ordering dinner ?

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

Grammar

* was the man who hungry was ordering dinner ?

 was the man who was hungry ordering dinner ?

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

Grammar

Identification in the Limit from Positive Data

• Gold (1967)

Identification in the Limit from Positive Data

Learning
Target

L0

• Gold (1967)

Identification in the Limit from Positive Data

• Learner
• gets a positive example
• updates the conjecture
• L0 = { w1, w2, w3, ... }

w1 w2 w3

G1 G2 G3

w4

G4 ...

...

Learning
Target

L0

• Gold (1967)

Identification in the Limit from Positive Data

• Learner
• gets a positive example
• updates the conjecture
• L0 = { w1, w2, w3, ... }

• Identification in the Limit:

• convergence to a grammar for the target
 Gn = Gn+1 = Gn+2 ... and L(Gn) = L0

• Learner should uniformly learn a rich class of languages

w1 w2 w3

G1 G2 G3

w4

G4 ...

...

Learning
Target

L0

• Gold (1967)

Clark & Eyraud's Algorithm

let G := vacuous grammar;
For n = 1,2,3,...
 let D := {w1 , w2 , ... , wn };
 If D ⊆ L(G)
 then update G by D;
 End if
 output G
End for

Learner’s Conjecture
• D = { w1, ..., wn } : positive data

• G : conjecture

• N = Sub(D) : all substrings from D
 = { [[v]] | ∃〈u1,u2〉 u1vu2 ∈ D }

★ [[v]] ⇒ v for all [[v]] ∈ N,

• Initial Symbols: { [[v]] ∈ N | v ∈ D }

• Rules

• Type I: [[uv]] → [[u]] [[v]] for all [[uv]] ∈ N

• Type II: [[a]] → a for all a ∈ Σ

• Type III: [[v]] → [[w]] if ∃〈u1,u2〉 s.t. u1vu2, u1wu2 ∈ D

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

Grammar

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

[[man]] → [[man who was hungry]]

[[hungry]] → [[ordering dinner]]

Grammar

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

[[man]] → [[man who was hungry]]

[[hungry]] → [[ordering dinner]]

was the man who was hungry ordering dinner ?

Grammar

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

[[man]] → [[man who was hungry]]

[[hungry]] → [[ordering dinner]]

was the man who was hungry ordering dinner ?

Grammar

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

⇒ [[was the man]] [[hungry]] [[?]] ⇒ [[was]] [[the]] [[man]] [[hungry]] [[?]]

[[man]] → [[man who was hungry]]

[[hungry]] → [[ordering dinner]]

was the man who was hungry ordering dinner ?

Grammar

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

⇒ [[was the man]] [[hungry]] [[?]] ⇒ [[was]] [[the]] [[man]] [[hungry]] [[?]]

⇒ [[was]] [[the]] [[man]] [[ordering dinner]] [[?]]

[[man]] → [[man who was hungry]]

[[hungry]] → [[ordering dinner]]

was the man who was hungry ordering dinner ?

Grammar

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

⇒ [[was the man]] [[hungry]] [[?]] ⇒ [[was]] [[the]] [[man]] [[hungry]] [[?]]

⇒ [[was]] [[the]] [[man]] [[ordering dinner]] [[?]]

⇒ [[was]] [[the]] [[man who was hungry]] [[ordering dinner]] [[?]]

[[man]] → [[man who was hungry]]

[[hungry]] → [[ordering dinner]]

was the man who was hungry ordering dinner ?

Grammar

Learner

the man who was hungry died .
the man ordered dinner .
the man died .
the man was hungry .
was the man hungry ?
the man was ordering dinner .

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

⇒ [[was the man]] [[hungry]] [[?]] ⇒ [[was]] [[the]] [[man]] [[hungry]] [[?]]

⇒ [[was]] [[the]] [[man]] [[ordering dinner]] [[?]]

⇒ [[was]] [[the]] [[man who was hungry]] [[ordering dinner]] [[?]]

⇒

[[man]] → [[man who was hungry]]

[[hungry]] → [[ordering dinner]]

was the man who was hungry ordering dinner ?

Theorem

• Clark and Eyraud's algorithm identifies
every Substitutable CFL in the limit from positive data

• Polynomial-time update

• Polynomially many examples are enough for
convergence w.r.t. the size of the grammar to be learnt

• A rare example of a class of CFLs that is efficiently
learnable from positive data

• Explaining an aspect of natural language phenomena

String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Multiple Context-Free Grammars

Non-context-free phenomena
• Pseudoknots in biological sequences

CGACU ... GCGAC ... AGUCG ... CGCUG

• { am bn cm dn | m, n > 0 } is not context-free

© Sakurambo via Wikimedia Commons

Non-context-free phenomena

• { ambncmdn | m, n > 0 } is not context-free

Non-context-free phenomena

• { ambncmdn | m, n > 0 } is not context-free

• A ⇒ amcm for m > 0 by A → aAc, A → ac,

B ⇒ bndn for n > 0 by B → bBd, B → bd.

Non-context-free phenomena

• { ambncmdn | m, n > 0 } is not context-free

• A ⇒ amcm for m > 0 by A → aAc, A → ac,

B ⇒ bndn for n > 0 by B → bBd, B → bd.

• { ambncmdn | m, n > 0 } is Multiple Context-Free

• A ⇒ 〈am, cm〉 for m > 0

B ⇒ 〈bn, dn〉 for n > 0

S ⇒ ambncmdn for m, n > 0

• MCFG: nonterminals generate tuples of strings

Multiple CFGs

• CFG: nonterminals generate strings
MCFG: nonterminals generate tuples of strings

• Each nonterminal A ∈ N is assigned a dimension dim(A) = m

• A generates m-tuples of strings for dim(A)=m:
 A ⇒ 〈v1, v2, ..., vm〉 ∈ (Σ*)m

Multiple CFGs

• B → a C D (context-free rule) ★ a : terminal symbol

Multiple CFGs

• B → a C D (context-free rule) ★ a : terminal symbol
C

u

D

v
&

B

a u v

Multiple CFGs

• B → a C D (context-free rule)

• B → f(C,D) (multiple cf rule)

C

u1 , u2 , u3

D

v
&

B

u1 a v u2 , u3

★ a : terminal symbol

★ f(〈x1,x2,x3〉, 〈y〉) = 〈x1ayx2, x3〉

C

u

D

v
&

B

a u v

f

f uses each argument exactly once

★ dim(B) = 2,
dim(C) = 3,
dim(D) = 1.

Multiple CFGs

• B → a C D (context-free rule)

• B → f(C,D) (multiple cf rule)

C

u1 , u2 , u3

D

v
&

B

u1 a v u2 , u3

★ a : terminal symbol

★ f(〈x1,x2,x3〉, 〈y〉) = 〈x1ayx2, x3〉

C

u

D

v
&

B

a u v

f

f uses each argument exactly once

★ dim(B) = 2,
dim(C) = 3,
dim(D) = 1.

★ g(x, y) = axy
• B → g(C,D)

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

Example: L(G) = { am bn cm dn | m, n > 0 }

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 a , c 〉

Example: L(G) = { am bn cm dn | m, n > 0 }

A

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

Example: L(G) = { am bn cm dn | m, n > 0 }

〈 a , c 〉〈 aa , cc 〉

AA → g(A)A

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 aa , cc 〉

Example: L(G) = { am bn cm dn | m, n > 0 }

〈 a , c 〉

A

〈 aaa , ccc 〉

A A → g(A) A → g(A)A

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 aa , cc 〉

Example: L(G) = { am bn cm dn | m, n > 0 }

〈 a , c 〉

A

〈 aaa , ccc 〉

A A → g(A) A → g(A)A

• A ⇒ 〈am, cm〉 for all m > 0

B ⇒ 〈bn, dn〉 for all n > 0

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 aa , cc 〉

Example: L(G) = { am bn cm dn | m, n > 0 }

〈 a , c 〉

A

〈 aaa , ccc 〉

A A → g(A) A → g(A)A

• A ⇒ 〈am, cm〉 for all m > 0

B ⇒ 〈bn, dn〉 for all n > 0

A

〈 aaa , ccc 〉

&
B

〈 bb , dd 〉

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 aa , cc 〉

Example: L(G) = { am bn cm dn | m, n > 0 }

〈 a , c 〉

A

〈 aaa , ccc 〉

A A → g(A) A → g(A)A

• A ⇒ 〈am, cm〉 for all m > 0

B ⇒ 〈bn, dn〉 for all n > 0

A

〈 aaa , ccc 〉

&
B

〈 bb , dd 〉

S → f(A,B)S

〈 〉 aaa ccc bb dd

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 aa , cc 〉

Example: L(G) = { am bn cm dn | m, n > 0 }

〈 a , c 〉

A

〈 aaa , ccc 〉

A A → g(A) A → g(A)A

• A ⇒ 〈am, cm〉 for all m > 0

B ⇒ 〈bn, dn〉 for all n > 0

A

〈 aaa , ccc 〉

&
B

〈 bb , dd 〉

S → f(A,B)S

〈 〉aaa cccbb dd

• S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉, A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉, B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 aa , cc 〉

Example: L(G) = { am bn cm dn | m, n > 0 }

〈 a , c 〉

A

〈 aaa , ccc 〉

A A → g(A) A → g(A)A

• A ⇒ 〈am, cm〉 for all m > 0

B ⇒ 〈bn, dn〉 for all n > 0

• S ⇒ am bn cm dn for all m, n > 0

A

〈 aaa , ccc 〉

&
B

〈 bb , dd 〉

S → f(A,B)S

〈 〉aaa cccbb dd

Hierarchy of p,q-MCFLs

• p: the maximum of dim(A) for nonterminals A
(CFG: p = 1)

• q: maximum number of nonterminals on rhs of rules

• p-MCFL(q) ⊆ p-MCFL(q+1)
p-MCFL(q) ⊆ (p+1)-MCFL(q)

A

u1,u2,u3,...,u≦p

A → f(B1,B2,...,B≦q)

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★ v : substring

CFGs

• w = u0v1u1...vmum ∈ L

★ m-context (multi-context):
 u = 〈u0, u1, ..., um〉

★ m-word (multi-word):
 v = 〈v1, v2, ..., vm〉

Multiple Context-Free Grammars

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★ v : substring

CFGs

• w = u0v1u1...vmum ∈ L

★ m-context (multi-context):
 u = 〈u0, u1, ..., um〉

★ m-word (multi-word):
 v = 〈v1, v2, ..., vm〉

• u ⨂ v = u0v1u1...vmum = w

Multiple Context-Free Grammars

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★ v : substring

CFGs

v1 vmv

u1u0 umu

• w = u0v1u1...vmum ∈ L

★ m-context (multi-context):
 u = 〈u0, u1, ..., um〉

★ m-word (multi-word):
 v = 〈v1, v2, ..., vm〉

• u ⨂ v = u0v1u1...vmum = w

Multiple Context-Free Grammars

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★ v : substring

CFGs

v1 vmv u1u0 umu

• w = u0v1u1...vmum ∈ L

★ m-context (multi-context):
 u = 〈u0, u1, ..., um〉

★ m-word (multi-word):
 v = 〈v1, v2, ..., vm〉

• u ⨂ v = u0v1u1...vmum = w

• L/v = { u | u ⨂ v ∈ L } :
 the set of multi-contexts for v

Multiple Context-Free Grammars

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★ v : substring

CFGs

{ abcdn | n > 0 }/〈b, d〉 =
e.g.)

v1 vmv u1u0 umu

• w = u0v1u1...vmum ∈ L

★ m-context (multi-context):
 u = 〈u0, u1, ..., um〉

★ m-word (multi-word):
 v = 〈v1, v2, ..., vm〉

• u ⨂ v = u0v1u1...vmum = w

• L/v = { u | u ⨂ v ∈ L } :
 the set of multi-contexts for v

Multiple Context-Free Grammars

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★ v : substring

CFGs

e.g.)

v1 vmv u1u0 umu

{ abcdiddj | i,j≧0 }/〈b, d〉 = {〈a, cdi, dj〉 | i,j≧0 }

• w = u0v1u1...vmum ∈ L

★ m-context (multi-context):
 u = 〈u0, u1, ..., um〉

★ m-word (multi-word):
 v = 〈v1, v2, ..., vm〉

• u ⨂ v = u0v1u1...vmum = w

• L/v = { u | u ⨂ v ∈ L } :
 the set of multi-contexts for v

Multiple Context-Free Grammars

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★ v : substring

CFGs

e.g.)

v1 vmv u1u0 umu

{ abcdiddj | i,j≧0 }/〈b, d〉 = {〈a, cdi, dj〉 | i,j≧0 }b d a cdi dj

Multidimensionally Substitutable
Multiple Context-Free Languages

p-dimensional Substitutability

• L is pD-substitutable iff ∀v, v’ ∈ (Σ+)≦p,
 [∃u . u⨂v, u⨂v’ ∈ L] ⇒ [∀u’ . u’⨂v ∈ L ⇔ u’⨂v’ ∈ L]

cf. context-free case: ∀v, v'∈Σ+

[∃〈u,w〉 . u v w, u v' w ∈ L] ⇒ [∀〈u',w'〉 . u' v w'∈ L ⇔ u' v' w'∈ L]

p-dimensional Substitutability

• L is pD-substitutable iff ∀v, v’ ∈ (Σ+)≦p,
 [∃u . u⨂v, u⨂v’ ∈ L] ⇒ [∀u’ . u’⨂v ∈ L ⇔ u’⨂v’ ∈ L]

• L /v ∩ L /v’ ≠ ∅ 　 ⇒ 　L /v = L /v’ where |v| = |v’| ≦ p

cf. context-free case: ∀v, v'∈Σ+

[∃〈u,w〉 . u v w, u v' w ∈ L] ⇒ [∀〈u',w'〉 . u' v w'∈ L ⇔ u' v' w'∈ L]

p-dimensional Substitutability

• L is pD-substitutable iff ∀v, v’ ∈ (Σ+)≦p,
 [∃u . u⨂v, u⨂v’ ∈ L] ⇒ [∀u’ . u’⨂v ∈ L ⇔ u’⨂v’ ∈ L]

• L /v ∩ L /v’ ≠ ∅ 　 ⇒ 　L /v = L /v’ where |v| = |v’| ≦ p

cf. context-free case: ∀v, v'∈Σ+

[∃〈u,w〉 . u v w, u v' w ∈ L] ⇒ [∀〈u',w'〉 . u' v w'∈ L ⇔ u' v' w'∈ L]

★ Our Learning Target:
 pD-substitutable p,q-MCFGs for fixed p,q

Learning Algorithm

let G := vacuous grammar;
For n = 1,2,3,...
 let D := {w1 , w2 , ... , wn };
 If D ⊆ L(G)
 then update G by D;
 End if
 output G
End for

Learner’s Conjecture

• D = { w1, ..., wn } : positive data

• G : conjecture

• N = Sub(D) : all sub-multi-words from D
 = { [[v]] | ∃w. w ⨂ v ∈ D, |v| ≦ p}

★ [[v]] ⇒ v for all [[v]] ∈ N, (dim([[v]]) = |v|)

• Initial Symbols: { [[w]] ∈ N | w ∈ D } (dim([[w]]) = 1)

• Rules (Type I):

• [[v0]] → f([[v1]],..., [[vk]]) where v0 = f(v1,...,vk), k ≦ q

cf. context-free case: [[v1v2]] → [[v1]] [[v2]] & [[a]] → a

Type I - example

• Rules (Type I):

• [[v0]] → f([[v1]],..., [[vk]]) where v0 = f(v1,...,vk), k ≦ q

• 〈abc, de〉, 〈a, e〉, 〈c〉 ∈ Sub(D)

• [[abc, de]], [[a, e]], [[c]] ∈ N

• [[abc, de]] → f([[a, e]], [[c]]) with f(〈x1, x2〉,〈y〉) = 〈x1by, dx2 〉,

• [[abc, de]] → 〈abc, de 〉

★ [[v]] ⇒ v for all [[v]] ∈ N, (dim([[v]]) = |v|)

context-free case [[v1v2]] → [[v1]] [[v2]]
 [[a]] → a

�

Type II

• Rules (Type II):

• [[u]] → [[v]] if w ⨂ u , w ⨂ v ∈ D for some w

• Substitutability:

• L0/u ∩ L0/v ≠ ∅ 　 ⇒ 　L0/u = L0/v for |u| = |v| ≦ p

cf-case: [[u]] → [[v]] if w1uw2, w1vw2 ∈ D for some w1,w2

• Nonterminals: N = Sub(D)

• w = u0v1u1...vmum ⇒ 〈v1, ..., vm〉 ∈ Sub(D), m ≦ p

At most |w|2p ways of decomposing w

• Rules (Type I):

• [[u]] → f([[v1]],..., [[vn]]) where u = f(v1,...,vn), |vi| ≦ p, n ≦ q

 At most ||u||2pq ways of decomposing u

• Rules (Type II):

• [[u]] → [[v]] if L0/u ∩ L0/v ≠ ∅

• PolyTime in ||D||

• Data needed: D0

• |D0| ≦ |G0| |G0| : # of rules of minimum G0 with L0 = L(G0)

Learning Efficiency

Theorem
•pD-Substitutable p,q-Multiple CFGs are

Polynomial-Time identifiable in the limit
from Positive Data

String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Distributional Learning

• { am bn cm dn | m, n > 0 } is Not substitutable

• { am e bn f cm g dn | m, n > 0 } is substitutable

• Substitutability is too much restrictive

• { am bn cm dn | m, n > 0 } is Not substitutable

• { am e bn f cm g dn | m, n > 0 } is substitutable

• Substitutability is too much restrictive

• Substitutable CFGs/MCFG are learnable from positive data only

• { am bn cm dn | m, n > 0 } is Not substitutable

• { am e bn f cm g dn | m, n > 0 } is substitutable

• Substitutability is too much restrictive

• Substitutable CFGs/MCFG are learnable from positive data only

• Congruential CFGs are learnable with queries

• { am bn cm dn | m, n > 0 } is Not substitutable

• { am e bn f cm g dn | m, n > 0 } is substitutable

• Substitutability is too much restrictive

• Substitutable CFGs/MCFG are learnable from positive data only

• Congruential CFGs are learnable with queries

• So are Congruential MCFGs

• { am bn cm dn | m, n > 0 } is Not substitutable

• { am e bn f cm g dn | m, n > 0 } is substitutable

• Substitutability is too much restrictive

• Substitutable CFGs/MCFG are learnable from positive data only

• Congruential CFGs are learnable with queries

• So are Congruential MCFGs

 Learning of Congruential Context-Free Tree Grammars

String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree

String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree

Stub
↕

Tree-Context

Context-Free Tree

Context-Free Tree Grammars

Trees

• CFGs define string languages
CFTG define tree languages

Tree:
rooted, ordered,
labeled with ranked letters

• ranked alphabet Σ = Σk

 s.t. Σi ∩ Σj = ∅ for i ≠ j

• Σk: set of symbols of rank k

• f ∈ Σk has k children
Σ0 = {a,b,c}, Σ1 = {g,h}, Σ3 = {f}

f

g f h

g ha

a
c

b

b
k
∪

Trees and Stubs

Tree (0-stub):
labeled, ordered, rooted

m-Stub:
tree with m "open leaves"

(2-Stub)

f

g f h

g ha

a
c

b

b

f

g f

g ha
c

b

Context-Free Tree Grammars

• CFGs define string languages
CFTGs define tree languages

• CFG: nonterminals generate substrings
CFTG: nonterminals generate stubs

• Each nonterminal A ∈ N is assigned a rank rnk(A) = m

• A generates rnk(A)-stubs:

A ⇒
rnk(A) = 2

f

g
c

r-Context-Free Tree Grammars

• G = (N, Σ, P, I)

• N, Σ: ranked nonterminal/terminal symbols

• Rank is at most r

• P ⊆ 　 Nk x (k-Stubs) : production rules

• I ⊆ N0: initial symbols of rank 0

• L(G) = { t | S ⇒ t for some S ∈ I and t is a tree over Σ }

• every 1-CFTG can be identified with a CFG

k
∪

A →
f

g
c

f

g C

O

Context-Free Tree Grammars
★ a,f,g : terminal symbol

 rnk(B) = 1
 rnk(C) = 2
 rnk(D) = 0

• B →

C ⇒ D ⇒ t
B ⇒

a D

&

f

a

g C

D O

s

O O

f

g

O

f

g C

O

Context-Free Tree Grammars
★ a,f,g : terminal symbol

 rnk(B) = 1
 rnk(C) = 2
 rnk(D) = 0

• B →

C ⇒ D ⇒ t
B ⇒

a D

s&

f

a

g C

D O

s

O O

f

g

O

f

g C

O

Context-Free Tree Grammars
★ a,f,g : terminal symbol

 rnk(B) = 1
 rnk(C) = 2
 rnk(D) = 0

• B →

C ⇒ D ⇒ t
B ⇒

a D

s

t

&

f

a

g C

D O

s

O O

f

g

O

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →
O

 h A

c

 A

g

 f

a e

b dO

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

 A

c

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

 A

c

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

 A

g

 f

a e

b dc

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

 A

g

 f

a e

b dc

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

g

b dc

 f

a e

 A

g

 f

a e

b d

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

g

b dc

 f

a e

 A

g

 f

a e

b d

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

O

 h A

c

 A

g

 f

a e

b dO

g

b dc

 f

a e

 h

g

 f

a e

b d

,

★

★★

Example

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

A → ,S →

S ⇒

yield of L(G):
{ anbncdnen | n ≧ 0 }

non-context-free

O

 h A

c

 A

g

 f

a e

b dO

,

★

n times

n times

n ≧ 0g

 f

a e

b d

 f

a e

g

b dc

 h

Substructure/Context Decomposition

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs

Context-Free Tree Grammars

Substructure/Context Decomposition

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs

Context-Free Tree Grammars

Substructure/Context Decomposition

A

t0

t1 t2 t3

• S ⇒

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs

Context-Free Tree Grammars

Substructure/Context Decomposition

A

t0

t1 t2 t3

• S ⇒ • A ⇒

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs
s

O O O

Context-Free Tree Grammars

Substructure/Context Decomposition

A

t0

t1 t2 t3

• S ⇒ • A ⇒ s

t1 t2 t3

t0

• ∈ L(G)

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs
s

O O O

Context-Free Tree Grammars

Substructure/Context Decomposition

A

t0

t1 t2 t3

• S ⇒ • A ⇒ s

t1 t2 t3

t0

• ∈ L(G)

• : tree-context

• : stub

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs
s

O O O

s

O O O

X3

t0

t1 t2 t3

Composition/Decomposition

• m-tree-context c ... tree with a special symbol Xm of rank m

• m-stub s ... tree with m open leaves O

• c ⨂ s substitute s for Xm in c

⨂ s

t1 t2 t3

t0

=s

O O O

cf. context-free case:
〈u,w〉 ⨂ v = uvw

X3

t0

t1 t2 t3

Composition/Decomposition

• m-tree-context c ... tree with a special symbol Xm of rank m

• m-stub s ... tree with m open leaves O

• c ⨂ s substitute s for Xm in c

• L0/s = { c | c ⨂ s ∈ L0 } : the set of tree-contexts for s

⨂ s

t1 t2 t3

t0

=s

O O O

cf. context-free case:
〈u,w〉 ⨂ v = uvw

X3

t0

t1 t2 t3

Learning of
Congruential r-CFTGs

• Learning Congruential CFGs with queries
(Clark '10)

• Learning Congruential CFTGs from positive data
and membership queries

Congruential CFTGs

Congruential CFTGs

• CFTG G is Congruential iff

∀A ∈ N, ∀s,t(A ⇒ s, A ⇒ t),

L(G)/s = L(G)/t　
(∀c , c ⨂ s ∈ L(G) ⇔ c ⨂ t ∈ L(G))

Congruential CFTG

• N0 = { S }, N1 = { A }

• Σ0 = { a,b,c,d,e }, Σ1 = { h }, Σ3 = { f,g }

A →

S →
 A

c

yield: { ambncdnem | n ≧ m }

,

,

m times

m times

S ⇒ m ≧ 0

 A

g

 f

a e

b dO

★

★

★ A → ,
O

 h

g

 f

a e

b d

 f

a e

g

b dc

 h

L(G)／ =

m times

m times

m ≧ 0

• ∀s,t(A ⇒ s, A ⇒ t), L(G)/s = L(G)/t

g

 f

a e

b d

 f

a e

g

b d

h

O

n times

n times

n ≧ 0

g

 f

a e

b d

 f

a e

g

b d

3

c

X

Congruential r-CFTGs

• Congruential 1-CFTGs generate

• All regular languages

• Dyck language (well-bracketed parentheses)

• The yield languages of Congruential 2-CFTGs cover

• { 〈am bn cm dn〉 | m, n > 0 }

• { ww | w ∈ Σ* }
✴a b c a b c

✴d’chind em Hans es huus lönd hälfe aastriiche (Swiss-German)

• etc.

Identification in the Limit from
Positive Data and Membership Queries

Identification in the Limit from
Positive Data and Membership Queries

• Learner
• gets a positive example
• calls the membership oracle
• updates the conjecture

s L0

G!

?
t ∈ L0

Identification in the Limit from
Positive Data and Membership Queries

• Learner
• gets a positive example
• calls the membership oracle
• updates the conjecture

• Identification in the Limit:
• convergence to a grammar for the target
• not have to terminate

s L0

G!

 L(G) = L0

?
t ∈ L0

Learner’s Conjecture

Learner’s Conjecture
• S : Finite set of k-stubs (for 0≦k≦r)

• C : Finite set of k-tree-contexts (for 0≦k≦r)

Learner’s Conjecture
• S : Finite set of k-stubs (for 0≦k≦r)

• C : Finite set of k-tree-contexts (for 0≦k≦r)

• Nonterminals: N = S

• [[t]] ⇒ t for all [[t]] ∈ N, (t is a rnk([[t]])-stub)

• Initial Symbols: { [[t]] ∈ N | t ∈ L0 ∩ S }

Learner’s Conjecture
• S : Finite set of k-stubs (for 0≦k≦r)

• C : Finite set of k-tree-contexts (for 0≦k≦r)

• Nonterminals: N = S

• [[t]] ⇒ t for all [[t]] ∈ N, (t is a rnk([[t]])-stub)

• Initial Symbols: { [[t]] ∈ N | t ∈ L0 ∩ S }

• Rules (Type I, II):

• [[t]] → [[t1]]〈o...o, [[t2]]〈o...o〉,o...o〉 if t = t1[o...o,t2[o...o], o...o],

• [[f〈o...o〉]] → f〈o...o〉 for f ∈ Σ t =
cf. string case:
[[uv]] → [[u]] [[v]] & [[a]] → a

t1

t2
O ... O

O...OO...O

Type III

• Rules (Type III):

• [[s]] → [[t]] if L0/s = L0/t (c ⨂ s ∈ L0 ⇔ c ⨂ t ∈ L0)

cf. Substitutability:

if L0/s ∩ L0/t ≠ ∅

Type III membership oracle
?

ct ∈ L0 for c ∈ C

Type III

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

membership oracle
?

ct ∈ L0 for c ∈ C

Type III

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

• L0/s = L0/t implies L0/s ∩ C = L0/t ∩ C

membership oracle
?

ct ∈ L0 for c ∈ C

Type III

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

• L0/s = L0/t implies L0/s ∩ C = L0/t ∩ C

• [[s]] → [[t]] is incorrect if L0/s = L0/t

membership oracle
?

ct ∈ L0 for c ∈ C

Type III

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

• L0/s = L0/t implies L0/s ∩ C = L0/t ∩ C

• [[s]] → [[t]] is incorrect if L0/s = L0/t

• If C is rich enough, G has no incorrect rules

membership oracle
?

ct ∈ L0 for c ∈ C

Type III

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

• L0/s = L0/t implies L0/s ∩ C = L0/t ∩ C

• [[s]] → [[t]] is incorrect if L0/s = L0/t

• If C is rich enough, G has no incorrect rules

• For each pair [[s]], [[t]] ∈ N such that L0/s = L0/t,
there should be c ∈ C ∩ ((L0/s - L0/t) ∪ (L0/t - L0/s))

membership oracle
?

ct ∈ L0 for c ∈ C

Type III

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

• L0/s = L0/t implies L0/s ∩ C = L0/t ∩ C

• [[s]] → [[t]] is incorrect if L0/s = L0/t

• If C is rich enough, G has no incorrect rules

• For each pair [[s]], [[t]] ∈ N such that L0/s = L0/t,
there should be c ∈ C ∩ ((L0/s - L0/t) ∪ (L0/t - L0/s))

• |C| ≦ |S|2 is enough

membership oracle
?

ct ∈ L0 for c ∈ C

Monotonicity
• Nonterminals: N = S

• Initial Symbols: { [[t]] ∈ N | t ∈ L0 }

• Rules (Type I,II):

• [[t]] → [[t1]]〈o...o, [[t2]]〈o...o〉,o...o〉 if t = t1[o...o,t2[o...o], o...o]

• [[f〈o...o〉]] → f 〈o...o〉 for f ∈ Σ

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

Expansion of S ⇒ More Rules

Expansion of C ⇒ Less Incorrect Rules

Algorithm

Let D := S := ∅; C := {X0}; G := vacuous grammar;
For n = 1,2,3,...
 let D := {t1 , t2 , ... , tn }
 If D ⊆ L(G)
 then expand S with all k-stubs (k≦r) extracted from D
 i.e., S := { s : k-stubs (k≦r) | c ⨂ s ∈ D for some c }
 End if
 expand C with all k-tree-contexts (k≦r) extracted from D
 i.e., C := { c : k-tree-context (k≦r) | c ⨂ s ∈ D for some s }
 update G by S and C
End for

• Expanding S and C from a positive datum t :
 t = e ⨂ s
root and variable leaves of s 　 some nodes of t

At most |t|r+1 ways of decomposition

• Construction of G from S and E :

• Rules (Type I,II):

• [[t]] → [[t1]]〈o...o, [[t2]]〈o...o〉,o...o〉 if t = t1[o...o,t2[o...o], o...o]

• [[f]] → f 〈o...o〉 for f ∈ Σ

• Rules (Type III):

• [[s]] → [[t]] if L0/s ∩ C = L0/t ∩ C

• PolyTime in ||S|| and ||C||, which are polynomial in the data size

Learning Efficiency

⇒

Learning Efficiency

• Let L0 = L(G0)

• When is S sufficient?

• A ⇒ sA

• sA, sB[o...o,sC[o...o], o...o] ∈ S
 for each rule A → B〈o...o,C〈o...o〉,o...o〉

• [[sA]] simulates A

• |S| ≦ 2|G0|

• When is C sufficient?

• For each [[s]], [[t]] ∈ N s.t. L0/s = L0/t,
 C should have c ∈ (L0/s - L0/t) ∪ (L0/t- L0/s)

• |C| ≦ |S|2

Theorem
•Congruential r-CFTGs are

Polynomial-Time Identifiable in the Limit
from Positive Data and Membership Queries

String
↕

Context

Context-Free

Stub
↕

Tree-Context

Context-Free Tree

Distributional Learning

Summary

Multi-word
↕

Multi-Context

Summary

• Generalization of substring/context decomposition

• Other formalisms such as Hyperedge Replacement Grammars

• Probabilistic Learning of CFGs, MCFGs, CFTGs,

• Applying our techniques to treebanks

String
↕

Context

Context-Free

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree

