# Distributional Learning of Extensions of Context-Free Grammars

**Ryo Yoshinaka** (ERATO Minato Discrete Structure Manipulation System Project, Japan Science and Technology Agency) Introduction

## **Grammatical Inference**

- Algorithmic Learning of Formal Languages
  - Mathematical model of natural language acquisition
  - Grammar extraction from tagged/untagged corpora
  - Biological sequences
- More theoretical rather than heuristic
  - Target: (subclasses of) regular, linear, context-free, ...
  - Resource: positive/negative examples, queries, ...
  - Criteria: exact, probabilistic, ...
  - Efficiency: computation time, data size, ...

# **Chomsky Hierarchy & Learning**



# **Chomsky Hierarchy & Learning**



# **Distributional Learning**

- Models and exploits the distribution of strings in contexts
- Syntactic category of a phrase = Contexts where it occurs



# **Distributional Learning**

- Context-deterministic CFGs by queries (Shirakawa & Yokomori '93)
- Substitutable CFLs by positive data (Clark & Eyraud '05)
- k,I-Substitutable CFLs by positive data (Yoshinaka'08)
- Probabilistic learning of Unambiguous (k,l-)NTS Languages (Clark'06, Luque'10)
- New formalisms, learning with queries (Clark et al.'08, Clark'09)

etc.

# Non-context-free phenomena l Swiss-German mer em Hans es huus hälfed aastriiche we helped Hans paint the house mer d'chind em Hans es huus lönd hälfe aastriiche we let the children help Hans paint the house

#### Non-context-free phenomena II

#### Pseudoknots in biological sequences



© Sakurambo via Wikimedia Commons



## **Mildly Context-Sensitiveness**

Recursively Enumerable Context-Sensitive

**Context-Free** 

Regular

## **Mildly Context-Sensitiveness**

Recursively Enumerable Context-Sensitive Mildly Context-Sensitive Context-Free Regular

- Cross-serial Dependencies
- Polynomial-time Parsable
- Multiple Context-Free Grammars
- Context-Free **Tree** Grammars

## Learning of Mildly Context-Sensitiveness

#### Mildly Context-Sensitive

#### **Context-Free**

## **Learning of Mildly Context-Sensitiveness**

#### Mildly Context-Sensitive

| <b>Context-Free</b> |  |
|---------------------|--|
| String              |  |
| ↓<br>Context        |  |
|                     |  |







Learning of Substitutable Context-Free Languages from Positive Data



#### Languages

- $\Sigma = \{a, b, c, ...\}$ : finite set of symbols
- $\Sigma^*$ : the set of strings over  $\Sigma$ a, abc, caab ...  $\in \Sigma^*$
- Any subset of  $\Sigma^*$  is called a *language*
- Context: pair of strings  $(u,v) \in \Sigma^* \times \Sigma^*$
- Grammar: finite description for an (infinite) language

#### **Context-Free Grammars**

- $G = (N, \Sigma, P, I)$ 
  - N: nonterminal symbols
  - Σ: terminal symbols
  - $P \subseteq N \times (N \cup \Sigma)^*$  : production rules  $(A \rightarrow \alpha)$
  - $I \subseteq N$ : initial symbols
- Derivation  $(\Rightarrow)$ :
  - If  $A \rightarrow \alpha \in P$ , then  $A \Rightarrow \alpha$
  - If  $A \Rightarrow \alpha B \gamma$  and  $B \Rightarrow \beta$ , then  $A \Rightarrow \alpha \beta \gamma$
- Language:  $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow w \text{ for some } S \in I \}$

## Example

- $G = (N, \Sigma, P, I)$ 
  - Σ = { *a*,*b*,*c* }
  - $N = \{ S, A, B \}$
  - *I* = { S }
  - $P = \{ S \rightarrow ASB, S \rightarrow c, A \rightarrow a, B \rightarrow b \}$

B

b

a

a

•  $S \Rightarrow ASB \Rightarrow AASBB \Rightarrow aacbb$ 

• 
$$L(G) = \{ a^n c b^n \mid n \ge 0 \}$$

- Clark and Eyraud ('05,'07)
- *L* is **substitutable** iff  $\forall v_1, v_2 \in \Sigma^+ [\exists \langle u_1, w_1 \rangle . u_1 v_1 w_1, u_1 v_2 w_1 \in L]$  $\Rightarrow [\forall \langle u_2, w_2 \rangle . u_2 v_1 w_2 \in L \Leftrightarrow u_2 v_2 w_2 \in L]$

- Clark and Eyraud ('05,'07)
- *L* is **substitutable** iff  $\forall v_1, v_2 \in \Sigma^+ [\exists \langle u_1, w_1 \rangle . u_1 v_1 w_1, u_1 v_2 w_1 \in L]$  $\Rightarrow [\forall \langle u_2, w_2 \rangle . u_2 v_1 w_2 \in L \Leftrightarrow u_2 v_2 w_2 \in L]$
- Positive data:

- Clark and Eyraud ('05,'07)
- *L* is **substitutable** iff  $\forall v_1, v_2 \in \Sigma^+ [\exists \langle u_1, w_1 \rangle . u_1 v_1 w_1, u_1 v_2 w_1 \in L]$  $\Rightarrow [\forall \langle u_2, w_2 \rangle . u_2 v_1 w_2 \in L \Leftrightarrow u_2 v_2 w_2 \in L]$
- Positive data:
  - A man gave John chocolate.
  - A man gave a little girl chocolate.

- Clark and Eyraud ('05,'07)
- *L* is **substitutable** iff  $\forall v_1, v_2 \in \Sigma^+ [\exists \langle u_1, w_1 \rangle . u_1 v_1 w_1, u_1 v_2 w_1 \in L]$  $\Rightarrow [\forall \langle u_2, w_2 \rangle . u_2 v_1 w_2 \in L \Leftrightarrow u_2 v_2 w_2 \in L]$
- Positive data:
  - A man gave John chocolate.
  - A man gave a little girl chocolate.
  - They like John.

- Clark and Eyraud ('05,'07)
- *L* is **substitutable** iff  $\forall v_1, v_2 \in \Sigma^+ [\exists \langle u_1, w_1 \rangle . u_1 v_1 w_1, u_1 v_2 w_1 \in L]$  $\Rightarrow [\forall \langle u_2, w_2 \rangle . u_2 v_1 w_2 \in L \Leftrightarrow u_2 v_2 w_2 \in L]$
- Positive data:
  - A man gave John chocolate.
  - A man gave a little girl chocolate.
  - They like John.
- Generalization: They like a little girl.







#### Grammar



Learner

was the man who was hungry ordering dinner ?



Learner

was the man who was hungry ordering dinner ?

\* was the man who hungry was ordering dinner ?

• Gold (1967)

• Gold (1967)



- Gold (1967)
- Learner
  - gets a positive example WI W2 W3 W4 ...
  - updates the conjecture  $G_1$   $G_2$   $G_3$   $G_4$  ...
  - $L_0 = \{ w_1, w_2, w_3, ... \}$

Learning Target Lo

- Gold (1967)
- Learner
  - gets a positive example WI W2 W3 W4 ...
  - updates the conjecture  $G_1$   $G_2$   $G_3$   $G_4$  ...
  - $L_0 = \{ w_1, w_2, w_3, ... \}$
- Identification in the Limit:
  - convergence to a grammar for the target  $G_n = G_{n+1} = G_{n+2} \dots$  and  $L(G_n) = L_0$
- Learner should uniformly learn a rich class of languages

Learning Target

# **Clark & Eyraud's Algorithm**

let G := vacuous grammar; For n = 1,2,3,...let  $D := \{w_1, w_2, ..., w_n\};$ If  $D \not\subseteq L(G)$ then **update** G by D; End if output GEnd for

#### Learner's Conjecture

- $D = \{ w_1, ..., w_n \}$ : positive data
- G: conjecture
  - N = Sub(D) : all substrings from D= {  $\llbracket v \rrbracket \mid \exists \langle u_1, u_2 \rangle u_1 v u_2 \in D$  }
  - $\bigstar \llbracket v \rrbracket \Rightarrow v \text{ for all } \llbracket v \rrbracket \in N,$
  - Initial Symbols:  $\{\llbracket v \rrbracket \in N \mid v \in D \}$
  - Rules
    - Type I:  $\llbracket uv \rrbracket \rightarrow \llbracket u \rrbracket \llbracket v \rrbracket$  for all  $\llbracket uv \rrbracket \in N$
    - Type II:  $\llbracket a \rrbracket \rightarrow a$  for all  $a \in \Sigma$
    - Type III:  $\llbracket v \rrbracket \rightarrow \llbracket w \rrbracket$  if  $\exists \langle u_1, u_2 \rangle$  s.t.  $u_1vu_2, u_1wu_2 \in D$


#### Grammar

Learner

[man] → [man who was hungry] [hungry] → [ordering dinner]

#### Grammar

Learner

[man] → [man who was hungry] [hungry] → [ordering dinner]

was the man who was hungry ordering dinner?

#### Grammar

Learner

[man] → [man who was hungry] [hungry] → [ordering dinner]

[was the man hungry ?]  $\Rightarrow$  [was the man] [hungry ?]

was the man who was hungry ordering dinner ?

Grammar

Learner

[man] → [man who was hungry] [hungry] → [ordering dinner]

[[was the man hungry ?]]  $\Rightarrow$  [[was the man]] [[hungry ?]]  $\Rightarrow$  [[was the man]] [[hungry]] [[?]]  $\Rightarrow$  [[was]] [[the]] [[man]] [[hungry]] [[?]]

was the man who was hungry ordering dinner?

Grammar

Learner

[man] → [man who was hungry] [hungry] → [ordering dinner]

[was the man hungry ?] ⇒ [was the man] [hungry ?]

- ⇒ [was the man] [hungry] [?] ⇒ [was] [the] [man] [hungry] [?]
- ⇒ [was] [the] [man] [ordering dinner] [?]

was the man who was hungry ordering dinner ?

Grammar

Learner

[man] → [man who was hungry] [hungry] → [ordering dinner]

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

- $\Rightarrow [was the man] [hungry] [?] \Rightarrow [was] [the] [man] [hungry] [?]$
- ⇒ [was] [the] [man] [ordering dinner] [?]
- ⇒ [was] [the] [man who was hungry] [ordering dinner] [?]

was the man who was hungry ordering dinner?

Grammar

Learner

[man] → [man who was hungry] [hungry] → [ordering dinner]

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

- ⇒ [was the man] [hungry] [?] ⇒ [was] [the] [man] [hungry] [?]
- ⇒ [was] [the] [man] [ordering dinner] [?]
- ⇒ [was] [the] [man who was hungry] [ordering dinner] [?]

⇒ was the man who was hungry ordering dinner ?

# Theorem

- Clark and Eyraud's algorithm identifies every Substitutable CFL in the limit from positive data
- Polynomial-time update
- Polynomially many examples are enough for convergence w.r.t. the size of the grammar to be learnt

- A rare example of a class of CFLs that is efficiently learnable from positive data
- Explaining an aspect of natural language phenomena



#### **Multiple Context-Free**

Multi-word ¢ Multi-Context



# Non-context-free phenomena

• {  $a^m b^n c^m d^n \mid m, n > 0$  } is not context-free

## Non-context-free phenomena

- {  $a^m b^n c^m d^n \mid m, n > 0$  } is not context-free
- $A \Rightarrow a^m c^m$  for m > 0 by  $A \rightarrow aAc, A \rightarrow ac$ ,
  - $B \Rightarrow b^n d^n$  for n > 0 by  $B \rightarrow bBd$ ,  $B \rightarrow bd$ .

## Non-context-free phenomena

- {  $a^m b^n c^m d^n \mid m, n > 0$  } is not context-free
- $A \Rightarrow a^m c^m$  for m > 0 by  $A \rightarrow aAc, A \rightarrow ac$ ,
  - $B \Rightarrow b^n d^n$  for n > 0 by  $B \rightarrow bBd$ ,  $B \rightarrow bd$ .
- {  $a^m b^n c^m d^n \mid m, n > 0$  } is Multiple Context-Free
- $A \Rightarrow \langle a^m, c^m \rangle$  for m > 0
  - $B \Rightarrow \langle b^n, d^n \rangle$  for n > 0
  - $S \Rightarrow a^m b^n c^m d^n$  for m, n > 0
- MCFG: nonterminals generate tuples of strings

# **Multiple CFGs**

- CFG: nonterminals generate strings
  MCFG: nonterminals generate tuples of strings
- Each nonterminal  $A \in N$  is assigned a dimension dim(A) = m
- A generates *m*-tuples of strings for dim(A)=*m*:  $A \Rightarrow \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m \rangle \in (\Sigma^*)^m$

# **Multiple CFGs**

•  $B \rightarrow a C D$  (context-free rule)  $\star a$  : terminal symbol

# • $B \rightarrow a \ CD$ (context-free rule) $B \rightarrow a \ CD$ (context-free rule) $B \rightarrow a \ CD$ (context-free rule) A = terminal symbol



f uses each argument exactly once



f uses each argument exactly once





A

 $\langle a, c \rangle$ 

•  $S \rightarrow f(A,B)$  with  $f(\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle) = \langle x_1y_1x_2y_2 \rangle,$   $A \rightarrow \langle a, c \rangle, \quad A \rightarrow g(A)$  with  $g(\langle x_1, x_2 \rangle) = \langle ax_1, cx_2 \rangle,$  $B \rightarrow \langle b, d \rangle, \quad B \rightarrow h(B)$  with  $h(\langle y_1, y_2 \rangle) = \langle y_1b, y_2d \rangle.$ 



•  $A \Rightarrow \langle a^m, c^m \rangle$  for all m > 0

 $B \Rightarrow \langle b^n, d^n \rangle$  for all n > 0

•  $S \rightarrow f(A,B)$  with  $f(\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle) = \langle x_1y_1x_2y_2 \rangle,$   $A \rightarrow \langle a, c \rangle, \quad A \rightarrow g(A)$  with  $g(\langle x_1, x_2 \rangle) = \langle ax_1, cx_2 \rangle,$  $B \rightarrow \langle b, d \rangle, \quad B \rightarrow h(B)$  with  $h(\langle y_1, y_2 \rangle) = \langle y_1b, y_2d \rangle.$ 



•  $A \Rightarrow \langle a^m, c^m \rangle$  for all m > 0

 $B \Rightarrow \langle b^n, d^n \rangle$  for all n > 0





•  $S \rightarrow f(A,B)$  with  $f(\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle) = \langle x_1y_1x_2y_2 \rangle,$   $A \rightarrow \langle a, c \rangle, \quad A \rightarrow g(A)$  with  $g(\langle x_1, x_2 \rangle) = \langle ax_1, cx_2 \rangle,$  $B \rightarrow \langle b, d \rangle, \quad B \rightarrow h(B)$  with  $h(\langle y_1, y_2 \rangle) = \langle y_1b, y_2d \rangle.$ 



• 
$$A \Rightarrow \langle a^m, c^m \rangle$$
 for all  $m > 0$ 

 $B \Rightarrow \langle b^n, d^n \rangle$  for all n > 0



•  $S \Rightarrow a^m b^n c^m d^n$  for all m, n > 0

# Hierarchy of p,q-MCFLs

- p: the maximum of dim(A) for nonterminals A
  (CFG: p = 1)
- q: maximum number of nonterminals on rhs of rules

 $A \rightarrow f(B_1, B_2, ..., B_{\leq q})$ 

A

*U*1,*U*2,*U*3,...,*U*≤*p* 

•  $p-\mathcal{MCFL}(q) \subseteq p-\mathcal{MCFL}(q+1)$  $p-\mathcal{MCFL}(q) \subseteq (p+1)-\mathcal{MCFL}(q)$ 

#### **CFGs**

- $u_0 v u_1 \in L$
- $\star \langle u_0, u_1 \rangle$ : **context**
- \* v : substring

#### **CFGs**

- $u_0 v u_1 \in L$
- $\star \langle u_0, u_1 \rangle$ : **context**
- v : substring

- $w = u_0 v_1 u_1 \dots v_m u_m \in L$
- $\star m\text{-context (multi-context):} \\ \boldsymbol{u} = \langle u_0, u_1, ..., u_m \rangle$
- $\star m\text{-word (multi-word):}$  $\mathbf{v} = \langle v_1, v_2, ..., v_m \rangle$

# **CFGs** $u_0 v u_1 \in L$ $\langle u_0, u_1 \rangle$ : **context** v : substring

- $w = u_0 v_1 u_1 \dots v_m u_m \in L$
- $\star m\text{-context (multi-context):}$  $\boldsymbol{u} = \langle u_0, u_1, ..., u_m \rangle$
- $\star m\text{-word (multi-word):}$   $\mathbf{v} = \langle v_1, v_2, ..., v_m \rangle$   $\mathbf{u} \qquad u_0 \quad u_1 \quad u_m$   $\mathbf{w} = \dots = w$   $\mathbf{v} \qquad \mathbf{v} \qquad \mathbf{v} \qquad \mathbf{v}_m$

#### **CFGs**

- $u_0 v u_1 \in L$
- $\star \langle u_0, u_1 \rangle$ : **context**
- v : substring

- $w = u_0 v_1 u_1 \dots v_m u_m \in L$
- $\star m\text{-context (multi-context):}$  $\boldsymbol{u} = \langle u_0, u_1, ..., u_m \rangle$
- $\star m\text{-word (multi-word):}$  $\mathbf{v} = \langle v_1, v_2, ..., v_m \rangle$
- $\boldsymbol{u} \otimes \boldsymbol{v} = u_0 \boldsymbol{v}_1 \boldsymbol{u}_1 \dots \boldsymbol{v}_m \boldsymbol{u}_m = \boldsymbol{w}$

#### **CFGs**

- $u_0 v u_1 \in L$
- $\star \langle u_0, u_1 \rangle$ : **context**
- v : substring

- $w = u_0 v_1 u_1 \dots v_m u_m \in L$
- $\star m\text{-context (multi-context):} \\ \boldsymbol{u} = \langle u_0, u_1, ..., u_m \rangle$
- $\star m\text{-word (multi-word):}$  $\mathbf{v} = \langle v_1, v_2, ..., v_m \rangle$
- $\boldsymbol{u} \otimes \boldsymbol{v} = u_0 \boldsymbol{v}_1 u_1 \dots \boldsymbol{v}_m u_m = \boldsymbol{w}$
- L/v = { u | u ⊗ v ∈ L } : the set of multi-contexts for v e.g.)
   { abcd<sup>n</sup> | n > 0 }/⟨b, d⟩ =
# Substructure/Context Decomposition

#### **CFGs**

- $u_0vu_1 \in L$
- $\star \langle u_0, u_1 \rangle$ : **context**
- v : substring

#### **Multiple Context-Free Grammars**

- $w = u_0 v_1 u_1 \dots v_m u_m \in L$
- $\star m\text{-context (multi-context):}$  $\boldsymbol{u} = \langle u_0, u_1, ..., u_m \rangle$
- $\star m\text{-word (multi-word):}$  $\mathbf{v} = \langle v_1, v_2, ..., v_m \rangle$
- $\boldsymbol{u} \otimes \boldsymbol{v} = u_0 \boldsymbol{v}_1 u_1 \dots \boldsymbol{v}_m u_m = \boldsymbol{w}$
- L/v = { u | u ⊗ v ∈ L } : the set of multi-contexts for v e.g.) { abcd<sup>i</sup>dd<sup>i</sup> | i,j≥0 }/⟨ , ⟩ = {⟨ , , ⟩ | i,j≥0 }

# Substructure/Context Decomposition

#### **CFGs**

- $u_0 v u_1 \in L$
- $\star \langle u_0, u_1 \rangle$ : **context**
- v : substring

#### **Multiple Context-Free Grammars**

- $w = u_0 v_1 u_1 \dots v_m u_m \in L$
- $\star m\text{-context (multi-context):} \\ \boldsymbol{u} = \langle u_0, u_1, ..., u_m \rangle$
- $\star m\text{-word (multi-word):}$  $\mathbf{v} = \langle v_1, v_2, ..., v_m \rangle$
- $\boldsymbol{u} \otimes \boldsymbol{v} = u_0 \boldsymbol{v}_1 u_1 \dots \boldsymbol{v}_m u_m = \boldsymbol{w}$
- L/v = { u | u ⊗ v ∈ L } : the set of multi-contexts for v e.g.) { abcd<sup>i</sup>dd<sup>i</sup> | i,j≥0 }/⟨b, d⟩ = {⟨a, cd<sup>i</sup>, d<sup>i</sup>⟩ | i,j≥0 }

Multidimensionally Substitutable Multiple Context-Free Languages

# **p-dimensional Substitutability**

cf. context-free case:  $\forall v, v' \in \Sigma^+$ [ $\exists \langle u, w \rangle$ .  $uvw, uv'w \in L$ ]  $\Rightarrow [\forall \langle u', w' \rangle$ .  $u'vw' \in L \Leftrightarrow u'v'w' \in L$ ]

• *L* is *p*D-substitutable iff  $\forall v, v' \in (\Sigma^+)^{\leq p}$ , [ $\exists u . u \otimes v, u \otimes v' \in L$ ]  $\Rightarrow [\forall u' . u' \otimes v \in L \Leftrightarrow u' \otimes v' \in L$ ]

# **p-dimensional Substitutability**

cf. context-free case:  $\forall v, v' \in \Sigma^+$ [ $\exists \langle u, w \rangle$ .  $uvw, uv'w \in L$ ]  $\Rightarrow$  [ $\forall \langle u', w' \rangle$ .  $u'vw' \in L \Leftrightarrow u'v'w' \in L$ ]

• *L* is *p*D-substitutable iff  $\forall v, v' \in (\Sigma^+)^{\leq p}$ , [ $\exists u . u \otimes v, u \otimes v' \in L$ ]  $\Rightarrow [\forall u' . u' \otimes v \in L \Leftrightarrow u' \otimes v' \in L$ ]

•  $L/\mathbf{v} \cap L/\mathbf{v}' \neq \emptyset \implies L/\mathbf{v} = L/\mathbf{v}' \text{ where } |\mathbf{v}| = |\mathbf{v}'| \leq p$ 

# **p-dimensional Substitutability**

cf. context-free case:  $\forall v, v' \in \Sigma^+$ [ $\exists \langle u, w \rangle$ .  $uvw, uv'w \in L$ ]  $\Rightarrow$  [ $\forall \langle u', w' \rangle$ .  $u'vw' \in L \Leftrightarrow u'v'w' \in L$ ]

- *L* is *p*D-substitutable iff  $\forall v, v' \in (\Sigma^+)^{\leq p}$ , [ $\exists u . u \otimes v, u \otimes v' \in L$ ]  $\Rightarrow [\forall u' . u' \otimes v \in L \Leftrightarrow u' \otimes v' \in L$ ]
- $L/\mathbf{v} \cap L/\mathbf{v}' \neq \emptyset \implies L/\mathbf{v} = L/\mathbf{v}' \text{ where } |\mathbf{v}| = |\mathbf{v}'| \leq p$

★ Our Learning Target: pD-substitutable p,q-MCFGs for fixed p,q

# Learning Algorithm

let G := vacuous grammar; For n = 1,2,3,...let  $D := \{w_1, w_2, ..., w_n\};$ If  $D \not\subseteq L(G)$ then **update** G by D; End if output GEnd for

# Learner's Conjecture

- $D = \{ w_1, ..., w_n \}$ : positive data
- G: conjecture
  - N = Sub(D) : all sub-multi-words from D= {  $\llbracket v \rrbracket$  |  $\exists w. w \otimes v \in D$ ,  $|v| \leq p$ }
  - $\bigstar \llbracket \mathbf{v} \rrbracket \Rightarrow \mathbf{v} \text{ for all } \llbracket \mathbf{v} \rrbracket \in N, \quad (\dim(\llbracket \mathbf{v} \rrbracket) = |\mathbf{v}|)$
  - Initial Symbols: {  $\llbracket w \rrbracket \in N \mid w \in D$  } ( dim( $\llbracket w \rrbracket$ ) = 1 )
  - Rules (Type I):
    - $\llbracket \mathbf{v}_0 \rrbracket \rightarrow f(\llbracket \mathbf{v}_1 \rrbracket, ..., \llbracket \mathbf{v}_k \rrbracket)$  where  $\mathbf{v}_0 = f(\mathbf{v}_1, ..., \mathbf{v}_k), k \leq q$

cf. context-free case:  $\llbracket v_1 v_2 \rrbracket \rightarrow \llbracket v_1 \rrbracket \llbracket v_2 \rrbracket \& \llbracket a \rrbracket \rightarrow a$ 

# Type I - example

• Rules (Type I):

context-free case  $\left\{ \begin{bmatrix} v_1 v_2 \end{bmatrix} \rightarrow \begin{bmatrix} v_1 \end{bmatrix} \begin{bmatrix} v_2 \end{bmatrix} \\ \begin{bmatrix} a \end{bmatrix} \rightarrow a \end{bmatrix}$ 

- $\llbracket \mathbf{v}_0 \rrbracket \rightarrow f(\llbracket \mathbf{v}_1 \rrbracket, ..., \llbracket \mathbf{v}_k \rrbracket)$  where  $\mathbf{v}_0 = f(\mathbf{v}_1, ..., \mathbf{v}_k), k \leq q$
- $\langle abc, de \rangle, \langle a, e \rangle, \langle c \rangle \in Sub(D)$
- $[abc, de], [a, e], [c] \in N$ 
  - $\llbracket abc, de \rrbracket \rightarrow f(\llbracket a, e\rrbracket, \llbracket c\rrbracket)$  with  $f(\langle x_1, x_2 \rangle, \langle y \rangle) = \langle x_1by, dx_2 \rangle$ ,
  - $[abc, de] \rightarrow \langle abc, de \rangle$

★  $\llbracket \mathbf{v} \rrbracket \Rightarrow \mathbf{v}$  for all  $\llbracket \mathbf{v} \rrbracket \in N$ , (dim( $\llbracket \mathbf{v} \rrbracket$ ) =  $|\mathbf{v}|$ )

# Type II

- Rules (Type II):
  - $\llbracket u \rrbracket \rightarrow \llbracket v \rrbracket$  if  $w \otimes u, w \otimes v \in D$  for some w

cf-case:  $\llbracket u \rrbracket \rightarrow \llbracket v \rrbracket$  if  $w_1 u w_2, w_1 v w_2 \in D$  for some  $w_1, w_2$ 

• Substitutability:

•  $L_0/\mathbf{u} \cap L_0/\mathbf{v} \neq \emptyset \implies L_0/\mathbf{u} = L_0/\mathbf{v} \quad \text{for } |\mathbf{u}| = |\mathbf{v}| \leq p$ 

# **Learning Efficiency**

- Nonterminals: N = Sub(D)
  - $\mathbf{w} = u_0 \mathbf{v}_1 u_1 \dots \mathbf{v}_m u_m \Rightarrow \langle \mathbf{v}_1, \dots, \mathbf{v}_m \rangle \in \mathrm{Sub}(\mathbf{D}), \ m \leq p$

At most  $|w|^{2p}$  ways of decomposing w

- Rules (Type I):
  - $\llbracket u \rrbracket \rightarrow f(\llbracket v_1 \rrbracket, ..., \llbracket v_n \rrbracket)$  where  $u = f(v_1, ..., v_n), |v_i| \le p, n \le q$

At most  $||u||^{2pq}$  ways of decomposing u

- Rules (Type II):
  - $\llbracket u \rrbracket \rightarrow \llbracket v \rrbracket$  if  $L_0/u \cap L_0/v \neq \emptyset$
- PolyTime in ||D||
- Data needed: D<sub>0</sub>

•  $|D_0| \leq |G_0|$  —  $|G_0|$  : # of rules of minimum  $G_0$  with  $L_0 = L(G_0)$ 

## Theorem

• *p*D-Substitutable *p,q*-Multiple CFGs are Polynomial-Time identifiable in the limit from Positive Data

# **Distributional Learning**



- {  $a^m b^n c^m d^n | m, n > 0$  } is Not substitutable
- {  $a^m e b^n f c^m g d^n | m, n > 0$  } is substitutable
- Substitutability is too much restrictive

- {  $a^m b^n c^m d^n \mid m, n > 0$  } is Not substitutable
- {  $a^m e b^n f c^m g d^n | m, n > 0$  } is substitutable
- Substitutability is too much restrictive

Substitutable CFGs/MCFG are learnable from positive data only

- {  $a^m b^n c^m d^n \mid m, n > 0$  } is Not substitutable
- {  $a^m e b^n f c^m g d^n | m, n > 0$  } is substitutable
- Substitutability is too much restrictive

- Substitutable CFGs/MCFG are learnable from positive data only
- Congruential CFGs are learnable with queries

- {  $a^m b^n c^m d^n \mid m, n > 0$  } is Not substitutable
- {  $a^m e b^n f c^m g d^n | m, n > 0$  } is substitutable
- Substitutability is too much restrictive

- Substitutable CFGs/MCFG are learnable from positive data only
- Congruential CFGs are learnable with queries
- So are Congruential MCFGs

- {  $a^m b^n c^m d^n \mid m, n > 0$  } is Not substitutable
- {  $a^m e b^n f c^m g d^n | m, n > 0$  } is substitutable
- Substitutability is too much restrictive

- Substitutable CFGs/MCFG are learnable from positive data only
- Congruential CFGs are learnable with queries
- So are Congruential MCFGs

Learning of Congruential Context-Free **Tree** Grammars





#### 

### Trees

• CFGs define string languages CFTG define tree languages

Tree: rooted, ordered, labeled with ranked letters

- ranked alphabet  $\Sigma = \bigcup_{k} \Sigma_k$ s.t.  $\Sigma_i \cap \Sigma_j = \emptyset$  for  $i \neq j$
- $\Sigma_k$ : set of symbols of rank k
- $f \in \Sigma_k$  has k children



## **Trees and Stubs**

Tree (0-stub): labeled, ordered, rooted *m*-Stub: tree with *m* "open leaves"



| b (2-Stub)

- CFGs define string languages CFTGs define tree languages
- CFG: nonterminals generate substrings CFTG: nonterminals generate stubs
- Each nonterminal  $A \in N$  is assigned a rank rnk(A) = m

rnk(/

• A generates rnk(A)-stubs:



- $G = (N, \Sigma, P, I)$ 
  - N,  $\Sigma$ : ranked nonterminal/terminal symbols
  - Rank is at most r
  - $P \subseteq \bigcup_{k} N_k \times (k$ -Stubs) : production rules
  - $I \subseteq N_0$ : initial symbols of rank 0
- $L(G) = \{ t \mid S \Rightarrow t \text{ for some } S \in I \text{ and } t \text{ is a tree over } \Sigma \}$
- every 1-CFTG can be identified with a CFG



a,f,g : terminal symbol

rnk(B) = 1rnk(C) = 2rnk(D) = 0





a,f,g : terminal symbol

rnk(B) = 1rnk(C) = 2rnk(D) = 0





a,f,g : terminal symbol

rnk(B) = 1rnk(C) = 2rnk(D) = 0



- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$



- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$

 $\Rightarrow$ 



- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$



- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$

 $\Rightarrow$ 



- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$



- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$





- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$



- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$


#### Example

- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$



#### Example

- $N_0 = \{ S \}, N_1 = \{ A \}$
- $\Sigma_0 = \{ a, b, c, d, e \}, \Sigma_1 = \{ h \}, \Sigma_3 = \{ f, g \}$



#### Example















### **Composition/Decomposition**

- *m*-tree-context c ... tree with a special symbol  $X_m$  of rank m
- *m-stub s* ... tree with *m* open leaves O
- $\mathbf{c} \otimes \mathbf{s}$  ..... substitute  $\mathbf{s}$  for  $X_m$  in  $\mathbf{c}$

cf. context-free case:  $\langle u, w \rangle \otimes v = uvw$ 



### **Composition/Decomposition**

- *m*-tree-context c ... tree with a special symbol  $X_m$  of rank m
- *m-stub s* ... tree with *m* open leaves O
- $\mathbf{C} \otimes \mathbf{S}$  ..... substitute  $\mathbf{s}$  for  $X_m$  in  $\mathbf{C}$
- cf. context-free case:  $\langle u, w \rangle \otimes v = uvw$
- $L_0/s = \{ c \mid c \otimes s \in L_0 \}$ : the set of tree-contexts for s



Learning of Congruential *r*-CFTGs  Learning Congruential CFGs with queries (Clark '10)

 Learning Congruential CFTGs from positive data and membership queries

## **Congruential CFTGs**

## **Congruential CFTGs**

• CFTG G is Congruential iff

 $\forall A \in N, \forall \mathbf{s}, \mathbf{t}(A \Rightarrow \mathbf{s}, A \Rightarrow \mathbf{t}),$ 

L(G)/s = L(G)/t $(\forall c, c \otimes s \in L(G) \Leftrightarrow c \otimes t \in L(G))$ 







## **Congruential** *r*-CFTGs

- Congruential 1-CFTGs generate
  - All regular languages
  - Dyck language (well-bracketed parentheses)
- The yield languages of Congruential 2-CFTGs cover
  - {  $\langle a^m b^n c^m d^n \rangle | m, n > 0$  }
  - { ww |  $w \in \Sigma^*$  }

\* a b c a b c + d'chind em Hans es huus lönd hälfe aastriiche (Swiss-German)

etc. 

## **Identification in the Limit from Positive Data and Membership Queries**

## **Identification in the Limit from Positive Data and Membership Queries**

G!

 $t \in L_0$ 

- Learner
  - gets a positive example s
  - calls the membership oracle
  - updates the conjecture

## Identification in the Limit from Positive Data and Membership Queries

G!

- Learner
  - gets a positive example s
  - calls the membership oracle
  - updates the conjecture
- Identification in the Limit:
  - convergence to a grammar for the target
  - not have to terminate



 $t \in L_0$ 

- **S** : Finite set of k-stubs (for  $0 \le k \le r$ )
- **C** : Finite set of k-tree-contexts (for  $0 \le k \le r$ )

- **S** : Finite set of k-stubs (for  $0 \le k \le r$ )
- **C** : Finite set of k-tree-contexts (for  $0 \le k \le r$ )
- Nonterminals: N = S
  - $\llbracket t \rrbracket \Rightarrow t$  for all  $\llbracket t \rrbracket \in N$ , (t is a rnk( $\llbracket t \rrbracket$ )-stub)
- Initial Symbols:  $\{ \llbracket t \rrbracket \in N \mid t \in L_0 \cap S \}$

- **S** : Finite set of k-stubs (for  $0 \le k \le r$ )
- **C** : Finite set of k-tree-contexts (for  $0 \le k \le r$ )
- Nonterminals: N = S
  - $\llbracket t \rrbracket \Rightarrow t$  for all  $\llbracket t \rrbracket \in N$ , (t is a rnk( $\llbracket t \rrbracket$ )-stub)
- Initial Symbols:  $\{ \llbracket t \rrbracket \in N \mid t \in L_0 \cap S \}$
- Rules (Type I, II):
  - $\llbracket t \rrbracket \rightarrow \llbracket t_1 \rrbracket \langle 0...0, \llbracket t_2 \rrbracket \langle 0...0 \rangle, 0...0 \rangle$  if  $t = t_1 [0...0, t_2 [0...0], 0...0],$
  - $\llbracket f(o...o) \rrbracket \rightarrow f(o...o)$  for  $f \in \Sigma$

cf. string case:  $\llbracket uv \rrbracket \rightarrow \llbracket u \rrbracket \llbracket v \rrbracket \& \llbracket a \rrbracket \rightarrow a$ 

• Rules (Type III):

cf. Substitutability: if  $L_0/s \cap L_0/t \neq \emptyset$ 

•  $\llbracket s \rrbracket \rightarrow \llbracket t \rrbracket$  if  $L_0/s = L_0/t$  ( $c \otimes s \in L_0 \Leftrightarrow c \otimes t \in L_0$ )

#### membership oracle



#### • Rules (Type III):



•  $[s] \rightarrow [t]$  if  $L_0/s \cap C = L_0/t \cap C$ 

#### membership oracle

• Rules (Type III):



- $\llbracket s \rrbracket \rightarrow \llbracket t \rrbracket$  if  $L_0/s \cap C = L_0/t \cap C$
- $L_0/s = L_0/t$  implies  $L_0/s \cap C = L_0/t \cap C$

membership oracle

• Rules (Type III):



- $[s] \rightarrow [t]$  if  $L_0/s \cap C = L_0/t \cap C$
- $L_0/s = L_0/t$  implies  $L_0/s \cap C = L_0/t \cap C$
- $[s] \rightarrow [t]$  is **incorrect** if  $L_0/s \neq L_0/t$

membership oracle

• Rules (Type III):

 $\mathbf{c} \odot \mathbf{t} \in \mathbf{L}_0 \quad \text{for } \mathbf{c} \in \mathbf{C}$ 

- $[s] \rightarrow [t]$  if  $L_0/s \cap C = L_0/t \cap C$
- $L_0/s = L_0/t$  implies  $L_0/s \cap C = L_0/t \cap C$
- $[s] \rightarrow [t]$  is **incorrect** if  $L_0/s \neq L_0/t$
- If C is rich enough, G has no incorrect rules

membership oracle

• Rules (Type III):



- $[s] \rightarrow [t]$  if  $L_0/s \cap C = L_0/t \cap C$
- $L_0/s = L_0/t$  implies  $L_0/s \cap C = L_0/t \cap C$
- $[s] \rightarrow [t]$  is **incorrect** if  $L_0/s \neq L_0/t$
- If C is rich enough, G has no incorrect rules
  - For each pair  $[s], [t] \in N$  such that  $L_0/s \neq L_0/t$ , there should be  $c \in C \cap ((L_0/s - L_0/t) \cup (L_0/t - L_0/s))$

membership oracle

• Rules (Type III):

- $(\mathbf{c} \odot \mathbf{t} \in \mathbf{L}_0) \text{ for } \mathbf{c} \in \mathbf{C}$
- $[s] \rightarrow [t]$  if  $L_0/s \cap C = L_0/t \cap C$
- $L_0/s = L_0/t$  implies  $L_0/s \cap C = L_0/t \cap C$
- $[s] \rightarrow [t]$  is **incorrect** if  $L_0/s \neq L_0/t$
- If C is rich enough, G has no incorrect rules
  - For each pair  $[s], [t] \in N$  such that  $L_0/s \neq L_0/t$ , there should be  $c \in C \cap ((L_0/s - L_0/t) \cup (L_0/t - L_0/s))$
  - $|\mathbf{C}| \leq |\mathbf{S}|^2$  is enough

### Monotonicity

- Nonterminals: N = S
- Initial Symbols:  $\{ \llbracket t \rrbracket \in N \mid t \in L_0 \}$
- Rules (Type I,II):
  - $\llbracket t \rrbracket \rightarrow \llbracket t_1 \rrbracket \langle o...o, \llbracket t_2 \rrbracket \langle o...o \rangle, o...o \rangle$  if  $t = t_1 [o...o, t_2 [o...o], o...o]$
  - $\llbracket f \langle \mathbf{o} ... \mathbf{o} \rangle \rrbracket \rightarrow f \langle \mathbf{o} ... \mathbf{o} \rangle$  for  $f \in \Sigma$
- Rules (Type III):
  - $[s] \rightarrow [t]$  if  $L_0/s \cap C = L_0/t \cap C$

Expansion of  $S \Rightarrow$  More Rules

Expansion of  $C \Rightarrow$  Less Incorrect Rules

## Algorithm

Let  $D := S := \emptyset$ ;  $C := \{X_0\}$ ; G := vacuous grammar; For n = 1, 2, 3, ...let  $D := \{t_1, t_2, ..., t_n\}$ If  $D \not\subseteq L(G)$ then expand **S** with all k-stubs ( $k \le r$ ) extracted from **D** i.e.,  $S := \{ s : k \text{-stubs } (k \leq r) \mid c \otimes s \in D \text{ for some } c \}$ End if expand C with all k-tree-contexts ( $k \le r$ ) extracted from D i.e.,  $\mathbf{C} := \{ \mathbf{c} : k \text{-tree-context} (k \leq r) \mid \mathbf{c} \otimes \mathbf{s} \in \mathbf{D} \text{ for some } \mathbf{s} \}$ update G by S and C End for

## Learning Efficiency

Expanding S and C from a positive datum t:
t = e ⊗ s
root and variable leaves of s ⇐ some nodes of t
At most |t|<sup>r+1</sup> ways of decomposition

- Construction of G from S and E :
- Rules (Type I,II):
  - $\llbracket t \rrbracket \rightarrow \llbracket t_1 \rrbracket \langle o...o, \llbracket t_2 \rrbracket \langle o...o \rangle, o...o \rangle$  if  $t = t_1 [o...o, t_2 [o...o], o...o]$
  - $\llbracket f \rrbracket \rightarrow f \langle o...o \rangle$  for  $f \in \Sigma$
- Rules (Type III):
  - $[s] \rightarrow [t]$  if  $L_0/s \cap C = L_0/t \cap C$
- PolyTime in ||S|| and ||C||, which are polynomial in the data size
## Learning Efficiency

- Let  $L_0 = L(G_0)$
- When is **S** sufficient?
  - $A \Rightarrow s_A$
  - $S_A$ ,  $S_B[o...o, S_C[o...o], o...o] \in S$ for each rule  $A \rightarrow B(o...o, C(o...o), o...o)$
  - **[[S**A]] simulates A
  - $|\mathbf{S}| \leq 2|\mathbf{G}_0|$
- When is **C** sufficient?
  - For each  $[s], [t] \in N$  s.t.  $L_0/s \neq L_0/t$ , C should have  $c \in (L_0/s - L_0/t) \cup (L_0/t - L_0/s)$
  - $|\mathbf{C}| \leq |\mathbf{S}|^2$

## Theorem

## • Congruential *r*-CFTGs are Polynomial-Time Identifiable in the Limit from Positive Data and Membership Queries

## **Distributional Learning**



Summary



- Generalization of substring/context decomposition
- Other formalisms such as Hyperedge Replacement Grammars
- Probabilistic Learning of CFGs, MCFGs, CFTGs,
- Applying our techniques to treebanks