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Introduction



Grammatical Inference

• Algorithmic Learning of Formal Languages

• Mathematical model of
natural language acquisition

• Grammar extraction from tagged/untagged corpora 

• Biological sequences

• More theoretical rather than heuristic

• Target:  (subclasses of) regular, linear, context-free, ...

• Resource:  positive/negative examples, queries, ...

• Criteria:  exact, probabilistic, ...

• Efficiency:  computation time, data size, ...
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Context-Sensitive

Context-Free

Regular Many positive results

Few positive results
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Distributional Learning

• Models and exploits the distribution of strings in contexts 

• Syntactic category of a phrase = Contexts where it occurs

contextscontextscontextscontexts

John □ Mary □ loves kids Adam hits □ Everyone □

strings
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strings

Mary

strings
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strings himstrings
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strings

loves it

strings
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◎ ◎
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◎
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John ≡ Mary,   him ≦ Mary,   loves it ≡ runs,  ...



Distributional Learning

• Context-deterministic CFGs by queries
(Shirakawa & Yokomori ’93)

• Substitutable CFLs by positive data (Clark & Eyraud '05)

• k,l-Substitutable CFLs by positive data (Yoshinaka’08)

• Probabilistic learning of Unambiguous
 (k,l-)NTS Languages (Clark’06, Luque’10)

• New formalisms, learning with queries
 (Clark et al.’08, Clark’09)

• etc.



Non-context-free phenomena I

• Swiss-German
 

• mer em Hans  es  huus        hälfed aastriiche
we helped Hans paint the house

• mer dʼchind em Hans es huus lönd hälfe aastriiche
we let the children help Hans paint the house



Non-context-free phenomena II

• Pseudoknots in biological sequences

CGACU ... GCGAC ... AGUCG ... CGCUG
© Sakurambo via Wikimedia Commons
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Mildly Context-Sensitiveness

• Cross-serial Dependencies

• Polynomial-time Parsable
Recursively Enumerable

Context-Sensitive

Context-Free

Regular

Mildly Context-Sensitive • Multiple Context-Free Grammars

• Context-Free Tree Grammars



Learning of Mildly Context-Sensitiveness
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Context-Free

Mildly Context-Sensitive

String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree

Distributional Learning

of
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String
↕

Context

Context-Free

Learning of Substitutable 
Context-Free Languages

from Positive Data



Languages

• Σ = {a,b,c,...} : finite set of symbols

• Σ*: the set of strings over Σ
a, abc, caab ... ∈ Σ*

• Any subset of Σ* is called a language

• Context:  pair of strings (u,v) ∈ Σ* × Σ*

• Grammar: finite description for an (infinite) language



Context-Free Grammars
• G = ( N, Σ, P, I )

• N: nonterminal symbols

• Σ: terminal symbols

• P ⊆ N x (N ∪ Σ)*  : production rules (A → α)

• I ⊆ N: initial symbols

• Derivation (⇒):

• If  A → α ∈ P,  then  A ⇒ α
• If  A ⇒ αBγ  and  B ⇒ β,  then  A ⇒ αβγ

• Language:  L(G) = { w ∈ Σ* | S ⇒ w  for some  S ∈ I }



Example

• G = ( N, Σ, P, I ) 
• Σ = { a,b,c }

• N = { S, A, B }

• I = { S }

• P = { S → ASB,  S → c,  A → a,  B → b }

• S ⇒ ASB ⇒ AASBB ⇒ aacbb

• L(G) = { ancbn | n ≧ 0 }

S

A S B

A S Ba

a c b
b



Substitutable CFLs

• Clark and Eyraud (’05,’07)

• L is substitutable iff 
∀v1, v2 ∈ Σ+  [∃〈u1,w1〉 . u1v1w1, u1v2w1 ∈ L]
                  ⇒ [∀〈u2,w2〉 . u2v1w2 ∈ L ⇔ u2v2w2 ∈ L]
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Substitutable CFLs

• Clark and Eyraud (’05,’07)

• L is substitutable iff 
∀v1, v2 ∈ Σ+  [∃〈u1,w1〉 . u1v1w1, u1v2w1 ∈ L]
                  ⇒ [∀〈u2,w2〉 . u2v1w2 ∈ L ⇔ u2v2w2 ∈ L]

• Positive data:

• A man gave John chocolate.

• A man gave a little girl chocolate.

• They like John.

• Generalization:  They like a little girl.
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Identification in the Limit from Positive Data

• Learner 
• gets a positive example
• updates the conjecture
• L0 = { w1, w2, w3, ... }
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Identification in the Limit from Positive Data

• Learner 
• gets a positive example
• updates the conjecture
• L0 = { w1, w2, w3, ... }

• Identification in the Limit:

• convergence to a grammar for the target
    Gn = Gn+1 = Gn+2 ...   and L(Gn) = L0 

• Learner should uniformly learn a rich class of languages

w1 w2 w3

G1 G2 G3

w4

G4 ...

...

Learning
Target

L0

• Gold (1967)



Clark & Eyraud's Algorithm

let G := vacuous grammar;
For n = 1,2,3,...
  let D := {w1 , w2 , ... , wn };
  If D ⊆ L(G)
    then update G by D;
  End if
  output G
End for



Learner’s Conjecture
• D = { w1, ..., wn } : positive data

• G :  conjecture

• N = Sub(D) : all substrings from D
   = { [[v]] | ∃〈u1,u2〉 u1vu2 ∈ D }

★ [[v]] ⇒ v  for all [[v]] ∈ N, 

• Initial Symbols: { [[v]] ∈ N | v ∈ D }

• Rules

• Type I: [[uv]] → [[u]] [[v]]  for all [[uv]] ∈ N

• Type II: [[a]] → a   for all a ∈ Σ 

• Type III: [[v]] → [[w]]   if ∃〈u1,u2〉 s.t.  u1vu2, u1wu2 ∈ D
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Grammar

Learner

the man who was hungry died .
the man ordered dinner . 
the man died . 
the man was hungry . 
was the man hungry ? 
the man was ordering dinner . 

[[was the man hungry ?]] ⇒ [[was the man]] [[hungry ?]]

⇒ [[was the man]] [[hungry]] [[?]] ⇒ [[was]] [[the]] [[man]] [[hungry]] [[?]]

⇒ [[was]] [[the]] [[man]] [[ordering dinner]] [[?]]

⇒ [[was]] [[the]] [[man who was hungry]] [[ordering dinner]] [[?]]

⇒ 

[[man ]] → [[man who was hungry ]]

[[hungry ]] → [[ordering dinner ]]

was the man who was hungry ordering dinner ?



Theorem

• Clark and Eyraud's algorithm identifies
every Substitutable CFL in the limit from positive data

• Polynomial-time update

• Polynomially many examples are enough for 
convergence w.r.t. the size of the grammar to be learnt

• A rare example of a class of CFLs that is efficiently 
learnable from positive data

• Explaining an aspect of natural language phenomena
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Multiple Context-Free Grammars



Non-context-free phenomena
• Pseudoknots in biological sequences

CGACU ... GCGAC ... AGUCG ... CGCUG

• { am bn cm dn | m, n > 0 } is not context-free

© Sakurambo via Wikimedia Commons
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Non-context-free phenomena

• { ambncmdn | m, n > 0 }  is not context-free

• A ⇒ amcm     for m > 0   by A → aAc, A → ac,

B ⇒ bndn       for n > 0    by B → bBd, B → bd.   

• { ambncmdn | m, n > 0 }  is Multiple Context-Free

• A ⇒ 〈am, cm〉 for m > 0

B ⇒ 〈bn, dn〉 for n > 0

S ⇒ ambncmdn  for m, n > 0

• MCFG: nonterminals generate tuples of strings



Multiple CFGs

• CFG: nonterminals generate strings
MCFG: nonterminals generate tuples of strings

• Each nonterminal A ∈ N is assigned a dimension dim(A) = m

• A generates m-tuples of strings for dim(A)=m:
  A ⇒ 〈v1, v2, ..., vm〉 ∈ (Σ*)m



Multiple CFGs

• B → a C D    (context-free rule) ★ a : terminal symbol
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Multiple CFGs

• B → a C D    (context-free rule)

• B → f(C,D)   (multiple cf rule)

C

u1 , u2 , u3

D

v
&

B

u1 a v u2 ,  u3 

★ a : terminal symbol

★ f(〈x1,x2,x3〉, 〈y〉) = 〈x1ayx2, x3〉

C

u

D

v
&

B

a u v

f

f uses each argument exactly once

★ dim(B) = 2, 
dim(C) = 3, 
dim(D) = 1. 



Multiple CFGs

• B → a C D    (context-free rule)

• B → f(C,D)   (multiple cf rule)

C

u1 , u2 , u3

D

v
&
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u1 a v u2 ,  u3 

★ a : terminal symbol

★ f(〈x1,x2,x3〉, 〈y〉) = 〈x1ayx2, x3〉

C

u

D

v
&

B

a u v

f

f uses each argument exactly once

★ dim(B) = 2, 
dim(C) = 3, 
dim(D) = 1. 

★ g(x, y) = axy
• B → g(C,D)
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•  S → f(A,B) with f(〈x1,x2〉,〈y1,y2〉) = 〈x1y1x2y2〉,
 A → 〈a, c〉,     A → g(A) with g(〈x1,x2〉) = 〈ax1, cx2〉,
 B → 〈b, d〉,     B → h(B) with h(〈y1,y2〉) = 〈y1b, y2d〉.

〈 a ,  c 〉

Example:  L(G) = { am bn cm dn | m, n > 0 }

A
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Hierarchy of p,q-MCFLs

• p: the maximum of dim(A) for nonterminals A
(CFG: p = 1)

• q: maximum number of nonterminals on rhs of rules

• p-MCFL(q) ⊆ p-MCFL(q+1)
p-MCFL(q) ⊆ (p+1)-MCFL(q)

A

u1,u2,u3,...,u≦p

A → f(B1,B2,...,B≦q)
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• u ⨂ v = u0v1u1...vmum = w

• L/v = { u | u ⨂ v ∈ L } :
   the set of multi-contexts for v
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Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★  v : substring
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     v = 〈v1, v2, ..., vm〉

• u ⨂ v = u0v1u1...vmum = w

• L/v = { u | u ⨂ v ∈ L } :
   the set of multi-contexts for v

Multiple Context-Free Grammars

Substructure/Context Decomposition

• u0vu1 ∈ L

★ 〈u0,u1〉: context

★  v : substring

CFGs

e.g.) 

v1 vmv u1u0 umu

{ abcdiddj | i,j≧0 }/〈b, d〉 = {〈a,  cdi,  dj〉 | i,j≧0 }b d a cdi dj



Multidimensionally Substitutable 
Multiple Context-Free Languages



p-dimensional Substitutability

• L is pD-substitutable  iff  ∀v, v’ ∈ (Σ+)≦p,
 [∃u . u⨂v,  u⨂v’ ∈ L] ⇒ [∀u’ . u’⨂v ∈ L ⇔ u’⨂v’ ∈ L]

cf. context-free case:   ∀v, v'∈Σ+

[∃〈u,w〉 . u v w, u v' w ∈ L] ⇒ [∀〈u',w'〉 . u' v w'∈ L ⇔ u' v' w'∈ L]
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p-dimensional Substitutability

• L is pD-substitutable  iff  ∀v, v’ ∈ (Σ+)≦p,
 [∃u . u⨂v,  u⨂v’ ∈ L] ⇒ [∀u’ . u’⨂v ∈ L ⇔ u’⨂v’ ∈ L]

• L /v ∩ L /v’ ≠ ∅ 　 ⇒ 　L /v = L /v’    where  |v| = |v’| ≦ p

cf. context-free case:   ∀v, v'∈Σ+

[∃〈u,w〉 . u v w, u v' w ∈ L] ⇒ [∀〈u',w'〉 . u' v w'∈ L ⇔ u' v' w'∈ L]

★ Our Learning Target:
     pD-substitutable p,q-MCFGs for fixed p,q



Learning Algorithm

let G := vacuous grammar;
For n = 1,2,3,...
  let D := {w1 , w2 , ... , wn };
  If D ⊆ L(G)
    then update G by D;
  End if
  output G
End for



Learner’s Conjecture

• D = { w1, ..., wn } : positive data

• G :  conjecture

• N = Sub(D) : all sub-multi-words from D
   = { [[v]] | ∃w. w ⨂ v ∈ D, |v| ≦ p}

★ [[v]] ⇒ v  for all [[v]] ∈ N,   ( dim([[v]]) = |v| )

• Initial Symbols: { [[w]] ∈ N | w ∈ D } ( dim([[w]]) = 1 )

• Rules (Type I):

• [[v0]] → f([[v1]],..., [[vk]]) where v0 = f(v1,...,vk), k ≦ q

cf. context-free case:  [[v1v2]] → [[v1]] [[v2]]  &  [[a]] → a



Type I - example

• Rules (Type I):

• [[v0]] → f([[v1]],..., [[vk]]) where v0 = f(v1,...,vk), k ≦ q

• 〈abc, de〉, 〈a, e〉, 〈c〉 ∈ Sub(D)

• [[abc, de ]], [[a, e ]], [[c ]]  ∈ N

• [[abc, de  ]] → f([[a, e]], [[c]]) with f(〈x1, x2〉,〈y〉) = 〈x1by, dx2 〉,

• [[abc, de ]] → 〈abc, de 〉

★ [[v]] ⇒ v  for all [[v]] ∈ N,   ( dim([[v]]) = |v| )

context-free case   [[v1v2]] → [[v1]] [[v2]]  
                            [[a]] → a

�



Type II

• Rules (Type II):

• [[u]] → [[v]]     if  w ⨂ u , w ⨂ v ∈ D for some w

• Substitutability:

• L0/u ∩ L0/v ≠ ∅ 　 ⇒ 　L0/u = L0/v      for |u| = |v| ≦ p

cf-case:  [[u ]] → [[v ]]   if  w1uw2, w1vw2 ∈ D for some w1,w2



• Nonterminals: N = Sub(D)

• w = u0v1u1...vmum  ⇒  〈v1, ..., vm〉 ∈ Sub(D),  m ≦ p

At most |w|2p ways of decomposing w

• Rules (Type I):

• [[u ]] → f([[v1]],..., [[vn]]) where u = f(v1,...,vn),  |vi| ≦ p,  n ≦ q

 At most ||u||2pq ways of decomposing u

• Rules (Type II):

• [[u]] → [[v]] if L0/u ∩ L0/v ≠ ∅

• PolyTime in ||D||

• Data needed: D0

• |D0| ≦ |G0|            |G0| :  # of rules of minimum G0 with L0 = L(G0)

Learning Efficiency



Theorem
•pD-Substitutable p,q-Multiple CFGs are

Polynomial-Time identifiable in the limit
from Positive Data

String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Distributional Learning
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• { am bn cm dn | m, n > 0 } is Not substitutable

• { am e bn f cm g dn | m, n > 0 } is substitutable

• Substitutability is too much restrictive

• Substitutable CFGs/MCFG are learnable from positive data only

• Congruential CFGs are learnable with queries

• So are Congruential MCFGs

 Learning of Congruential Context-Free Tree Grammars



String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree



String
↕

Context

Context-Free

Multi-word
↕

Multi-Context

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree



Stub
↕

Tree-Context

Context-Free Tree



Context-Free Tree Grammars



Trees

• CFGs define string languages
CFTG define tree languages

Tree:
rooted, ordered,
labeled with ranked letters

• ranked alphabet Σ =     Σk

  s.t. Σi ∩ Σj = ∅ for i ≠ j 

• Σk: set of symbols of rank k

• f ∈ Σk has k children
Σ0 = {a,b,c}, Σ1 = {g,h}, Σ3 = {f}

f 

g f h

g ha

a
c

b

b
k
∪



Trees and Stubs

Tree (0-stub):
labeled, ordered, rooted

m-Stub:
tree with m "open leaves"

(2-Stub)

f 

g f h

g ha

a
c

b

b

f 

g f 

g ha
c

b



Context-Free Tree Grammars

• CFGs define string languages
CFTGs define tree languages

• CFG: nonterminals generate substrings
CFTG: nonterminals generate stubs

• Each nonterminal A ∈ N is assigned a rank rnk(A) = m

• A generates rnk(A)-stubs: 

A ⇒
rnk(A) = 2

f 

g 
c



r-Context-Free Tree Grammars

• G = ( N, Σ, P, I )

• N, Σ: ranked nonterminal/terminal symbols

• Rank is at most r

• P ⊆ 　 Nk x (k-Stubs)  : production rules

• I ⊆ N0: initial symbols of rank 0

• L(G) = { t | S ⇒ t for some S ∈ I and t is a tree over Σ }

• every 1-CFTG can be identified with a CFG

k
∪

A →
f 

g 
c



f 

g C

O 

Context-Free Tree Grammars
★ a,f,g : terminal symbol

  rnk(B) = 1
  rnk(C) = 2
  rnk(D) = 0

• B →

C ⇒ D ⇒ t
B ⇒

a D

&

f 

a 

g C

D O 

s

O O 

f 

g 

O 
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g C
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Context-Free Tree Grammars
★ a,f,g : terminal symbol

  rnk(B) = 1
  rnk(C) = 2
  rnk(D) = 0

• B →

C ⇒ D ⇒ t
B ⇒

a D

s

t

&

f 

a 

g C

D O 

s

O O 

f 
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O 
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Example

• N0 = { S },  N1 = { A }

• Σ0 = { a,b,c,d,e },  Σ1 = { h },  Σ3 = { f,g }

A →

A →     ,S →
O

 h  A 

c 

 A 

g 

 f 

a e

b dO
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• Σ0 = { a,b,c,d,e },  Σ1 = { h },  Σ3 = { f,g }

A →

A →     ,S →

S  ⇒

yield of L(G):
{ anbncdnen | n ≧ 0 }

non-context-free
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n times

n ≧ 0g 
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Substructure/Context Decomposition

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs



Context-Free Tree Grammars
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Substructure/Context Decomposition
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t1 t2 t3

• S ⇒ 

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring
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A

t0

t1 t2 t3

• S ⇒ • A ⇒ s

t1 t2 t3

t0

•             ∈ L(G)

�
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(u,v): context
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Context-Free Tree Grammars

Substructure/Context Decomposition

A

t0

t1 t2 t3

• S ⇒ • A ⇒ s

t1 t2 t3

t0

•             ∈ L(G)

•              : tree-context

•              : stub

�

• S ⇒ uAv

• A ⇒ w

• uwv ∈ L(G)

(u,v): context

 w : substring

CFGs
s

O O O

s

O O O

X3

t0

t1 t2 t3



Composition/Decomposition

• m-tree-context c ... tree with a special symbol Xm of rank m

• m-stub s   ...  tree with m open leaves O

• c ⨂ s   ..........   substitute s for Xm in c

⨂ s

t1 t2 t3

t0

=s

O O O

cf.  context-free case:
〈u,w〉 ⨂ v = uvw

X3

t0

t1 t2 t3



Composition/Decomposition

• m-tree-context c ... tree with a special symbol Xm of rank m

• m-stub s   ...  tree with m open leaves O

• c ⨂ s   ..........   substitute s for Xm in c

• L0/s = { c | c ⨂ s ∈ L0 } : the set of tree-contexts for s

⨂ s

t1 t2 t3

t0

=s

O O O

cf.  context-free case:
〈u,w〉 ⨂ v = uvw

X3

t0

t1 t2 t3



Learning of
Congruential r-CFTGs



• Learning Congruential CFGs with queries
(Clark '10)

• Learning Congruential CFTGs from positive data 
and membership queries



Congruential CFTGs



Congruential CFTGs

• CFTG G is Congruential iff

∀A ∈ N, ∀s,t(A ⇒ s, A ⇒ t),

L(G)/s = L(G)/t　
(∀c , c ⨂ s ∈ L(G)  ⇔  c ⨂ t ∈ L(G))



Congruential CFTG

• N0 = { S },  N1 = { A }

• Σ0 = { a,b,c,d,e },  Σ1 = { h },  Σ3 = { f,g }

A →

S →
 A 

c 

yield: { ambncdnem | n ≧ m }

, 

, 





m times

m times

S ⇒ m ≧ 0
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L(G)／ =

m times

m times

m ≧ 0









• ∀s,t(A ⇒ s, A ⇒ t),   L(G)/s = L(G)/t
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b d
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h

O

n times
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Congruential r-CFTGs

• Congruential 1-CFTGs generate

• All regular languages

• Dyck language (well-bracketed parentheses) 

• The yield languages of Congruential 2-CFTGs cover

• { 〈am bn cm dn〉 | m, n > 0 }

• { ww | w ∈ Σ* }
✴a b c a b c

✴d’chind em Hans es huus lönd hälfe aastriiche (Swiss-German)

•   etc.



Identification in the Limit from 
Positive Data and Membership Queries



Identification in the Limit from 
Positive Data and Membership Queries

• Learner 
• gets a positive example
• calls the membership oracle
• updates the conjecture

s L0

G!

?
t  ∈  L0



Identification in the Limit from 
Positive Data and Membership Queries

• Learner 
• gets a positive example
• calls the membership oracle
• updates the conjecture

• Identification in the Limit:
• convergence to a grammar for the target
• not have to terminate

s L0

G!

 L(G) = L0

?
t  ∈  L0
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Learner’s Conjecture
• S : Finite set of k-stubs (for 0≦k≦r)

• C : Finite set of k-tree-contexts (for 0≦k≦r)

• Nonterminals: N = S

• [[t]] ⇒ t  for all [[t]] ∈ N,   ( t is a rnk([[t]])-stub) 

• Initial Symbols: { [[t]] ∈ N | t ∈ L0 ∩ S }

• Rules (Type I, II):

• [[t]] → [[t1]]〈o...o, [[t2]]〈o...o〉,o...o〉 if t = t1[o...o,t2[o...o], o...o],

• [[f〈o...o〉]] → f〈o...o〉 for f ∈ Σ t =
cf.  string case:
[[uv]] → [[u]] [[v]]  &  [[a]] → a

t1

t2
O ... O

O...OO...O



Type III

• Rules (Type III):

• [[s ]] → [[t]]     if    L0/s  =  L0/t (c ⨂ s ∈ L0  ⇔  c ⨂ t ∈ L0)

cf.  Substitutability:

if L0/s ∩ L0/t ≠ ∅
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• Rules (Type III):

• [[s ]] → [[t]]     if    L0/s ∩ C  =  L0/t ∩ C 

• L0/s = L0/t   implies   L0/s ∩ C = L0/t ∩ C

• [[s]] → [[t]] is incorrect if L0/s = L0/t

• If C is rich enough, G has no incorrect rules

• For each pair [[s]], [[t]] ∈ N such that L0/s = L0/t,
there should be c ∈ C ∩ ((L0/s - L0/t) ∪ (L0/t - L0/s))

membership oracle
?

ct  ∈  L0 for c ∈ C



Type III

• Rules (Type III):

• [[s ]] → [[t]]     if    L0/s ∩ C  =  L0/t ∩ C 

• L0/s = L0/t   implies   L0/s ∩ C = L0/t ∩ C

• [[s]] → [[t]] is incorrect if L0/s = L0/t

• If C is rich enough, G has no incorrect rules

• For each pair [[s]], [[t]] ∈ N such that L0/s = L0/t,
there should be c ∈ C ∩ ((L0/s - L0/t) ∪ (L0/t - L0/s))

• |C| ≦ |S|2 is enough

membership oracle
?

ct  ∈  L0 for c ∈ C



Monotonicity
• Nonterminals: N = S

• Initial Symbols:  { [[t]] ∈ N | t ∈ L0 }

• Rules (Type I,II):

• [[t]] → [[t1]]〈o...o, [[t2]]〈o...o〉,o...o〉 if t = t1[o...o,t2[o...o], o...o]

• [[f〈o...o〉]] → f 〈o...o〉 for f ∈ Σ 

• Rules (Type III):

• [[s]] → [[t]]     if    L0/s ∩ C = L0/t ∩ C 

Expansion of S  ⇒  More Rules

Expansion of C  ⇒  Less Incorrect Rules



Algorithm

Let D := S := ∅;  C := {X0};   G := vacuous grammar;
For n = 1,2,3,...
  let D := {t1 , t2 , ... , tn }
  If D ⊆ L(G)
    then expand S with all k-stubs (k≦r) extracted from D
            i.e., S := { s : k-stubs (k≦r) | c ⨂ s ∈ D for some c }
  End if
  expand C with all k-tree-contexts (k≦r) extracted from D
  i.e., C := { c : k-tree-context (k≦r) | c ⨂ s ∈ D for some s }
  update G by S and C
End for



• Expanding S and C from a positive datum t :
  t = e ⨂ s 
root and variable leaves of s 　 some nodes of t

At most |t|r+1 ways of decomposition

• Construction of G from S and E :

• Rules (Type I,II):

• [[t]] → [[t1]]〈o...o, [[t2]]〈o...o〉,o...o〉 if t = t1[o...o,t2[o...o], o...o]

• [[f]] → f 〈o...o〉 for f ∈ Σ

• Rules (Type III):

• [[s]] → [[t]]     if    L0/s ∩ C = L0/t ∩ C

• PolyTime in ||S|| and ||C||, which are polynomial in the data size

Learning Efficiency

⇒



Learning Efficiency

• Let L0 = L(G0) 

• When is S sufficient?

• A ⇒ sA

• sA,   sB[o...o,sC[o...o], o...o] ∈ S
  for each rule  A → B〈o...o,C〈o...o〉,o...o〉

• [[sA ]] simulates A

• |S| ≦ 2|G0|

• When is C sufficient?

• For each [[s ]], [[t ]] ∈ N s.t. L0/s = L0/t,
 C should have c ∈ (L0/s - L0/t) ∪ (L0/t- L0/s)

• |C| ≦ |S|2



Theorem
•Congruential r-CFTGs are

Polynomial-Time Identifiable in the Limit
from Positive Data and Membership Queries

String
↕

Context

Context-Free

Stub
↕

Tree-Context

Context-Free Tree

Distributional Learning



Summary



Multi-word
↕

Multi-Context

Summary

• Generalization of substring/context decomposition

• Other formalisms such as Hyperedge Replacement Grammars

• Probabilistic Learning of CFGs, MCFGs, CFTGs,

• Applying our techniques to treebanks

String
↕

Context

Context-Free

Multiple Context-Free

Stub
↕

Tree-Context

Context-Free Tree


