- N

Computation over Topological
Spaces via Embeddings in Streams
with a Bottom

Hideki Tsuiki (Kyoto University)

The 7th Workshop on Learning with Logic and Logics for Learning (LLLL)
2011/3/29-30, Osaka

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 1/38

Stream Programming

o Type2-machine:
extension of Turing
Machine so that the

Type2 Machi ne iInput/output tape have
(Stream Programi ng) infinite length.
Qut put [Weihrauch, et al.]
&" » Program with stream
3 input/output.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 2/38

Stream with a bottom

o If a bottom cell L exists
0] in the input, a Type2
machine get stuck and
cannot read the rest of

Tlnput the InpUt
Type2 Machi ne o | : Non-terminating
(St ream Programm ng) CompUting.

CQut put

In Haskell, an
&" expression of type Bool
N may have the value L
and a sequence in

[Bool] may contain L.

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 3/38

Solution

T | nput

| M2- Machi ne
(two-heads 1/0

ST

Q

Multiple head machine.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 4/38

Solution

Application:

o Real Number
Computation.

Representation of Topo-
1 npu logical Spaces.

| M2- Machi ne
(two-heads 1/0

ST

Q

Multiple head machine.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 4/38

Solution

Application:
o Real Number
Computation.

Representation of Topo-
logical Spaces.

| M2- Machi ne

(two- heads 1/ 0 |mp|emented

\ # in GHC: Logic
b programming language

© with committed choice.

Multiple head machine o Extension of Haskell, by
L ' modifying Hags system.

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 4/38

Part one:

Representation of Reals as
bottomed sequences.

Injective Coding of I in {0, 1}~.

- N

® > =101}

® Consider a unique coding of I = [0,1] in X*. That is, an
Injective function ¢ from I to Xv.

® ¢ and its inverse should be continuous (i.e. ¢ is an
embedding) because real number computation we
consider is the limit of approximation intervals
(ao,bo) D) (al,bl) D) (ag,bg) ...~ X
and it should be implemented as extension of words
po — pop1 — popip2 — .. — ().

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 6/38

o o

Injective Coding of I in {0, 1}~.
5 = {0,1}. -

Consider a unique coding of I = [0, 1] in X“. That s, an
Injective function ¢ from I to Xv.

¢ and its inverse should be continuous (i.e. ¢ Is an

embedding) because real number computation we

consider is the limit of approximation intervals
(ao,bo) D) (al,bl) D) (ag,bg) ...~ X

and it should be implemented as extension of words
po — pop1 — popip2 — .. — ().

Impossible to embed I in X (Cantor Space).
I is connected, but 3¢ is totally disconnected.
Impossible to injectively code I in 3¢, J

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 6/38

Gray coding of I in > ;.
-

» However, it is possible to embed Iin ¢ | by the
Gray-code embedding.[Gianantonio],[T]

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 7/38

Gray coding of I in > ;.
- .

» However, it is possible to embed Iin ¢ | by the
Gray-code embedding.[Gianantoniol,[T]

® 3, C(XU{Ll})¥ (Le. Plotkin's T,:)
Infinite sequences of > U { L} with at most one 1, with

the subspace topology of X, “ (with the Scott topology)
ex. 010_L1000...,00110011....

topology of X2 : Q{@

1

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 7/38

Gray coding of I in > ;.
- .

» However, it is possible to embed Iin ¢ | by the
Gray-code embedding.[Gianantoniol,[T]

® 3, C(XU{Ll})¥ (Le. Plotkin's T,:)
Infinite sequences of > U { L} with at most one 1, with

the subspace topology of X, “ (with the Scott topology)
ex. 010_L1000...,00110011....

topology of X2 : Q{@

1

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 7/38

-

(Binary reflected)

Gray code: another code of natural

Gray code of Natural numbers

-

numbers with ¥ = {0, 1}.

number | Binary code | Gray code | 4 Only one bit changes
0 0000 0000 .

1 0001 0001 by the .|ncrement

2 0010 0011 operation.

3 0011 0010 #® Conversion from

4 0100 0110 di oi g

5 0101 0111 ordinary binary code

6 0110 0101 to the Gray code:

V4 0111 0100 one-bit shift and xor.

8 1000 1100 conv S = map Xor

B

(zip s (0:s))

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 8/38

bit O

Binary/Gray expansion of I =[0,1]

-
\VERVERVERV,

VARV,

bit O

Binary/Gray expansion of I =[0,1]

—
o v
0 - 0 H

bit O

Binary/Gray expansion of I =[0,1]

—
o v
)

Gray embedding of I in >

| { 2 (0<z<1/2) .
t: I =1, t(x) = .
o1 —z) (1/2<z<1)
0 (17
wa:T—=3% pa(z)(n) =¢ L (Y
L (t"(x) >

\
We call ¢, the Gray embedding.

ltinerary of the tent function.

Topological embedding of I in > ;.
Continuously changing code.

Can be used to define computation over I (or R)

L with IM2-machines. J

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 10/38

Part two:

IM2-machines and their
Implementations.

How can we input/output Gray-code?

fReal number computation as the limit of approximations T
(shrinking open intervals).

\ /N /

. |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 12/38

How can we input/output Gray-code?

fReal number computation as the limit of approximations T
(shrinking open intervals).

\ /N /

B |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 12/38

How can we input/output Gray-code?

fReal number computation as the limit of approximations T
(shrinking open intervals).

\VAERVERRN /N ARV

\ /N /

\ /

S |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 12/38

How can we input/output Gray-code?

fReal number computation as the limit of approximations T
(shrinking open intervals).

\VARRVERRN /N VAR VEERV4

\ /N /

\ /

S |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 12/38

How can we input/output Gray-code?

fReal number computation as the limit of approximations T
(shrinking open intervals).

\VARRVERRN /N VAR VEERV4

\ /N /

\ /

= |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 12/38

How can we output Gray-code?

-

Q1 2 3 4 5

fReal number computation as a limit of approximations
(shrinking open intervals).

N 012345

- N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

-

Q1 2 3 4 5

fReal number computation as a limit of approximations
(shrinking open intervals).

VASRVER ViRV L 23 45

~
N

B N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

-

Q1 2 3 4 5

fReal number computation as a limit of approximations
(shrinking open intervals).

VASRVER ViRV L 23 45

~
N

A

0 N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

-

Q1 2 3 4 5

fReal number computation as a limit of approximations
(shrinking open intervals).

VASRVER ViRV L 23 45

~
N

A

e N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

-

Q1 2 3 4 5

fReal number computation as a limit of approximations
(shrinking open intervals).

VASRVER ViRV L 23 45

~
N

A

e N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

-

fReal number computation as a limit of approximations
(shrinking open intervals).

0.1 2 3 4 5§
S\ 7\ VAR VARV Lll
A\ /N / 012345
\ / 0
]
0.1 2 3 4 5
]
b 0

-
L
N
0O
N
@)

e N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

fReal number computation as a limit of approximations T
(shrinking open intervals). Cooaa &

0
\WARRAVAERN 7 X VARV Lll

N L 23 45

~
N

— O
L
N
D
N
1

— N
N IR
0O
N
@)

OO

- — o — N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

-

fReal number computation as a limit of approximations
(shrinking open intervals).

0.1 2 3 4 5§
Z_S \ 7\ VAR VARV Lll
A\ /N / 012345
\ / 0
]
0.1 2 3 4 5
]
b 0

-
L
N
0O
N
@)

—h

- — = — N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

fReal number computation as a limit of approximations T
(shrinking open intervals). Cooaa &

0
\WARRAVAERN 7 X 7 7 N/ Lll

N L 23 45

/
N

— O
L
N
D
N
1

-

L
(@bl \OIEN |
D
N
@)

- — % — N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

fReal number computation as a limit of approximations T
(shrinking open intervals). Cooaa &

0
\WARRAVAERN 7 X 7 7 N/ Lll

N L 23 45

/
N

— O
L
N
D
N
1

-

bk
ON 1
O W

- — % — N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we output Gray-code?

fReal number computation as a limit of approximations T
(shrinking open intervals). Cooaa &

0
\WARRAVAERN 7 X AR VARV Lll

VASRVER ViRV L 23 45

~
N

— O
L
N
D
N
1

-
bk
ON 1

D
0|

- = |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

O W
O >

How can we output Gray-code?

-

fReal number computation as a limit of approximations
(shrinking open intervals).

0 1 2 3 4 5
Ll Ll LfLfL|L
Z_ S N 7\ 7 NS]
\ /N / 012345
\ / Ol L|(L] L] L|L
H B
01 2 3 4 5§
1Ll L L L|L
H B
Q1 2 3 4 K
1 O[{O0O(O|0]-
B — & — 1 7 B

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 13/38

How can we input Gray-code?

- N

— O
okl
— P
— W
(@
oo

Q1 2 3 4 5

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 14/38

How can we input Gray-code?

- N

—

(@
O P

—h
-y -O_L
=N

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 14/38

How can we input Gray-code?

- N

el)
— W
(@
oo

-y -O_L
N -

oy
N
1

— O

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 14/38

How can we input Gray-code?

- N

(@
O P

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 14/38

How can we input Gray-code?

- N

el)
— W
oo

> g O
1

— O
— W

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 14/38

How can we input Gray-code?

- N

0.1 2
{.10L
[]
012 3 4 5
0

Two possible inputs as the first character.

— W
(@
O P

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 14/38

-

IM2-machine

| nput tapes

110
L/
0 \ [,
\ A {_vvork t ape
[\
1 1

out put tape

9

o

-

Generalization of Type-2 machine
with 2-heads input/output access.

Indeterministic (i.e. nondeterminist
behavior depending on the head
used to input.

— defines a multi-valued function.
note: Multi-valuedness is natural
real number computation)

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 15/38

Multi-valuedness

I
| >

40

® Consider a thermometer which will make an alarm if it is
hotter than 40 degree. Is it possible?

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 16/38

Multi-valuedness

T N

I
40
:Specification

® Consider a thermometer which will make an alarm if it is
hotter than 40 degree. Is it possible?

Physically, it should be around 40 with a specification
from 40 — e t0 40 + .

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 16/38

Multi-valuedness

I
40
:Specification

® Consider a thermometer which will make an alarm if it is
hotter than 40 degree. Is it possible?

Physically, it should be around 40 with a specification
from 40 — e t0 40 + .

Physical implementation should also be multi-valued,
depending on how it approaches.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 16/38

Computability on Real Number

-

There are many ways of defining computability on real

-

numbers.

K

TTE (Type two theory of effectivity) by Grzegorczyk,
Welihrauch, Hertling, Brattka,...)

Pour-El and Richards approach.

Many approaches to Exact Real Number
Computation. [Boehm, Edalat,Potts, Gianantonimo,
Vuillemin,...]

Blum-Shub-Smale machine.

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 17/38

Computability on Real Number
-

There are many ways of defining computability on real
numbers.

s TTE (Type two theory of effectivity) by Grzegorczyk,
Welihrauch, Hertling, Brattka,...)

s Pour-El and Richards approach.

s Many approaches to Exact Real Number
Computation. [Boehm, Edalat,Potts, Gianantonimo,
Vuillemin,...]

s Blum-Shub-Smale machine.

Gray-code and IM2-machine computability can be
extended to real numbers.

It is equal to TTE approach with admissible
representation. J

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 17/38

Implementation in programming languages

fHow to implement IM2-machines in 'REAL programming T
languages?
It is possible, with logic programming languages with

guarded clauses and committed choice, such as
Concurrent Prolog, PARLOG, and GHC (Guarded Horn

Clauses)
Direct translation from rules of an IM2-machine to GHC.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 18/38

Implementation in programming languages

fHow to implement IM2-machines in 'REAL programming T
languages?

It is possible, with logic programming languages with
guarded clauses and committed choice, such as
Concurrent Prolog, PARLOG, and GHC (Guarded Horn

Clauses)
Direct translation from rules of an IM2-machine to GHC.

Impossible, with sequential functional languages like
Haskell.

Extension of Haskell with gamb (sequential partial
realization of amb). Implemented 2005.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 18/38

Examples:

. N

Signed-digit representation: an expansion of [—1, 1] as an
infinite sequence of I' = {0,1,1(= —1)}, defined as

onversions from/to the signed digit representation.

53(a1a2. :) = Z;’il{ai - Z_i}.

Here, we fix a1 = 1 and discard this from the representation.

55([0,0,..]) = 1/2.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 19/38

fO

Output (SD — Gray)
-

utput: possible in a functional language.

stog(l:xs) = 1l:nh(stog xs)

stog(l:xs) = 0:stog xs

stog(0:xs) = c:1l:nh ds where c:ds= stog xs
not 0 =1

not 1 = 0

nh c:a = not c:a

stog([0,0..]1) hasnooutput ([L,1,0,0..71)

tail (stog([0,0..])) produces [1,0,0,0...]
infinitely.

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 20/38

Input (Gray — SD)
fInpu’[: impossible...

gtos (0:xs) = 1:(gtos (b:xs))

gtos(l:xs) = 1:(gtos (nh (b:xs)))

gtos(a:l:xs) = 0:(gtos (a: (nh xs)))
o Correct Haskell syntax, but different meaning!!
The third line neverused for 1.:1:[0,0..].

® gtos(stog([0,0..])) has no output.
(we expect the output [0,0..1).

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 21/38

Real number computation in GHC

malin — pinf(ZZ),gtos(YY,ZZ),stog(XX,YY),infO(L

11X],YY)
11X],YY)
01X],YY)
01Y], XX)
11Y], XX)

stog ([-
stog ([
stog ([
gtos ([
[
gtos ([
1nf0 (XX)
pinf ([X]Y])
nh (X, XX)
not (0, X)
not (1, X)

o

(
(
(
(
gtos (
(
(
(

C,1|Y],XX):

=[01Y], stog (X,Y).
=[1|Y],nh(Z2,Y),stog(X,2).
YYy=[C,1|Y],nh(Z,Y),stog (X, [C|Z]) .
XX = [-1]X],gtos (Y, X).
=[1|X],nh(Y,2),gtos(Z,X) .
=[0|X],nh(Y,Z),gtos([C|Z],X).
XX = [0]X], 1nf0 (X).
10:outstream([print (X), flush]),pint
=[X0|X1],not (X0,2),XX=[2|X1].
X = 1.
X = 0.

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 22/38

Logic vs. Functional

-

Logic programming languages: bottom up
o Functional programming languages: top down

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 23/38

McCarthy’s ’amb’ operator

A N

s an extension of Haskell, consider the amb operator
amb: a —-> a —> Amb a

where the datatype amb a is defined as

data Amb a = Right a | Left a

amb M N: evaluate M and N in parallel. It is reduced to
Left VV when M is reduced to V, Right V' when N is
reduced to V.

Its computation does not terminate only when both M
and N do not have normal forms.

® When both M and N have normal forms, we have two
possibilities and thus it is a nondeterministic

L multi-valued operator. J

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 24/38

Implementation in Haskell + amb

fWe can implement IM2-machines in Haskell + amb. T

gtos(a:b:xs) = case (amb a b) of
Left 0 -> 1:(gtos (b:xs))
Left 1 -> 1:(gtos (nh (b:xs)))
Right 1 —-> 0:(gtos (a: (nh xs)))
Right 0 -> case a of 0->1:1:(gtos xs)
1->1:1: (gtos (nh xs))

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 25/38

Implementation in Haskell + amb

fWe can implement IM2-machines in Haskell + amb. T

gtos(a:b:xs) = case (amb a b) of
Left 0 -> 1:(gtos (b:xs))
Left 1 -> 1:(gtos (nh (b:xs)))
Right 1 —-> 0:(gtos (a: (nh xs)))
Right 0 -> case a of 0->1:1:(gtos xs)
1->1:1: (gtos (nh xs))

Question: % 2
107
|[s parallelism really required? N
P y req | NG
The output of one sequential -
computation given at one of the 0)
L two locations. cal cul ati on J

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 25/38

gamb:

- N

artial sequential realization of the amb operator.
gamb: Bool —-> Bool —-> Amb Bool.

Based on graph reduction.

#® gambM N works only when M and N share the common
redex reachable through operator nodes cons, head,
tail, nh, not.

o For them, apply the following graph-reductions.

Reduction rules (l):

head (B:L) — B (R-head) i}
tail (B: L) — L (R-tail) 100,
not 0 — 1 (R-not0) o
not 1 — 0 (R-not1) 1
. nh(B:L) — (notB):L (R-nh) : o

cal cul ati on

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 26/38

Reduction of gamb /M N:

- N

1. M and N are reduced with the rules in (l).

2. Return Right ¢ or Left c if one of them become a
normal form (0 or 1),

3. Compare the leftmost outermost redexes of M and N. If
they are different node, raise a runtime error.

4. Reduce the shared redex to a weak head normal form.
5. Repeat 1. to 4. until it returns in 2. or it raises an error

In 3..
Not for terms, but for term- '1) -
graphs. P

0

cal cul ati on

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 27/38

Properties of gamb

-

In the form of

gtos(a:b:xs) = case (gamb a b) of...
one can express the behavior of an IM2-machine.
gamb is a single-valued deterministic function at the

level of graph reduction, and a multi-valued function at
the functional level.

Nondeterminism not as the result of parallelism, but
depending on the intensional representation.

“Real Number Expression” should be a graph. rather
than a term. Containing some information how we
come to this state, and depending on it the computation

proceeds.
|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 28/38

Addition
(__;l (al:a2:as) (bl:b2:bs) = ___W

case (gamb al a2) of
Left 0 —> case (gamb bl b2) of
Left 0 —> 0:(pl (aZ2:as) (b2:bs))
Left 1 -> (head d):1:(nh (tail d))
where d = pl (a2Z2:as) (b2:bs)
Right 1 -> case (gamb a2 (head as)) of

Left 0 => 0:(pl (l1:(nh as)) (bl:1:(tail bs)))
Left 1 -> (head d):1:(nh (tail d))
where d = pl (al:(nh as)) (bl: (nh bs))

Right 1 -> 0:1:(pl ((not a2):(nh (tail as))) ((not bl): (nh
(tail bs))))
Left 1 —-> case (gamb bl b2) of
Left 1 -> 1:(pl (aZ:as) (b2:bs))
Left 0 —=> (head d):1:(nh (tail d))
where d = pl (nh (aZ2:as)) (b2:bs)
Right 1 -> case (gamb a2 (head as) of
Left 0 -> 1:(pl (1:(nh as)) ((not bl):1:(tail bs)))
L___ Left 1 -> (head d):1:(nh (tail d)) ___J
where d = pl (al:(nh as)) (bl: (nh bs))

Computatjon over Topological Spaces via Embeddings in Streams with a Bottom — p. 29/38

Right 1 —> 1:1: (pl ((not a2): (nh (tail as))) (bl:(nh (tai

Part three:

Domain Representation of
Reals and Topological
Spaces.

Cantor Set and its finite approximations

- N

10,1} infinite sequences

3rd char 1000 001 010 011 100 101 110 171
2nd char X00 01 10 11
Ist char 0 1

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 31/38

-

3rd char

Real Number as limit of Gray-code

Essentially, [0,1] Interval

2nd char

00

Ist char

0L1

11

Computation over Topological Spaces via Embeddings in Streams

111

-

|

with a Bottom — p. 32/38

% -Representation of Topological Spaces
o -
The cantor space (0-dimensional) can be embedded in

=

s we have noted,

] (or R) (1-dimensional) can be embedded in Dy

» [(2-dimensional) can be embedded in % ,.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 33/38

> ,-Representation of Topological Spaces
o -

The cantor space (0-dimensional) can be embedded in
.

s we have noted,

] (or R) (1-dimensional) can be embedded in Dy

» [(2-dimensional) can be embedded in % ,.

Theorem: A separable metric space can be embedded in
¥4 . iff it is n-dimensional.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 33/38

> ,-Representation of Topological Spaces
o -

The cantor space (0-dimensional) can be embedded in
.

s we have noted,

] (or R) (1-dimensional) can be embedded in Dy

» [(2-dimensional) can be embedded in % ,.

Theorem: A separable metric space can be embedded in
¥4 . iff it is n-dimensional.

n-dimensional space can be accessed with n + 1 heads.

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 33/38

Dyadic Subbase
-

What is {0, 1, 1 }*-representation, topologically?

Foreach bit &, {z : ¢(z)(k) =0} and {z : ¢(z)(k) = 1}
are regular open sets and {z : ¢(z)(k) = L} Is their
common boundary.

Representing topological space as an infinite product of
this. [Ohta, T, Yamada]

1 corresponds to the boundary, and is the keyword to
understand the continuity of this world!

Ol

2
-
"
o
—
— s
o

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 34/38

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 35/38

Full-Flipping Maps
-

Gray-embedding is based on dynamical system of the
tent function.

Generalization of this framework to other dynamical
system on other topological spaces.

Dynamical System is governed by “Symbolic Dynamical
System”, which is the combinatorial study of {0, 1}*
sequences.

Is it related to formal language theory and learning
theory?

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 36/38

Conclusion:

Bottom and Continuity.

Bottom and Continuity

- N

o The discovery of L is the greatest contribution of
computer science (and logic) to the world!.

(Before that, we have only deterministic worldview with
Oand 1.)

o |

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 38/38

Bottom and Continuity

-

The discovery of L is the greatest contribution of
computer science (and logic) to the world!.

(Before that, we have only deterministic worldview with
Oand 1.)

| love Real number and continuous things more than
{0, 1}-sequences.

Continuous things can be coded with sequences with
bottoms. Gray-code is a continuously changing code.

0 and 1 are connected through L.

|

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 38/38

Bottom and Continuity

-

The discovery of L is the greatest contribution of
computer science (and logic) to the world!.

(Before that, we have only deterministic worldview with
Oand 1.)

| love Real number and continuous things more than
{0, 1}-sequences.

Continuous things can be coded with sequences with
bottoms. Gray-code is a continuously changing code.

0 and 1 are connected through L.

Even if there are bottoms in data, we can proceed with
the rest of the information, with IM2-machine.
Therefore, continuous way of handling data is possible.

Bottom is allowed to appear only once in the coding of J
reals.

Computation over Topological Spaces via Embeddings in Streams with a Bottom — p. 38/38

	Stream Programming
	Stream with a bottom
	Solution
	Solution
	Solution

	Injective Coding of $I $ in ${0,1}^omega $.
	Injective Coding of $I $ in ${0,1}^omega $.

	Gray coding of $I $ in $sign {1}$.
	Gray coding of $I $ in $sign {1}$.
	Gray coding of $I $ in $sign {1}$.

	Gray code of Natural numbers
	Binary/Gray expansion of I = [0,1]
	Binary/Gray expansion of I = [0,1]
	Binary/Gray expansion of I = [0,1]

	Gray embedding of I in $sign {1}$
	How can we input/output Gray-code?
	How can we input/output Gray-code?
	How can we input/output Gray-code?
	How can we input/output Gray-code?
	How can we input/output Gray-code?

	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?
	How can we output Gray-code?

	How can we input Gray-code?
	How can we input Gray-code?
	How can we input Gray-code?
	How can we input Gray-code?
	How can we input Gray-code?
	How can we input Gray-code?

	IM2-machine
	Multi-valuedness
	Multi-valuedness
	Multi-valuedness

	Computability on Real Number
	Computability on Real Number

	large Implementation in programming languages
	large Implementation in programming languages

	Examples:
	Output {DarkGreen (SD $	o $ Gray)}
	Input {DarkGreen (Gray $	o $ SD)}
	Real number computation in GHC
	Logic vs. Functional
	McCarthy's 'amb' operator
	Implementation in Haskell + amb
	Implementation in Haskell + amb

	gamb:
	Reduction of $gamb M N$:
	Properties of gamb
	Addition
	Cantor Set and its finite approximations
	Real Number as limit of Gray-code
	$sign {n}$-Representation of Topological Spaces
	$sign {n}$-Representation of Topological Spaces
	$sign {n}$-Representation of Topological Spaces

	Dyadic Subbase
	Full-Flipping Maps
	Bottom and Continuity
	Bottom and Continuity
	Bottom and Continuity

