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Type2-mahine:extension of TuringMahine so that theinput/output tape havein�nite length.[Weihrauh, et al.℄Program with streaminput/output.
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Stream with a bottom
Type2 Machine
(Stream Programming)
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If a bottom ell ? existsin the input, a Type2mahine get stuk andannot read the rest ofthe input.?: Non-terminatingomputing.In Haskell, anexpression of type Boolmay have the value ?and a sequene in[Bool℄ may ontain ?.
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Solution
IM2-Machine
(two-heads I/O)
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Multiple head mahine.

Appliation:Real NumberComputation.Representation of Topo-logial Spaes.Implementedin GHC: Logiprogramming languagewith ommitted hoie.Extension of Haskell, bymodifying Hags system.
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Part one:Representation of Reals asbottomed sequenes.
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Injetive Coding of I in f0; 1g!.

� = f0; 1g.Consider a unique oding of I = [0; 1℄ in �!. That is, aninjetive funtion ' from I to �!.' and its inverse should be ontinuous (i.e. ' is anembedding) beause real number omputation weonsider is the limit of approximation intervals(a0; b0) � (a1; b1) � (a2; b2) � : : :! xand it should be implemented as extension of wordsp0 ! p0p1 ! p0p1p2 ! : : :! '(x).

Impossible to embed I in �! (Cantor Spae).I is onneted, but �! is totally disonneted.Impossible to injetively ode I in �!.
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Gray oding of I in �!?;1.

However, it is possible to embed I in �!?;1 by theGray-ode embedding.[Gianantonio℄,[T℄

�!?;1 � (� [ f?g)! (i.e. Plotkin's T!:)In�nite sequenes of � [ f?g with at most one ?, withthe subspae topology of �?! (with the Sott topology)ex. 010?1000 : : : ; 00110011 : : :.

topology of �? :
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Gray ode of Natural numbers

(Binary re�eted) Gray ode: another ode of naturalnumbers with � = f0; 1g.number Binary ode Gray ode0 0000 00001 0001 00012 0010 00113 0011 00104 0100 01105 0101 01116 0110 01017 0111 01008 1000 1100
Only one bit hangesby the inrementoperation.Conversion fromordinary binary odeto the Gray ode:one-bit shift and xor.onv s = map xor(zip s (0:s))
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Binary/Gray expansion of I = [0,1℄
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Gray embedding of I in �!?;1

t : I ! I; t(x) = 8<: 2x (0 � x � 1=2)2(1� x) (1=2 < x � 1) :

'G : I! �!?;1 'G(x)(n) =
8>><>>:

0 (tn(x) < 1=2)? (tn(x) = 1=2)1 (tn(x) > 1=2) :

We all 'G the Gray embedding.Itinerary of the tent funtion.Topologial embedding of I in �!?;1.Continuously hanging ode.Can be used to de�ne omputation over I (or R)with IM2-mahines.

�!?;1I
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Part two:IM2-mahines and theirimplementations.
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How an we input/output Gray-ode?

Real number omputation as the limit of approximations(shrinking open intervals).
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How an we input Gray-ode?

1 0 ? 1 0 00 1 2 3 4 5

0 1 2 3 4 5

1 0 10Two possible inputs as the �rst harater.
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IM2-mahine
  M

...

...

input tapes

output tape

...

work tape

state

1 0

0

1 1
Generalization of Type-2 mahinewith 2-heads input/output aess.Indeterministi (i.e. nondeterministi)behavior depending on the headused to input.! de�nes a multi-valued funtion.note: Multi-valuedness is natural forreal number omputation)
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Multi-valuedness
0

1
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:Specification

0
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:Specification

Consider a thermometer whih will make an alarm if it ishotter than 40 degree. Is it possible?

Physially, it should be around 40 with a spei�ationfrom 40� � to 40 + �.Physial implementation should also be multi-valued,depending on how it approahes.
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Computability on Real Number

There are many ways of de�ning omputability on realnumbers.TTE (Type two theory of effetivity) by Grzegorzyk,Weihrauh, Hertling, Brattka,...)Pour-El and Rihards approah.Many approahes to Exat Real NumberComputation. [Boehm, Edalat,Potts, Gianantonimo,Vuillemin,...℄Blum-Shub-Smale mahine.

Gray-ode and IM2-mahine omputability an beextended to real numbers.It is equal to TTE approah with admissiblerepresentation.

Computation over Topologial Spaes via Embeddings in Streams with a Bottom � p. 17/38



Computability on Real Number

There are many ways of de�ning omputability on realnumbers.TTE (Type two theory of effetivity) by Grzegorzyk,Weihrauh, Hertling, Brattka,...)Pour-El and Rihards approah.Many approahes to Exat Real NumberComputation. [Boehm, Edalat,Potts, Gianantonimo,Vuillemin,...℄Blum-Shub-Smale mahine.Gray-ode and IM2-mahine omputability an beextended to real numbers.It is equal to TTE approah with admissiblerepresentation. Computation over Topologial Spaes via Embeddings in Streams with a Bottom � p. 17/38



Implementation in programming languages

How to implement IM2-mahines in 'REAL' programminglanguages?It is possible, with logi programming languages withguarded lauses and ommitted hoie, suh asConurrent Prolog, PARLOG, and GHC (Guarded HornClauses)Diret translation from rules of an IM2-mahine to GHC.

Impossible, with sequential funtional languages likeHaskell.Extension of Haskell with gamb (sequential partialrealization of amb). Implemented 2005.
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Examples:

Conversions from/to the signed digit representation.Signed-digit representation: an expansion of [�1; 1℄ as anin�nite sequene of � = f0; 1; 1(= �1)g, de�ned asÆs(a1a2: : :) = �1i=1fai � 2�ig:Here, we �x a1 = 1 and disard this from the representation.

Æs([0; 0; :::℄) = 1=2:
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Output (SD! Gray)

Output: possible in a funtional language.stog(1:xs) = 1:nh(stog xs)stog(1:xs) = 0:stog xsstog(0:xs) = :1:nh ds where :ds= stog xsnot 0 = 1not 1 = 0nh :a = not :astog([0,0..℄) has no output ([?,1,0,0..℄)tail(stog([0,0..℄)) produes [1,0,0,0...℄in�nitely.
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Input (Gray! SD)

Input: impossible...gtos(0:xs) = 1:(gtos (b:xs))gtos(1:xs) = 1:(gtos (nh (b:xs)))gtos(a:1:xs) = 0:(gtos (a:(nh xs)))Corret Haskell syntax, but different meaning!!The third line never used for ?:1:[0,0..℄.gtos(stog([0,0..℄)) has no output.(we expet the output [0,0..℄).
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Real number omputation in GHC

main :- pinf(ZZ),gtos(YY,ZZ),stog(XX,YY),inf0(XX).stog([-1|X℄,YY) :- YY=[0|Y℄, stog(X,Y).stog([1|X℄,YY) :- YY=[1|Y℄,nh(Z,Y),stog(X,Z).stog([0|X℄,YY) :- YY=[C,1|Y℄,nh(Z,Y),stog(X,[C|Z℄).gtos([0|Y℄,XX) :- XX = [-1|X℄,gtos(Y,X).gtos([1|Y℄,XX) :- XX=[1|X℄,nh(Y,Z),gtos(Z,X).gtos([C,1|Y℄,XX):- XX=[0|X℄,nh(Y,Z),gtos([C|Z℄,X).inf0(XX) :- XX = [0|X℄, inf0(X).pinf([X|Y℄) :- io:outstream([print(X),flush℄),pinf(Y).nh(X,XX) :- X=[X0|X1℄,not(X0,Z),XX=[Z|X1℄.not(0,X) :- X = 1.not(1,X) :- X = 0.
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Logi vs. Funtional

Logi programming languages: bottom upFuntional programming languages: top down
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MCarthy's 'amb' operator

As an extension of Haskell, onsider the amb operatoramb: a -> a -> Amb awhere the datatype Amb a is de�ned asdata Amb a = Right a | Left aamb M N : evaluate M and N in parallel. It is redued toLeft V when M is redued to V , Right V 0 when N isredued to V 0.Its omputation does not terminate only when both Mand N do not have normal forms.When both M and N have normal forms, we have twopossibilities and thus it is a nondeterministimulti-valued operator. Computation over Topologial Spaes via Embeddings in Streams with a Bottom � p. 24/38



Implementation in Haskell + amb

We an implement IM2-mahines in Haskell + amb.gtos(a:b:xs) = ase (amb a b) ofLeft 0 -> 1:(gtos (b:xs))Left 1 -> 1:(gtos (nh (b:xs)))Right 1 -> 0:(gtos (a:(nh xs)))Right 0 -> ase a of 0->1:1:(gtos xs)1->1:1:(gtos(nh xs))

Question:Is parallelism really required?The output of one sequentialomputation given at one of thetwo loations.
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1 0
  :

  :

  :1

0

...

calculation
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gamb:

Partial sequential realization of the amb operator.gamb: Bool -> Bool -> Amb Bool.Based on graph redution.gambMN works only when M and N share the ommonredex reahable through operator nodes ons, head,tail, nh, not.For them, apply the following graph-redutions.Redution rules (I):head (B : L) ! B (R-head)tail (B : L) ! L (R-tail)not 0 ! 1 (R-not0)not 1 ! 0 (R-not1)nh (B : L) ! (not B) : L (R-nh)

1 0
  :

  :

  :1

0

...

calculationComputation over Topologial Spaes via Embeddings in Streams with a Bottom � p. 26/38



Redution of gambMN :

1. M and N are redued with the rules in (I).2. Return Right  or Left  if one of them beome anormal form (0 or 1),3. Compare the leftmost outermost redexes of M and N . Ifthey are different node, raise a runtime error.4. Redue the shared redex to a weak head normal form.5. Repeat 1. to 4. until it returns in 2. or it raises an errorin 3..
Not for terms, but for term-graphs.

1 0
  :

  :

  :1

0

...
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Properties of gamb

In the form ofgtos(a:b:xs) = ase (gamb a b) of...one an express the behavior of an IM2-mahine.gamb is a single-valued deterministi funtion at thelevel of graph redution, and a multi-valued funtion atthe funtional level.Nondeterminism not as the result of parallelism, butdepending on the intensional representation.�Real Number Expression� should be a graph. ratherthan a term. Containing some information how weome to this state, and depending on it the omputationproeeds.
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Addition

pl (a1:a2:as) (b1:b2:bs) =ase (gamb a1 a2) ofLeft 0 -> ase (gamb b1 b2) ofLeft 0 -> 0:(pl (a2:as) (b2:bs))Left 1 -> (head d):1:(nh (tail d))where d = pl (a2:as) (b2:bs)Right 1 -> ase (gamb a2 (head as)) ofLeft 0 -> 0:(pl (1:(nh as)) (b1:1:(tail bs)))Left 1 -> (head d):1:(nh (tail d))where d = pl (a1:(nh as)) (b1:(nh bs))Right 1 -> 0:1:(pl ((not a2):(nh (tail as))) ((not b1):(nh(tail bs))))Left 1 -> ase (gamb b1 b2) ofLeft 1 -> 1:(pl (a2:as) (b2:bs))Left 0 -> (head d):1:(nh (tail d))where d = pl (nh (a2:as)) (b2:bs)Right 1 -> ase (gamb a2 (head as) ofLeft 0 -> 1:(pl (1:(nh as)) ((not b1):1:(tail bs)))Left 1 -> (head d):1:(nh (tail d))where d = pl (a1:(nh as)) (b1:(nh bs))Right 1 -> 1:1:(pl ((not a2):(nh (tail as))) (b1:(nh (tailbs))))Right 1 -> ase (gamb b1 b2) ofRight 1 -> (head d):1:(nh (tail d))where d = pl (a1:(nh as)) (b1:(nh bs))Left 0 -> ase (gamb b2 (head bs)) ofLeft 0 -> 0:(pl (a1:1:(tail as)) (1:(nh bs)))Left 1 -> (head d):1:(nh (tail d))where d = pl (a1:(nh as)) (b1:(nh bs))Right 1 -> 0:1:(pl ((not a1):(nh (tail as))) ((not b2):(nh(tail bs))))Left 1 -> ase (gamb b2 (head bs)) ofLeft 0 -> 1:(pl ((not a1):1:(tail as)) (1:(nh bs)))Left 1 -> (head d):1:(nh (tail d))where d = pl (a1:(nh as)) (b1:(nh bs))Right 1 -> 1:1:(pl (a1:(nh (tail as))) ((not b2):(nh (tailbs))))
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Part three:Domain Representation ofReals and TopologialSpaes.
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Cantor Set and its �nite approximations

10

00 01 10 11

{0,1} infinite sequences

1st char

2nd char

3rd char 011 100010000 001 101 110 111
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Real Number as limit of Gray-ode

⊥1 10

⊥100⊥100 01 1⊥111 10

Essentially, [0,1] Interval

1st char

2nd char

3rd char 010 ⊥100 110
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�!?;n-Representation of Topologial Spaes

As we have noted,The antor spae (0-dimensional) an be embedded in�!?;0.I (or R) (1-dimensional) an be embedded in �!?;1.I2 (2-dimensional) an be embedded in �!?;2.

Theorem: A separable metri spae an be embedded in�!?;n iff it is n-dimensional.n-dimensional spae an be aessed with n+ 1 heads.
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Dyadi Subbase

What is f0; 1;?g!-representation, topologially?For eah bit k, fx : '(x)(k) = 0g and fx : '(x)(k) = 1gare regular open sets and fx : '(x)(k) = ?g is theirommon boundary.Representing topologial spae as an in�nite produt ofthis. [Ohta, T, Yamada℄? orresponds to the boundary, and is the keyword tounderstand the ontinuity of this world!

0 ? 1 1 ? 0 ...0 1 2 3 4 5S0n S1n
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Full-Flipping Maps

Gray-embedding is based on dynamial system of thetent funtion.Generalization of this framework to other dynamialsystem on other topologial spaes.Dynamial System is governed by �Symboli DynamialSystem�, whih is the ombinatorial study of f0; 1g!sequenes.Is it related to formal language theory and learningtheory?
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Conlusion:Bottom and Continuity.
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Bottom and Continuity

The disovery of ? is the greatest ontribution ofomputer siene (and logi) to the world!.(Before that, we have only deterministi worldview with0 and 1. )

I love Real number and ontinuous things more thanf0; 1g-sequenes.Continuous things an be oded with sequenes withbottoms. Gray-ode is a ontinuously hanging ode.0 and 1 are onneted through ?.Even if there are bottoms in data, we an proeed withthe rest of the information, with IM2-mahine.Therefore, ontinuous way of handling data is possible.Bottom is allowed to appear only one in the oding ofreals.
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