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Outline	

n  Introduction 
l  Recent development of graph databases 
l  Needs for graph similarity search 
l  Bag-of-words representation of a graph 
l  Semi-conjunctive query 

n Method 
l   Scalable similarity search with wavelet trees 

n Experiments 
l  Use a large-scale graph dataset 
l  25 million chemical compounds 



Graphs are everywhere	
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Graph Similarity Search	
n Retrieve graphs similar to the query 
n Large databases 

l  More than 20 million chemical compounds in 
PubChem database 

n Bag-of-words representation of graphs 
l  WL procedure (NIPS 2009) 

n Why not use document retrieval methods? 
l  Inverted index 
l  Not that easy (explained later) 



Weisfeiler-Lehman Procedure (NIPS,09)	

i) Make a label set of adjacent  
  vertices   ex) {E,A,D} 
ii) Sort       ex) A,D,E 
iii) Add the vertex label as a prefix          
                 ex) B,A,D,E 
iv) Map the label sequence to a 

unique value 
                  ex) B,A,D,E→R 
v) Assign the value as the new  
   vertex label	

A	

D	

E	B	

n Convert a graph into a set of words 
  (bag-of-words)	

Bag-of-words 
{A,B,D,E,…,R,…}	

A	

D	

R	 E	



Search by cosine similarity	
n  Identify all graphs in the database whose 

cosine is larger than a threshold 1-ε 

 
l  Wi, Q: bag-of-words of graphs 

n  The above solution can be relaxed as 
follows, 
　If                 , then 
   

l  Can be used for fast search  

Wi s.t KN (Wi,Q) =
|Wi!Q |
|Wi | |Q |

!1"!

KN (Q,W ) !1"!

(1!!)2 |Q |!|W |! |Q |
(1!!)2



Semi-conjunctive query	 
n Cosine query can be relaxed to the following 
form 
 

 
l  The number of common words between 

two bag-of-words Wi and Q 

    Ex) |Wi∩Q|=|(A,C,E,F,H)∩(A,E,I,J,L)| 
                        =|(A,E)|=2 

l  k=(1-ε)2|Q| 
l No false negatives 
l False positives can easily be filtered out by 
cosine calculations  

 

Wi s.t |Wi!Q |" k



Inverted index	
n  In natural language processing, inverted 

index has been used to solve semi-
conjunctive query	

Inverted Index	
Word	 Graph ids	
A	 2,8,13,15	
B	 4,9,13	
C	 8,10,16	
D	 1,3,11	
E	 4,9,13,14	

n Associative map  
l  key   ⇔word 
l  value⇔graph identifiers 
               including a word 



Bottom-up search	
Inverted Index	

Query:(A,C,E)	

(2,8,13,15,8,10,16,4,9,13,14)	

(2,4,8,8,9,10,13,13,14,15,16)	

Aggregation	

Sort	

Word	 Graph ids	
A	 2,8,13,15	
B	 4,9,13	
C	 8,10,16	
D	 1,3,11	
E	 4,9,13,14	

i) Look the index up with 
   query bag-of-words 
ii) Aggregate all the lists 

of graph indices 
iii) Sort 
ⅳ)Scan  
    
	

k=２	



Search time of inverted index  
on 25 million graphs	

n Search time of inverted index is not so different from  
 that of sequencial scan	

40 sec	
38 sec	



Why?	
n Each word is not 

specific enough 
n Query contains 1000s 

of words 
n Aggregated array is 

VERY long 
n Sorting takes O(ClogC)  

in time 

Query:(A,C,E)	
 
 
(2,8,13,15,8,10,16,4,9,13,14)	 
 
 
(2,4,8,8,9,10,13,13,14,15,16)	

Aggregation	

Sort	

C	



Overview of our method 	

n Top-down search in a tree over the series of 
graphs 

n Huge memory, if tree is implemented with 
pointers 

n Wavelet Tree: Succinct data structure 
n The smaller the similarity threshold is, the 

quicker the algorithm finishes 
• Not the case in inverted index 

 



Binary tree over graphs	

n  leaf   ⇔ graph 
n node ⇔ interval 
n  Each node is identified 

by a bit string (v={01}) 
n  At the leaves, the graph 

indices correspond to 
int(v)+1 

   (e.g., int(010)+1=2+1=3) 

[1,8]	

[1,4]	 [5,8]	

[1,2]	 [3,4]	 [5,6]	 [7,8]	

1	 3	2	 4	 5	 6	 7	 8	

0	 1	

0	 1	 0	 1	

0	 1	 0	 1	0	 1	0	 1	

{000}	{001}	{010}	{011}	{100}	{101}	{110}	{111}	



Summarization of bag-of-words	
n  Represent bag-of-words as a bit array 
                                       1 2 3 4 5 6 7 8 
Ex) Wi=(1,3,4,7,8)     xi=(1,0,1,1,0,0,1,1) 
 
n  Take disjunction ∨ of all bit arrays in the interval 

of a node v 

Ex) For an interval [1,4] 
X1=(0,1,0,0,0,0,1,0) 
X2=(1,0,1,1,0,0,0,0) 
X3=(1,0,0,0,0,0,1,1) 
X4=(1,0,0,0,0,0,0,1) 
 

yv=x1∨x2∨x3∨x4 
   =(1,1,1,1,0,0,1,1)	



Binary tree over graphs	

n Assign to each node 
v a bit arrays yv 

n   yv : bit array  
l  i-th bit is 1 if graphs 

in an interval have 
the corresponding 
word.   

[1,8]	

[1,4]	 [5,8]	

[1,2]	 [3,4]	 [5,6]	 [7,8]	

1	 3	2	 4	 5	 6	 7	 8	
{000}	{001}	{010}	{011}	{100}	{101}	{110}	{111}	

yv=111111	

yv=110111	 yv=101101	

yv=010101	yv=110100	yv=100100	yv=001101	



Top-down traversal	
n Q: bag-of-words of a   

query 
n Perform top-down 

traversal 
n Prune the search 

space if 
n The larger k is, the 

smaller the search 
space is 

[1,8]	

[1,4]	 [5,8]	

[1,2]	 [3,4]	 [5,6]	 [7,8]	

1	 3	2	 4	 5	 6	 7	 8	
{000}	{001}	{010}	{011}	{100}	{101}	{110}	{111}	

yv=111111	

yv=110111	 yv=101101	

yv=010101	yv=110100	yv=100100	yv=001101	
yv[ j]! k

j"Q
#



Huge Memory	

n Time is O(τm) : Very fast 
l  τ: the number of traversed node 
l  m: the number of bag-of-words in a query 

n Space is O(Mnlogn) bit 
l  M: the number of unique words 
l  n: the number of graphs 



Wavelet Tree! (SODA,03)	

n Replace yv in each node v by a rank 
dictionary 
l  explained in next slides 

n  Implement a tree without using pointers 
n Only 60% memory overhead compared to 

the inverted index (Vigna,08) 
n Access to the summary information in any 

internal node 



Rank dictionary (Raman,02)	

n Give bit array B[1,n] the following operation: 
l  rankc(B,i): return the number of c∈{0,1} in B[1…i]	

Ex) B=0110011100	

i 1 2 3 4 5 6 7 8 9 10 
  0 1 1 0 0 1 1 1 0  0 
  0 1 1 0 0 1 1 1 0  0	

rank1(B,8)=5 
rank0(B,5)=3	



Implementation of rank dictionary	
n  Divide the bit array B into  
large blocks of length l=log2n 
  RL=Ranks of large blocks 
n  Divide each large block to  
small blocks of length s=logn/2 
  Rs=Ranks of small blocks  
      relative to the large block 

B	

RL	

RS	

rank1(B,i)=RL[i/l]+Rs[i/s]+(remaining rank)	
Time:O(1) 
Memory: n +o(n) bits	



Restricted inverted index	
n Concatenate graph ids  
   for words in the root 
n Restrict the inverted index for 

the interval [sv,tv] of a node v	

 Inverted Index	
Word	 Graph ids	

A	 1,3,6,8	

B	 2,5,7	

C	 1,2,7	

D	 4,5	

A	 B	 C	 D	

A	 B	 C	 D	 A	 B	 C	D	

≦4	 >4	

[1,4] [4,8] 

[1,8] 
Aroot  1 3 6 8 2 5 7 1 2 7 4 5 

Aleft   1 3 2 1 2 4 Aright   6 8 5 7 7 5 



Whole structure of  
restricted inverted index	

A	 B	 C	 D	

A	 B	 C	 D	 A	 B	 C	D	[1,4] [5,8] 

[1,8] 
1 3 6 8 2 5 7 1 2 7 4 5 

1 3 2 1 2 4 6 8 5 7 7 5 

1 2 1 2 
A	B	 C	

3 4 
A	D	

6 5 5 8 7 7 
A	B	D	 A	B	C	

1 1 
A	C	

2 2 
B	C	

3 4 5 5 
B	D	A	 D	

6 
A	

7 7 8 
B	C	 A	

[1,2] [3,4] [5,6] [6,7] 



Similarity search	
n To retrieve graphs similar to a query  
   Q=(A,C), the tree is traversed in the top-   
   down manner.  

A	 C	

A	 C	 A	 C	

≦4	 >4	
[1,4] 

[1,8] 
Aroot  1 3 6 8 2 5 7 1 2 7 4 5 

Aleft   1 3 2 1 2 4 Aright   6 8 5 7 7 5 
[5,8] 



Similarity search	
n  To retrieve graphs similar to a query  Q=(A,C),  the tree 

is traversed in a top-down manner.  

n Observation  
l  To perform top-down traversal, only intervals 

of words in each node are necessary 

A [1,4]	 C [8,10]	

A [1,2]	C [4,5]	 A[1,2]	 C[5,5]	

≦4	 >4	

Aroot  1 3 6 8 2 5 7 1 2 7 4 5 

Aleft   1 3 2 1 2 4 Aright   6 8 5 7 7 5 



Similarity search	
n Replace restricted inverted index Av in 

each node v with a bit array bv. 
l  bv[i]=1 if Av[i] goes to the right child 

broot	 0	0	1	1	 0	1	1	 0	0	1	 0	 1	
Aroot   1 3 6 8 2 5 7 1 2 7 4 5 

bleft	 0	1	0	0	 0	1	
Aleft    1 3 2 1 2 4 

bright	 0	1	0	1	 1	0	
Aright    6 8 5 7 7 5 

1	0	



Similarity search	
n  Intervals of child nodes can be computed by 

rank operations  
l  sleft(v),j=rank0(bv,svj-1)+1,tleft(v),j=rank0(bv,tvj) 
l  sright(v),j =rank1(bv,svj-1)+1,tright(v),j=rank1(bv,tvj) 
 
 

broot	 0	0	1	1	 0	1	1	 0	0	1	 0	 1	
Aroot   1 3 6 8 2 5 7 1 2 7 4 5 

bleft	 0	1	0	0	 0	1	
Aleft    1 3 2 1 2 4 

bright	 0	1	0	1	 1	0	
Aright    6 8 5 7 7 5 

C [8,10]	

C [4,5]	 C [5,5]	

rank0(broot,8-1)+1=4,  
rank0(broot,10)=5	

rank1(broot,8-1)+1=5,  
rank1(broot,10)=5	

Ex) 



Wavelet Tree	

0 0 1 1 0 1 1 0 0 1 0 1 

0 1 0 0 0 1 0 1 0 1 1 0 

1 0 0 0 1 0 1 0 1 1 0 0 

A	 B	 C	 D	

n Wavelet tree can be obtained to replace the restricted 
Inverted indices with bit arrays 
n Wavelet tree consists of bit arrays bv and initial 
intervals Croot. 

Croot	



Wavelet Tree	

0 0 1 1 0 1 1 0 0 1 0 1 

0 1 0 0 0 1 0 1 0 1 1 0 

1 0 0 0 1 0 1 0 1 1 0 0 

A	 B	 C	 D	

0	 1	

0	 1	 0	 1	

0	 1	 0	 1	 0	 1	 0	 1	
000 001 010 011 100 101 110 111 

n Graph ids can be recovered from bit strings  
  on the path from the root to leaves	

Croot	



Memory	

n  (1+α)Nlogn  +  MlogN bits 
 

l  N: the number of all words in the database 
l  n: the number of graphs 
l  α: overhead for rank dictionary (α=0.6) 

n  For inverted index, Nlogn bits 
n  About 60% overhead to inverted index!! 

Bit arrays bv	 Initial intervals Croot	



Experiments	

n 25 million chemical compounds from 
PubChem database 

n Use search time and memory as 
evaluation measures 

n Compare our method gWT to  
l  inverted index 
l  sequential scan implemented in G-Hash 

(Wang et al, 2009)	



Search time on 25 million graphs	

40 sec	
38 sec	

8 sec	
3 sec	
2 sec	



Memory usage	



Overhead of rank dictionary	



Construction time	



Related work	
•  A lot of methods have been proposed so far. 
 1.gIndex [Yan et al., 04] 
 2.Graph Grep [Shasha et al., 07]  
 3.Tree+Delta [Zhao et al., 07] 
 4.TreePi [Zhang et al., 07] 
 5.Gstring [Jiang et al., 07] 
 6.FG-Index [Cheng et al., 07] 
 7.GDIndex [Williams et al., 07] 
 etc 	



Related work 	
•  Decompose graphs  
   into a set of  
   substructures 
 - subgraphs, trees, 

paths etc 
•  Build a substructure- 
   based index 

…	
Decompose	

Index	



Drawbacks	

•  Require frequent subgraph mining 
•  Do not scale to millions of graphs 



Summary	
n Efficient similarity search method for  

massive graph databases 
n Solve semi-conjunctive query efficiently  
n Built on wavelet trees 
n Use Weisfeiler-Lehman procedure to 

convert graphs into bag-of-words 
n Applicable to more than 20 million graphs 
n Software 
   http://code.google.com/p/gwt/ 
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