
Kernel-based Similarity Search
in Massive Graph Databases

with Wavelet Trees

Yasuo Tabei
(JST ERATO Minato Project)
Joint work with Koji Tsuda (AIST)	

March 30, 2011, The 5th International Workshop on
Data-Mining and Statistical Science@Osaka University	

Outline	

n  Introduction
l  Recent development of graph databases
l  Needs for graph similarity search
l  Bag-of-words representation of a graph
l  Semi-conjunctive query

n Method
l  Scalable similarity search with wavelet trees

n Experiments
l  Use a large-scale graph dataset
l  25 million chemical compounds

Graphs are everywhere	

 Gene co-expression
 network

 	
 Chemical compound

 	

 Protein 3D structure

 	

RNA 2D structure

 	
Social Network

 	

Graph Similarity Search	
n Retrieve graphs similar to the query
n Large databases

l  More than 20 million chemical compounds in
PubChem database

n Bag-of-words representation of graphs
l  WL procedure (NIPS 2009)

n Why not use document retrieval methods?
l  Inverted index
l  Not that easy (explained later)

Weisfeiler-Lehman Procedure (NIPS,09)	

i) Make a label set of adjacent
 vertices ex) {E,A,D}
ii) Sort ex) A,D,E
iii) Add the vertex label as a prefix
 ex) B,A,D,E
iv) Map the label sequence to a

unique value
 ex) B,A,D,E→R
v) Assign the value as the new
 vertex label	

A	

D	

E	B	

n Convert a graph into a set of words
 (bag-of-words)	

Bag-of-words
{A,B,D,E,…,R,…}	

A	

D	

R	 E	

Search by cosine similarity	
n  Identify all graphs in the database whose

cosine is larger than a threshold 1-ε

l  Wi, Q: bag-of-words of graphs

n  The above solution can be relaxed as
follows,
　If , then

l  Can be used for fast search

Wi s.t KN (Wi,Q) =
|Wi!Q |
|Wi | |Q |

!1"!

KN (Q,W) !1"!

(1!!)2 |Q |!|W |! |Q |
(1!!)2

Semi-conjunctive query	
n Cosine query can be relaxed to the following
form

l  The number of common words between

two bag-of-words Wi and Q

 Ex) |Wi∩Q|=|(A,C,E,F,H)∩(A,E,I,J,L)|
 =|(A,E)|=2

l  k=(1-ε)2|Q|
l No false negatives
l False positives can easily be filtered out by
cosine calculations

Wi s.t |Wi!Q |" k

Inverted index	
n  In natural language processing, inverted

index has been used to solve semi-
conjunctive query	

Inverted Index	
Word	 Graph ids	
A	 2,8,13,15	
B	 4,9,13	
C	 8,10,16	
D	 1,3,11	
E	 4,9,13,14	

n Associative map
l  key ⇔word
l  value⇔graph identifiers
 including a word

Bottom-up search	
Inverted Index	

Query:(A,C,E)	

(2,8,13,15,8,10,16,4,9,13,14)	

(2,4,8,8,9,10,13,13,14,15,16)	

Aggregation	

Sort	

Word	 Graph ids	
A	 2,8,13,15	
B	 4,9,13	
C	 8,10,16	
D	 1,3,11	
E	 4,9,13,14	

i) Look the index up with
 query bag-of-words
ii) Aggregate all the lists

of graph indices
iii) Sort
ⅳ)Scan

	

k=２	

Search time of inverted index
on 25 million graphs	

n Search time of inverted index is not so different from
 that of sequencial scan	

40 sec	
38 sec	

Why?	
n Each word is not

specific enough
n Query contains 1000s

of words
n Aggregated array is

VERY long
n Sorting takes O(ClogC)

in time

Query:(A,C,E)	

(2,8,13,15,8,10,16,4,9,13,14)	

(2,4,8,8,9,10,13,13,14,15,16)	

Aggregation	

Sort	

C	

Overview of our method 	

n Top-down search in a tree over the series of
graphs

n Huge memory, if tree is implemented with
pointers

n Wavelet Tree: Succinct data structure
n The smaller the similarity threshold is, the

quicker the algorithm finishes
• Not the case in inverted index

Binary tree over graphs	

n  leaf ⇔ graph
n node ⇔ interval
n  Each node is identified

by a bit string (v={01})
n  At the leaves, the graph

indices correspond to
int(v)+1

 (e.g., int(010)+1=2+1=3)

[1,8]	

[1,4]	 [5,8]	

[1,2]	 [3,4]	 [5,6]	 [7,8]	

1	 3	2	 4	 5	 6	 7	 8	

0	 1	

0	 1	 0	 1	

0	 1	 0	 1	0	 1	0	 1	

{000}	{001}	{010}	{011}	{100}	{101}	{110}	{111}	

Summarization of bag-of-words	
n  Represent bag-of-words as a bit array
 1 2 3 4 5 6 7 8
Ex) Wi=(1,3,4,7,8) xi=(1,0,1,1,0,0,1,1)

n  Take disjunction ∨ of all bit arrays in the interval

of a node v

Ex) For an interval [1,4]
X1=(0,1,0,0,0,0,1,0)
X2=(1,0,1,1,0,0,0,0)
X3=(1,0,0,0,0,0,1,1)
X4=(1,0,0,0,0,0,0,1)

yv=x1∨x2∨x3∨x4
 =(1,1,1,1,0,0,1,1)	

Binary tree over graphs	

n Assign to each node
v a bit arrays yv

n  yv : bit array
l  i-th bit is 1 if graphs

in an interval have
the corresponding
word.

[1,8]	

[1,4]	 [5,8]	

[1,2]	 [3,4]	 [5,6]	 [7,8]	

1	 3	2	 4	 5	 6	 7	 8	
{000}	{001}	{010}	{011}	{100}	{101}	{110}	{111}	

yv=111111	

yv=110111	 yv=101101	

yv=010101	yv=110100	yv=100100	yv=001101	

Top-down traversal	
n Q: bag-of-words of a

query
n Perform top-down

traversal
n Prune the search

space if
n The larger k is, the

smaller the search
space is

[1,8]	

[1,4]	 [5,8]	

[1,2]	 [3,4]	 [5,6]	 [7,8]	

1	 3	2	 4	 5	 6	 7	 8	
{000}	{001}	{010}	{011}	{100}	{101}	{110}	{111}	

yv=111111	

yv=110111	 yv=101101	

yv=010101	yv=110100	yv=100100	yv=001101	
yv[j]! k

j"Q
#

Huge Memory	

n Time is O(τm) : Very fast
l  τ: the number of traversed node
l  m: the number of bag-of-words in a query

n Space is O(Mnlogn) bit
l  M: the number of unique words
l  n: the number of graphs

Wavelet Tree! (SODA,03)	

n Replace yv in each node v by a rank
dictionary
l  explained in next slides

n  Implement a tree without using pointers
n Only 60% memory overhead compared to

the inverted index (Vigna,08)
n Access to the summary information in any

internal node

Rank dictionary (Raman,02)	

n Give bit array B[1,n] the following operation:
l  rankc(B,i): return the number of c∈{0,1} in B[1…i]	

Ex) B=0110011100	

i 1 2 3 4 5 6 7 8 9 10
 0 1 1 0 0 1 1 1 0 0
 0 1 1 0 0 1 1 1 0 0	

rank1(B,8)=5
rank0(B,5)=3	

Implementation of rank dictionary	
n  Divide the bit array B into
large blocks of length l=log2n
 RL=Ranks of large blocks
n  Divide each large block to
small blocks of length s=logn/2
 Rs=Ranks of small blocks
 relative to the large block

B	

RL	

RS	

rank1(B,i)=RL[i/l]+Rs[i/s]+(remaining rank)	
Time:O(1)
Memory: n +o(n) bits	

Restricted inverted index	
n Concatenate graph ids
 for words in the root
n Restrict the inverted index for

the interval [sv,tv] of a node v	

 Inverted Index	
Word	 Graph ids	

A	 1,3,6,8	

B	 2,5,7	

C	 1,2,7	

D	 4,5	

A	 B	 C	 D	

A	 B	 C	 D	 A	 B	 C	D	

≦4	 >4	

[1,4] [4,8]

[1,8]
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

Aleft 1 3 2 1 2 4 Aright 6 8 5 7 7 5

Whole structure of
restricted inverted index	

A	 B	 C	 D	

A	 B	 C	 D	 A	 B	 C	D	[1,4] [5,8]

[1,8]
1 3 6 8 2 5 7 1 2 7 4 5

1 3 2 1 2 4 6 8 5 7 7 5

1 2 1 2
A	B	 C	

3 4
A	D	

6 5 5 8 7 7
A	B	D	 A	B	C	

1 1
A	C	

2 2
B	C	

3 4 5 5
B	D	A	 D	

6
A	

7 7 8
B	C	 A	

[1,2] [3,4] [5,6] [6,7]

Similarity search	
n To retrieve graphs similar to a query
 Q=(A,C), the tree is traversed in the top-
 down manner.

A	 C	

A	 C	 A	 C	

≦4	 >4	
[1,4]

[1,8]
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

Aleft 1 3 2 1 2 4 Aright 6 8 5 7 7 5
[5,8]

Similarity search	
n  To retrieve graphs similar to a query Q=(A,C), the tree

is traversed in a top-down manner.

n Observation
l  To perform top-down traversal, only intervals

of words in each node are necessary

A [1,4]	 C [8,10]	

A [1,2]	C [4,5]	 A[1,2]	 C[5,5]	

≦4	 >4	

Aroot 1 3 6 8 2 5 7 1 2 7 4 5

Aleft 1 3 2 1 2 4 Aright 6 8 5 7 7 5

Similarity search	
n Replace restricted inverted index Av in

each node v with a bit array bv.
l  bv[i]=1 if Av[i] goes to the right child

broot	 0	0	1	1	 0	1	1	 0	0	1	 0	 1	
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

bleft	 0	1	0	0	 0	1	
Aleft 1 3 2 1 2 4

bright	 0	1	0	1	 1	0	
Aright 6 8 5 7 7 5

1	0	

Similarity search	
n  Intervals of child nodes can be computed by

rank operations
l  sleft(v),j=rank0(bv,svj-1)+1,tleft(v),j=rank0(bv,tvj)
l  sright(v),j =rank1(bv,svj-1)+1,tright(v),j=rank1(bv,tvj)

broot	 0	0	1	1	 0	1	1	 0	0	1	 0	 1	
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

bleft	 0	1	0	0	 0	1	
Aleft 1 3 2 1 2 4

bright	 0	1	0	1	 1	0	
Aright 6 8 5 7 7 5

C [8,10]	

C [4,5]	 C [5,5]	

rank0(broot,8-1)+1=4,
rank0(broot,10)=5	

rank1(broot,8-1)+1=5,
rank1(broot,10)=5	

Ex)

Wavelet Tree	

0 0 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 1 1 0 0

A	 B	 C	 D	

n Wavelet tree can be obtained to replace the restricted
Inverted indices with bit arrays
n Wavelet tree consists of bit arrays bv and initial
intervals Croot.

Croot	

Wavelet Tree	

0 0 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 1 1 0 0

A	 B	 C	 D	

0	 1	

0	 1	 0	 1	

0	 1	 0	 1	 0	 1	 0	 1	
000 001 010 011 100 101 110 111

n Graph ids can be recovered from bit strings
 on the path from the root to leaves	

Croot	

Memory	

n  (1+α)Nlogn + MlogN bits

l  N: the number of all words in the database
l  n: the number of graphs
l  α: overhead for rank dictionary (α=0.6)

n  For inverted index, Nlogn bits
n  About 60% overhead to inverted index!!

Bit arrays bv	 Initial intervals Croot	

Experiments	

n 25 million chemical compounds from
PubChem database

n Use search time and memory as
evaluation measures

n Compare our method gWT to
l  inverted index
l  sequential scan implemented in G-Hash

(Wang et al, 2009)	

Search time on 25 million graphs	

40 sec	
38 sec	

8 sec	
3 sec	
2 sec	

Memory usage	

Overhead of rank dictionary	

Construction time	

Related work	
•  A lot of methods have been proposed so far.
 1.gIndex [Yan et al., 04]
 2.Graph Grep [Shasha et al., 07]
 3.Tree+Delta [Zhao et al., 07]
 4.TreePi [Zhang et al., 07]
 5.Gstring [Jiang et al., 07]
 6.FG-Index [Cheng et al., 07]
 7.GDIndex [Williams et al., 07]
 etc 	

Related work 	
•  Decompose graphs
 into a set of
 substructures
 - subgraphs, trees,

paths etc
•  Build a substructure-
 based index

…	
Decompose	

Index	

Drawbacks	

•  Require frequent subgraph mining
•  Do not scale to millions of graphs

Summary	
n Efficient similarity search method for

massive graph databases
n Solve semi-conjunctive query efficiently
n Built on wavelet trees
n Use Weisfeiler-Lehman procedure to

convert graphs into bag-of-words
n Applicable to more than 20 million graphs
n Software
 http://code.google.com/p/gwt/

Acknowledgements	

•  Prof. Shin-ichi Minato (Hokkaido Univ.)
•  Dr. Daisuke Okanohara (PFI)
•  Members in ERATO Minato Project	

