March 30, 2011, The 5th International Workshop on Data-Mining and Statistical Science@Osaka University

Kernel-based Similarity Search in Massive Graph Databases with Wavelet Trees

Yasuo Tabei (JST ERATO Minato Project) Joint work with Koji Tsuda (AIST)

Outline

Introduction

- Recent development of graph databases
- Needs for graph similarity search
- Bag-of-words representation of a graph
- Semi-conjunctive query
- Method
 - Scalable similarity search with wavelet trees
- Experiments
 - Use a large-scale graph dataset
 - 25 million chemical compounds

Graphs are everywhere

Gene co-expression network

RNA 2D structure

Social Network

Chemical compound

Graph Similarity Search

- Retrieve graphs similar to the query
- Large databases
 - More than 20 million chemical compounds in PubChem database
- Bag-of-words representation of graphs
 - WL procedure (NIPS 2009)
- Why not use document retrieval methods?
 - Inverted index
 - Not that easy (explained later)

Weisfeiler-Lehman Procedure (NIPS,09) Convert a graph into a set of words (bag-of-words) i) Make a label set of adjacent vertices ex) {E,A,D} ii) Sort ex) A, D, E B iii) Add the vertex label as a prefix ex) B,A,D,E iv) Map the label sequence to a unique value Ε R ex) B,A,D,E \rightarrow R Assign the value as the new **Bag-of-words** vertex label {A,B,D,E,...,R,...}

Search by cosine similarity

Identify all graphs in the database whose cosine is larger than a threshold 1-ε

$$W_i \quad s.t \quad K_N(W_i, Q) = \frac{|W_i \cap Q|}{\sqrt{|W_i|}\sqrt{|Q|}} \ge 1 - \varepsilon$$

W_i, Q: bag-of-words of graphs
 The above solution can be relaxed as follows,

If $K_N(Q,W) \ge 1-\varepsilon$, then

$$(1-\varepsilon)^2 |Q| \le |W| \le \frac{|Q|}{(1-\varepsilon)^2}$$

Can be used for fast search

Semi-conjunctive query Cosine query can be relaxed to the following form

$$W_i \quad s.t \quad | W_i \cap Q | \ge k$$

- The number of common words between two bag-of-words W_i and Q
 Ex) |W_i ∩ Q|=|(A,C,E,F,H) ∩ (A,E,I,J,L)| =|(A,E)|=2
- $k=(1-\epsilon)^2|Q|$
- No false negatives

False positives can easily be filtered out by cosine calculations

Inverted index

In natural language processing, inverted index has been used to solve semiconjunctive query

Inverted	Index	
Word	Graph ids	ASSC
Α	2,8,13,15	• kev
В	4,9,13	
С	8,10,16	value
D	1,3,11	
E	4,9,13,14	

Associative map

key ⇔word

 value⇔graph identifiers including a word

Bottom-up search

Inverted Index

Word	Graph ids
Α	2,8,13,15
В	4,9,13
С	8,10,16
D	1,3,11
E	4,9,13,14

Query:(A,C,E)

-Aggregation

i) Look the index up with query bag-of-words ii) Aggregate all the lists of graph indices iii) Sort iv)Scan

(2,4,<u>8,8</u>,9,10,<u>13,13</u>,14,15,16)

(2,8,13,15,8,10,16,4,9,13,14)

-Sort

k=2

Search time of inverted index on 25 million graphs

Search time of inverted index is not so different from that of sequencial scan

Why?

	Each word is not
Query:(A,C,E)	specific enough
Aggregation	Query contains 1000s
(2,8,13,15,8,10,16,4,9,13,14)	of words
Sort	Aggregated array is
(2,4,8,8,9,10,13,13,14,15,16)	VERY long
	Sorting takes O(ClogC)
C	in time

Overview of our method

- Top-down search in a tree over the series of graphs
- Huge memory, if tree is implemented with pointers
- Wavelet Tree: Succinct data structure
- The smaller the similarity threshold is, the quicker the algorithm finishes
 - Not the case in inverted index

Binary tree over graphs

- leaf ⇔ graph
- node ⇔ interval
- Each node is identified by a bit string (v={01})
- At the leaves, the graph indices correspond to int(v)+1

(e.g., int(010)+1=2+1=3)

Summarization of bag-of-words

- Represent bag-of-words as a bit array 1 2 3 4 5 6 7 8 Ex) W_i=(1,3,4,7,8) x_i=(1,0,1,1,0,0,1,1)
- Take disjunction V of all bit arrays in the interval of a node v

Ex) For an interval [1,4] $X_1 = (0,1,0,0,0,0,1,0)$ $X_2 = (1,0,1,1,0,0,0,0)$ $X_3 = (1,0,0,0,0,0,0,1,1)$ $X_4 = (1,0,0,0,0,0,0,0,1)$ $y_v = x_1 \lor x_2 \lor x_3 \lor x_4$ = (1,1,1,1,0,0,1,1)

Binary tree over graphs

Assign to each node v a bit arrays y_v

- y_v : bit array
 - i-th bit is 1 if graphs in an interval have the corresponding word.

Top-down traversal

- Q: bag-of-words of a query
- Perform top-down traversal
- Prune the search space if ∑_{j∈Q} y_v[j] ≤ k
 The larger k is, the smaller the search

space is

Huge Memory

Time is O(Tm) : Very fast

- T: the number of traversed node
- m: the number of bag-of-words in a query

Space is O(Mnlogn) bit

- M: the number of unique words
- n: the number of graphs

Wavelet Tree! (SODA,03)

- Replace y_v in each node v by a rank dictionary
 - explained in next slides
- Implement a tree without using pointers
- Only 60% memory overhead compared to the inverted index (Vigna,08)
- Access to the summary information in any internal node

Rank dictionary (Raman,02)

Give bit array B[1,n] the following operation:

• $rank_c(B,i)$: return the number of $c \in \{0,1\}$ in B[1...i]

```
Ex) B=0110011100

i 1 2 3 4 5 6 7 8 9 10

rank<sub>1</sub>(B,8)=5 0 1 1 0 0 1 1 1 0 0

rank<sub>0</sub>(B,5)=3 0 1 1 0 0 1 1 1 0 0
```

Implementation of rank dictionary

Divide the bit array B into large blocks of length *l*=log²n R₁=Ranks of large blocks Divide each large block to small blocks of length s=logn/2 R_s=Ranks of small blocks relative to the large block

> $rank_1(B,i)=R_L[i/\ell]+R_s[i/s]+(remaining rank)$ Time:O(1) Memory: n +o(n) bits

Restricted inverted index

Inverted Index						
Word	Graph ids					
A	1,3,6,8					
В	2,5,7					
С	1,2,7					
D	4,5					

Concatenate graph ids for words in the root
Restrict the inverted index for the interval [s_v,t_v] of a node v

To retrieve graphs similar to a query Q=(A,C), the tree is traversed in the topdown manner.

To retrieve graphs similar to a query Q=(A,C), the tree is traversed in a top-down manner.

Observation

• To perform top-down traversal, only intervals of words in each node are necessary

Replace restricted inverted index Av in each node v with a bit array bv.

bv[i]=1 if Av[i] goes to the right child

- Intervals of child nodes can be computed by rank operations
- $s_{left(v),j} = rank_0(bv,s_{vj}-1)+1, t_{left(v),j} = rank_0(bv,t_{vj})$
- Sright(v),j = rank₁(bv,s_{vj}-1)+1,t_{right(v),j}=rank₁(bv,t_{vj}) Ex)

							1					
broot	0	0	1	1	0	1	1	0	0	1	0	1
Aroot	1	3	6	8	2	5	7	1	2	7	4	5

Wavelet Tree

Wavelet tree can be obtained to replace the restricted Inverted indices with bit arrays

Wavelet tree consists of bit arrays by and initial intervals Croot.

Wavelet Tree

Graph ids can be recovered from bit strings on the path from the root to leaves

Memory

(1+α)Nlogn + MlogN bits

Bit arrays bv Initial intervals Croot

- N: the number of all words in the database
- n: the number of graphs
- α: overhead for rank dictionary (α=0.6)
- For inverted index, Nlogn bits
- About 60% overhead to inverted index!!

Experiments

- 25 million chemical compounds from PubChem database
- Use search time and memory as evaluation measures
- Compare our method gWT to
 - inverted index
 - sequential scan implemented in G-Hash (Wang et al, 2009)

Search time on 25 million graphs

Memory usage

Overhead of rank dictionary

Construction time

Related work

- A lot of methods have been proposed so far.
 - 1.glndex [Yan et al., 04]
 - 2.Graph Grep [Shasha et al., 07]
 - 3.Tree+Delta [Zhao et al., 07]
 - 4.TreePi [Zhang et al., 07]
 - 5.Gstring [Jiang et al., 07]
 - 6.FG-Index [Cheng et al., 07]
 - 7.GDIndex [Williams et al., 07]

etc

Related work

- Decompose graphs into a set of substructures
 - subgraphs, trees, paths etc
- Build a substructurebased index

Drawbacks

- Require frequent subgraph mining
- Do not scale to millions of graphs

Summary

- Efficient similarity search method for massive graph databases
- Solve semi-conjunctive query efficiently
- Built on wavelet trees
- Use Weisfeiler-Lehman procedure to convert graphs into bag-of-words
- Applicable to more than 20 million graphs
- Software
 - http://code.google.com/p/gwt/

Acknowledgements

- Prof. Shin-ichi Minato (Hokkaido Univ.)
- Dr. Daisuke Okanohara (PFI)
- Members in ERATO Minato Project