
© 2019 IBM Corporation

Graph generation using a graph grammar

Hiroshi Kajino

IBM Research - Tokyo

IBIS 2019



© 2019 IBM Corporation/52

I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE

2

Contents



© 2019 IBM Corporation/52

A molecular graph should satisfy some constraints to be valid

§Learning a generative model of a molecular graph
–Input: set of molecular graphs ! = {$%, $', … , $)}

–Output: probability distribution +($) such that $. ∼ +

§Hard vs. soft constraints on +($)’s support
–Hard constraint: valence condition

∃ rule-based classifier that judges this constraint

–Soft constraint: stability
∄ rule-based classifier, in general

3

Why should we care about a formal language?

!"

Formal language 
can help



© 2019 IBM Corporation/52

A formal language defines a set of strings with certain properties;
an associated grammar tells us how to generate them

§Formal language
Typically defined as a set of strings

–Language point of view
= a set of strings with certain properties

(= a subset of all possible strings)

–Generative point of view
A grammar is often associated with a language

= how to generate strings in ℒ

4

Why should we care about a formal language?

All possible strings Σ∗

Language ℒ

Grammar 5

ℒ = 6.7. ∶ 9 ≥ 1 ⊂ 6, 7 ∗ = Σ∗

5 = = , 6, 7 , =, = → 67, = → 6=7



© 2019 IBM Corporation/52

A formal language defines a set of graphs satisfying hard constraints;
an associated grammar tells us how to generate them

§Formal language
Typically defined as a set of graphs

–Language point of view
= a set of graphs satisfying the hard constraints

(= a subset of all possible graphs)

–Generative point of view
A grammar is often associated with a language

= how to generate graphs in ℒ

5

Why should we care about a formal language?

All possible graphs Σ∗

Language ℒ

Grammar 5

ℒ = Molecules satisfying
the valence conditions

⊂ {All possible graphs}

???



© 2019 IBM Corporation/52

I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE

6

Contents



© 2019 IBM Corporation/52

CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol

7

Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

=



© 2019 IBM Corporation/52

CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol

8

Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

=



© 2019 IBM Corporation/52

CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol

9

Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

6=7



© 2019 IBM Corporation/52

CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol

10

Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

6=7



© 2019 IBM Corporation/52

CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol

11

Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

66=77



© 2019 IBM Corporation/52

CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol

12

Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

66=77



© 2019 IBM Corporation/52

CFG generates a string by repeatedly applying a production rule to a 
non-terminal, until there exists no non-terminal

§Context-free grammar 5 = (T, Σ, U, =)

– T: set of non-terminals

– Σ: set of terminals
– U: set of production rules

– = ∈ T: the start symbol

13

Context-free grammar

§ Example
– T = {=}

– Σ = 6, 7

– U = {= → 67, = → 6=7}

– =

666777



© 2019 IBM Corporation/52

I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE

14

Contents



© 2019 IBM Corporation/52

Hypergraph is a generalization of a graph

§Hypergraph W = (T, X) consists of…
–Node Y ∈ T

–Hyperedge Z ∈ X ⊆ 2 ] : Connect an arbitrary number of nodes
cf, An edge in a graph connects exactly two nodes

15

Hyperedge replacement grammar

HyperedgeNode



© 2019 IBM Corporation/52

HRG generates a hypergraph by repeatedly replacing 
non-terminal hyperedges with hypergraphs

§Hyperedge replacement grammar (HRG) 5 = (T, Σ, U, =)

–T: set of non-terminals

–Σ: set of terminals
–=: start symbol

–U: set of production rules
– A rule replaces a non-terminal hyperedge with a hypergraph

16

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Labels on hyperedges
C
N

S

[Feder, 71], [Pavlidis+, 72]



© 2019 IBM Corporation/52

Start from start symbol S

17

Hyperedge replacement grammar

S

1C

2

H

H1N

2

N

N

NS

Production rules ^



© 2019 IBM Corporation/52

The left rule is applicable

18

Hyperedge replacement grammar

S

1C

2

H

H1N

2

N

N

NS

Production rules ^



© 2019 IBM Corporation/52

We obtain a hypergraph with three non-terminals

19

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Production rules ^

N

N

N



© 2019 IBM Corporation/52

Apply the right rule to one of the non-terminals

20

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Production rules ^

N

N

N



© 2019 IBM Corporation/52

Two non-terminals remain

21

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Production rules ^

C

N

N

H

H



© 2019 IBM Corporation/52

Repeat the procedure until there is no non-terminal

22

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Production rules ^

C

N

N

H

H



© 2019 IBM Corporation/52

Repeat the procedure until there is no non-terminal

23

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Production rules ^

C

C

N

H

H

H

H



© 2019 IBM Corporation/52

Repeat the procedure until there is no non-terminal

24

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Production rules ^

C

C

N

H

H

H

H



© 2019 IBM Corporation/52

Graph generation halts when there is no non-terminal

25

Hyperedge replacement grammar

1C

2

H

H1N

2

N

N

NS

Production rules ^

C

C

C

H

H

H

H

H

H



© 2019 IBM Corporation/52

I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE

26

Contents



© 2019 IBM Corporation/52

HRG inference algorithm outputs HRG that can reconstruct the input

§HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs ℋ

–Output: HRG such that ℋ ⊆ ℒ(HRG)
Minimum requirement of the grammar’s expressiveness

–Idea: Infer production rules necessary to obtain each hypergraph
Decompose each hypergraph into a set of production rules

27

HRG inference algorithm

Language of the grammar



© 2019 IBM Corporation/52

Tree decomposition discovers a tree-like structure in a graph

§Tree decomposition
–All the nodes and edges must be included in the tree

–For each node, the tree nodes that contain it must be connected

28

HRG inference algorithm

* Digits represent the node correspondence

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

C C H

HH

H

C C

H

HH

H



© 2019 IBM Corporation/52

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

29

HRG inference algorithm

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

C C H

HH

H

C C

H

HH

H



© 2019 IBM Corporation/52

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

31

HRG inference algorithm

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

1C
4

H

H 1

4 N

1

3

4
1

4 N

Production rule
=

attach



© 2019 IBM Corporation/52

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

32

HRG inference algorithm

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

1C
4

H

H 1

4 N

1

3

4
1

4 N

Production rule
=

attach

Children



© 2019 IBM Corporation/52

Tree decomposition and (a syntax tree of) HRG are equivalent

§Relationship between tree decomposition and HRG
1. Connecting hypergraphs in tree recovers the original hypergraph

2. Connection ⇔ Hyperedge replacement

33

HRG inference algorithm

1

3

2

1

3

4

3C
4

H

H

3 C
2

H

H

1C
4

H

H 1 C
2

H

H

1C
4

H

H 1

4 N

1

3

4
1

4 N

Production rule
=

attach

N
N



© 2019 IBM Corporation/52

HRG can be inferred from tree decompositions of input hypergraphs.

§HRG inference algorithm [Aguiñaga+, 16]

–Algorithm:

–Expressiveness: ℋ ⊆ ℒ(HRG)
The resultant HRG can generate all input hypergraphs.

(∵ clear from its algorithm)

34

HRG inference algorithm

1. Compute tree decompositions of input hypergraphs
2. Extract production rules
3. Compose HRG by taking their union



© 2019 IBM Corporation/52

I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE

35

Contents



© 2019 IBM Corporation/52

We want a graph grammar that guarantees hard constraints

§Objective
Construct a graph grammar that never violates the valence condition

§Application: Generative model of a molecule
–Grammar-based generation guarantees the valence condition

–Probabilistic model could learn soft constraints

36

Molecular hypergraph grammar

!"



© 2019 IBM Corporation/52

A simple application to molecular graphs doesn’t work

§A simple application to molecular graphs
–Input: Molecular graphs

–Issue: Valence conditions can be violated

37

Molecular hypergraph grammar

H C C H
H H

H H

Input

C
H

H
C

C
H

H
C

H C C C C H

Tree decomposition

→

→

→

S

NC

NC

NH C

NC C
N

N

N

N

C H

Extracted rules

This rule increases
the degree of carbon



© 2019 IBM Corporation/52

Our idea is to use a hypergraph representation of a molecule

§Conserved quantity
–HRG: # of nodes in a hyperedge

–Our grammar: # of bonds connected to each atom (valence)
∴ Atom should be modeled as a hyperedge

§Molecular hypergraph
– Atom = hyperedge

– Bond = node

38

Molecular hypergraph grammar

C C

H

H

HH

H

H

C C H

HH

H

C C

H

HH

H



© 2019 IBM Corporation/52

A language for molecular hypergraphs consists of two properties

§Molecular hypergraph as a language
A set of hypergraphs with the following properties:

1. Each node has degree 2 (=2-regular)
2. Label on a hyperedge determines # of nodes it has (= valence)

39

Molecular hypergraph grammar

H HC

H

H

C

H

H

H HC

H

C

H

H HC

H

C

H

C C

H

H

HH

H

H

C C H

HH

H

C C

H

HH

H

↔



© 2019 IBM Corporation/52

MHG, a grammar for the language, is defined as a subclass of HRG

§Molecular Hypergraph Grammar (MHG)
–Definition: HRG that generates molecular hypergraphs only

–Counterexamples: 

40

Molecular hypergraph grammar

MHG

HRG

C C

H

H

HH

H

HH

C C

H

H

HH

H

HH

Valence #

2-regularity #

This can be 
avoided by 
learning HRG from 
data [Aguiñaga+, 16]

Use an irredundant 
tree decomposition
(our contribution)



© 2019 IBM Corporation/52

I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE

41

Contents



© 2019 IBM Corporation/52

A naive application of the existing algorithm doesn’t work

§Naive application of the HRG inference algorithm [Aguiñaga+, 16]

–Input: Set of hypergraphs

–Output: HRG w/ the following properties:
• All the input hypergraphs are in the language $

• Guarantee the valence conditions $

• No guarantee on 2-regularity%

42

MHG inference algorithm

C C

H

H

HH

H

HH

This cannot be transformed
into a molecular graph



© 2019 IBM Corporation/52

Irredundant tree decomposition is a key to guarantee 2-regularity

§ Irredundant tree decomposition
–The connected subgraph induced by a node must be a path

–Any tree decomposition can be made irredundant in poly-time

43

MHG inference algorithm

1

3

2

1

3

4

3C

4

H

H

3 C

2

H

H

1C

4

H

H 1 C

2

H

H

4

RedundantIrredundant



© 2019 IBM Corporation/52

MHG inference algorithm is different from the existing one by two steps

§MHG Inference algorithm [Kajino, 19]

–Input: Set of molecular graphs

–Output: MHG w/ the following properties:
• All the input hypergraphs are in the language $

• Guarantee the valence conditions $

• Guarantee 2-regularity &

44

MHG inference algorithm

1. Convert molecular graphs into molecular hypergraphs
2. Compute tree decompositions of molecular hypergraphs
3. Convert each tree decomposition to be irredundant
4. Extract production rules
5. Compose MHG by taking their union

Thanks to HRG

Our contribution



© 2019 IBM Corporation/52

I will talk about an application of formal language to a graph generation 
problem

§Formal language
–Context-free grammar

–Hyperedge replacement grammar (HRG)
–HRG inference algorithm

§Application to molecular graph generation
–Molecular hypergraph grammar (a special case of HRG)

–MHG inference algorithm

–Combination with VAE

45

Contents



© 2019 IBM Corporation/52

We obtain (Enc, Dec) between molecule and latent vector 
by combining MHG and RNN-VAE

§MHG-VAE: (Enc, Dec) between molecule & latent vector

46

Combination with VAE

Enc
G

Enc
N

Enc
H

Molecular
graph

Molecular
hypergraph

Parse Tree
according to MHG

! ∈ ℝ$

Latent vector

MHG-VAE encoder

MHG Enc of RNN-VAE



© 2019 IBM Corporation/52

First, we learn (Enc, Dec) between a molecule and its vector 
representation using MHG-VAE

§Global molecular optimization [Gómez-Bombarelli+, 16]

–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations f. ∈ ℝh .i%
)

1. Some of which have target values {j. ∈ ℝ}

4. BO gives us candidates fk ∈ ℝh ki%
l that may maximize the target

5. Decode them to obtain molecules !k ki%
l

47

Combination with VAE

Image from [Gómez-Bombarelli+, 16]



© 2019 IBM Corporation/52

Given vector representations and their target values,
we use BO to obtain a vector that optimizes the target

§Global molecular optimization [Gómez-Bombarelli+, 16]

–Find: Molecule that maximizes the target

–Method: VAE+BO
1. Obtain MHG from the input molecules

2. Train RNN-VAE on syntax trees

3. Obtain vector representations f. ∈ ℝh .i%
)

1. Some of which have target values {j. ∈ ℝ}

4. BO gives us candidates fk ∈ ℝh ki%
l that may maximize the target

5. Decode them to obtain molecules !k ki%
l

48

Combination with VAE

Image from [Gómez-Bombarelli+, 16]



© 2019 IBM Corporation/52

We evaluate the benefit of our grammar-based representation, 
compared with existing ones

§Empirical study
–Purpose: How much does our representation facilitate VAE training?

–Baselines:
• {C,G,SD}VAE use SMILES (text repr.)

• JT-VAE assembles molecular components
– It requires NNs other than VAE for scoring

–Tasks:
• VAE reconstruction

• Valid prior ratio

• Global molecular optimization

49

Combination with VAE

Image from [Jin+, 18]



© 2019 IBM Corporation/52

Our grammar-based representation achieves better scores.
This result empirically supports the effectiveness of our approach.

§Result

50

Combination with VAE

Synthetic accessibility score

Penalty to a ring larger than six

Water solubility

Maximizing m(n)



© 2019 IBM Corporation/52

A graph grammar can be a building block for a graph generative model

§Classify constraints into hard ones and soft ones
ML for the soft ones, rules for the hard ones

§Define a language by encoding hard constraints
E.g., valence conditions

§Design a grammar for the language
Sometime, w/ an inference algorithm

Code is now public on Github
https://github.com/ibm-research-tokyo/graph_grammar

51

Takeaways



© 2019 IBM Corporation/52

[Aguiñaga+, 16] Aguiñaga, S., Palacios, R., Chiang, D., and Weninger, T.: Growing graphs from hyperedge 
replacement graph grammars. In Proceedings of the 25th ACM International on Conference on Information and 
Knowledge Management, pp. 469–478, 2016.

[Feder, 71] Feder, J: Plex languages. Information Sciences, 3, pp. 225-241, 1971.

[Gómez-Bombarelli+, 16] Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-
Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik, A.: Automatic 
chemical design using a data-driven continuous representation of molecules. ACS Central Science, 2018. (ArXiv ver. 
appears in 2016)

[Jin+, 18] Jin, W., Barzilay, R., and Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. 
In Proceedings of the Thirty-fifth International Conference on Machine Learning, 2018.

[Kajino, 19] Kajino, H.: Molecular hypergraph grammar with its application to molecular optimization. In Proceedings of 
the Thirty-sixth International Conference on Machine Learning, 2019.

[Pavlidis, 72] Pavlidis, T.: Linear and context-free graph grammars. Journal of the ACM, 19(1), pp.11-23, 1972.

[You+, 18] You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J.: Graph convolutional policy network for goal-directed 
molecular graph generation. In Advances in Neural Information Processing Systems 31, pp. 6412–6422, 2018.

.
52

References


