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Stochastic multi-armed bandits

Sources of i.i.d. R-valued observations:

ν1 ν2 . . . νA−1 νA

Game: At each round t ∈ N,
I Choose index At ∈ {1, . . . ,A}
I Receive one sample Yt ∼ νAt , called the reward.

Goal : maximize sum of collected rewards
∑

t=1 Yt over time, in
expectation.

Sources are unknown.

I The environment does not reveal the rewards of the other
arms.
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Stochastic multi-armed bandits setup

I Let µ? = maxa∈A µa, where µa ∈ R denotes the mean of νa.
I Let A?(ν) = Argmaxa∈Aµa be the set of optimal arms.

Regret minimization
The regret captures the sub-optimality of our strategy w.r.t. an
optimal one:

RT
def= Tµ? − E

[ T∑
t=1

Yt

]
=
∑
a∈A

µ? − µa︸ ︷︷ ︸
∆a

E
[

Na(T )
]
.

where Na(T ) =
T∑

t=1
IAt =a .

I E summarizes any possible source of randomness.
I Regret grows with T : we target o(T ) regret.

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 6



Stochastic multi-armed bandits setup

The sampling strategy (or bandit algorithm) (At) is sequential:
At+1 = π(A1,Y1, . . . ,At ,Yt︸ ︷︷ ︸

past history

).

I Terminology: π is the policy or pulling strategy.
It may depend on past history, and be randomized.

I ”i.i.d. Stochastic bandit”
I independence between arms,
I independence between observations of each arm (product

measures),
I stationarity (invariance by a time shift).
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The learner

History at the end of round t: Ht = (A1,Y1, . . . ,At ,Yt).
I Learner may use Ht to base its action At+1 on in round t + 1.
I Learner uses a ”policy”: a map π of all possible histories H

to actions A.
I The learner is also allowed to randomize : π : H → P(A),

where P(A) denotes probability measures over the set A.
I The learner may or not know the number of interaction steps

with the environment.
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Why do we care?

Basic model (first approximation) for:
I Clinical trials: (Thompson, 1933)

:

I Casino slot machines: (Robbins, 1952)

:

I Ad-placement: (Nowadays...)

:
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Example of rewards

I Yt = 1 if user clicks on displayed add/link/news, 0 else.
I Yt = time spent before closing a video-add.
I Yt = health status of a patient.
I . . .

Design of rewards is not easy in general, and may greatly affect the
behavior of an optimal agent.
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Why do we care?

Building bloc for many challenging problems (+10k papers):
I Which post from your friends to show you on Facebook?

(Recommender system)

I What move should be considered next when playing chess/go?
(Planning)

I In which order should results from a search engine be
presented to you? (Ranking)

I Which parameter best calibrate this microscope?
(Optimization)

I What is shortest route to deliver this message? (Packet
routing)
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Why do we care?

Future(?) applications:
I Plant-health care:

:

I Ground-health care:

:
I Bio-diversity/Bio-equilibrium care:

:

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 12



Why do we care?

Future(?) applications:
I Plant-health care:

:
I Ground-health care:

:

I Bio-diversity/Bio-equilibrium care:

:

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 12



Why do we care?

Future(?) applications:
I Plant-health care:

:
I Ground-health care:

:
I Bio-diversity/Bio-equilibrium care:

:

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 12



A simple strategy: ”Follow the leader”

I Empirical counts: ∀a ∈ A, Na(t) =
∑t

t′=1 I{At′ = a}
I Empirical means: ∀a ∈ A, µ̃a,t = 1

Na(t)
∑t

t′=1 Yt′I{At′ = a}

Play At ∈ Argmaxa∈A µ̃a,t

I Let τa,n = min{t > 1 : Na(t) = n}, Xa,n = Yτa,n , then

µ̃a,t = µ̂a,Na(t) where µ̂a,n = 1
n

n∑
m=1

Xa,m
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Regret on a [B(0.2),B(0.4),B(0.6)]-bandit
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Regret on a [B(0.2),B(0.4),B(0.6)]-bandit
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A better strategy

We want to play: Argmax{µa, a ∈ A} but µa is unknown.

µa = µ̃a,t + (µa − µ̃a,t)︸ ︷︷ ︸
error term

.

Idea
Bound the error term and play a penalized strategy instead.
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Towards a better strategy: Simple tools

Lemma (Hoeffding’s inequality)
For n i.i.d. random variables Xi ∈ [0, 1] with mean µ, we have

P
(1

n

n∑
i=1

Xi − µ >

√
ln(1/δ)

2n

)
6 δ

P
(
µ− 1

n

n∑
i=1

Xi >

√
ln(1/δ)

2n

)
6 δ .
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UCB strategy

The Upper Confidence Bound algorithm (Auer et al. 2002)
Choose At+1 = Argmax{µ+

a,t , a ∈ A} where

µ+
a,t = µ̃a,t +

√
ln(1/δt)
2Na(t) with µ̃a,t = 1

Na(t)

Na(t)∑
i=1

Xi ,a .

I Choice δt = t−2(t + 1)−1 gives for each a ∈ A, t > A,

P
(
µa − µ̃a,t >

√
ln(1/δt)
2Na(t)

)
6

1
t(t + 1) .

I ”Optimistic strategy”
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The Upper–Confidence Bound (UCB) Algorithm
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Regret of UCB for a [B(0.2),B(0.4),B(0.6)]-bandit
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Regret of FTL for a [B(0.2),B(0.4),B(0.6)]-bandit

0 200 400 600 800 1000
Cumulative regrets

0

20

40

60

80

100

120

140
Cu

m
ul

at
iv

e 
re

gr
et

 m
ea

n

Results averaged over 200 runs.

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 20



Regret of UCB for a [B(0.2),B(0.4),B(0.6)]-bandit
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Regret of FTL for a [B(0.2),B(0.4),B(0.6)]-bandit
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The Exploration-Exploitation dilemma

µ+
a,t = µ̃a,t +

√
ln(1/δt)
2Na(t) .

Exploitation: ”Follow current knowledge”
Choose arm with highest empirical mean: µ̃a,t

Exploration: Maximally improve current knowledge
Choose least known arm: arm with smallest Na(t).
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The Upper Confidence Bound (UCB) strategy

Assume rewards generated by ν are bounded in [0, 1].

Theorem (Distribution-dependent regret bounds for UCB)
In the stochastic multi-armed bandit game, the UCB strategy with
δt = t−2(t + 1)−1 satisfies the following performance bound.

Rν(T ,UCB) 6
∑

a;∆a>0

[ 6
∆a

ln(T ) + 3∆a

]

Scaling in
∑

a;∆a>0

ln(T )
∆a
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Lower performance bounds
Definition (Uniformly good strategy)
A strategy is uniformly good on D if for any stochastic bandit
ν = (νa)a∈A ∈ D,

a /∈ A?(ν) =⇒ ∀α ∈ (0, 1) Eν [Na(T )] = o(Tα) .

Theorem (Lai & Robbins, 1985)
Any uniformly good strategy on the set of Bernoulli bandit
ν = (B(θ1), . . . ,B(θA)) with means θa < 1 must satisfy:

a /∈ A?(ν) =⇒ lim inf
T→∞

E[Na(T )]
ln(T ) >

1
KL(θa, θ?) .

Thus lim inf
T→∞

RT (θ, π)
ln(T ) >

∑
a:∆a>0

µ? − µa
KL(θa, θ?) .

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 25



Change of measure

I Let a = (at′)t′6t be a deterministic sequence of actions.
I For ν = (νa)a∈A, form νa = ⊗t

t′=1νat′ on X t .
I Consider the random variable Y = (Yt′)t′6n in X t .

ln
(d ν̃a

dνa
(Y )

)
=
∑

a′∈A

t∑
t′=1

ln
(d ν̃a′

dνa′
(Yt′)

)
I{at′ = a′} .

In particular,

I ∀a′∈A\{a}, ν̃a′=νa′ =⇒ ln
(d ν̃a

dνa
(Y )

)
=

Na(t)∑
i=1

ln
(d ν̃a

dνa
(Xa,i )

)
I Eν̃

[
ln
(d ν̃a

dνa
(Y )

)]
=
∑
a∈A

Na(t)KL(ν̃a, νa)
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Sketch of proof

I Most confusing environment:
For a /∈ A?(ν), find ν̃ such that a = A?(ν̃).

I Change of measure / Likelihood ratio.
I Asymptotic Maximal Hoeffding inequality.

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 27



1. Reduction

E[Na(T )]
ln(T ) > cPν(Na(T ) > c ln(T )) (Markov inequality)

Study Ω = {NT (a) < c ln(T )}. Show that Pν(Ω)→ 0 with T .

2. Confusing instance

Let ν̃ = (θ̃1, . . . , θ̃A) be a maximally confusing instance
for a/∈ A?(ν){
θ̃a′ = θa′ if a′ 6= a
θ̃a = λ where λ > µ? (hence a ∈ A?(ν̃))



3. (Bernoulli) log-Likelihood threshold

Let E = {LNa(T ) 6 (1− α) ln(T )}

where Lm =
m∑

j=1
ln
(dνθa

dνλ
(Xa,j)

)
with dνθ(x) = θx (1−θ)1−x .

Pν(Ω ∩ E) = Eν
(

e
ln
(

dν
dν̃ (Y )

)
I{Ω ∩ E}

)
6 T 1−αPν̃(Ω ∩ E) (Change of measure)

Pν(Ω ∩ E) 6 T 1−αPν̃(
∑
a′ 6=a

Na′(T ) > T−c ln(T )) (
∑
a′

Na′(T )=T )

6 T 1−α
∑

a′ 6=a Eν̃ [Na′(T )]
T − c ln(T ) (Markov inequality)

= o(1) (Consistency for ν̃)



4. (Maximal) concentration inequality

Pν(Ω ∩ Ec) 6 Pν
(
∃m<c ln(T ) :

m∑
j=1

ln
(dνθa (Xa,j)

dνλ(Xa,j)

)
︸ ︷︷ ︸

Zj

>(1−α)ln(T )
)
.

= Pν
(maxm<c ln(T )

∑m
j=1 Zj

c ln(T ) >
1− α

ckl(θa, λ) kl(θa, λ)︸ ︷︷ ︸
Eθ[Zj ]

)

Lemma (Asymptotic maximal Hoeffding inequality)
For any i.i.d. bounded Zj with positive mean µ,

∀η > 0, lim
n→∞

Pν
(maxm<n

∑m
j=1 Zj

n > (1 + η)µ
)

= 0.

=⇒ e.g. c = 1− 2α
kl(θa, λ) to conclude.



Alternative proof

We make use of the fundamental lemma for change of measure:

(Kaufmann, PhD), (Garivier et al. 2016), (Wald 1945)
For a (random) sequence generated by a sequential sampling policy,

KL(νa, ν̃a) =
∑

a′∈A
Eν [Na′(T )]KL(νa′ , ν̃a′) > sup

Ω
kl(Pν [Ω],Pν̃ [Ω]) .

where kl(x , y) = KL(B(x),B(y)).

Hence ∀a /∈ A?(ν)

Eν [Na(T )] > sup
Ω,ν̃

kl(Pν [Ω],Pν̃ [Ω])−
∑

a′ 6=aKL(νa′ , ν̃a′)Eθ[Na′(T )]
KL(νa, ν̃a) .
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Eν [Na(T )] > sup
Ω,ν̃

kl(Pν [Ω],Pν̃ [Ω])−
∑

a′ 6=aKL(νa′ , ν̃a′)Eθ[Na′(T )]
KL(νa, ν̃a) .

Choose ν̃ such that A?(ν̃) = {a}, Ω = {Na(T ) > Tα}:
I Pν [Ω]6 Eν [Na(T )]T−α = o(1)
I kl(Pν [Ω],Pν̃ [Ω])' ln

(
1

Pν̃(NT (a)6Tα)

)
>ln

(
T−Tα∑

a′ 6=aEν̃ [NT (a′)]

)
' ln(T).

I Choose ν̃a′ for a′ 6= a : ν̃a′ = νa′ (no constraint)

lim inf
T→∞

Eν [Na(T )]
ln(T ) >

1− 0
inf ν̃a{KL(νa, ν̃a) : µ̃a>µ?(ν)}



Eν [Na(T )] > sup
Ω,ν̃

kl(Pν [Ω],Pν̃ [Ω])−
∑

a′ 6=aKL(νa′ , ν̃a′)Eθ[Na′(T )]
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Regret lower bounds

This generalizes beyond Bernoulli distributions:

Lower bound (Burnetas & Katehakis, 96)
Any uniformly good strategy on a product set D ∈ ⊗a∈ADa of
distributions (under mild assumptions) must satisfy

lim inf
T→∞

RT
ln T >

∑
a∈A

∆a
Ka(νa, µ?) , Ka(νa, µ?) = inf

ν∈Da,µν>µ?
KL(νa, ν)

I Even though the initial problem involves means only, the lower
bound depend on the full distributions.
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Historical notes on stochastic bandits and KL-ucb

1933 Thompson: Clinical trials. Thompson (1935), Wald (1945).
1952 Robbins: Formulation of MABs.
1979 Gittins : Optimal strategies as dynamic allocation indices.
1985 Lai&Robbins: Indices as upper confidence bounds.

Asymptotically optimal policies
see also Burnetas&Katehakis (1997), Agrawal (1995).

1987 Lai: The KL-ucb algorithm.
2002 Auer, Cesa-Bianchi, Fischer: First finite-time regret analysis.
2010 Honda&Takemura: Novel view on asymptotically optimal

strategies.
2011 M., Munos, Stoltz: KL-ucb finite-time analysis for discrete

distributions; Cappe&Garivier (2011): Bernoulli distributions.
2013 Cappe, Garivier, M. Munos, Stoltz: KL-ucb for dimension 1

exponential families and discrete distributions.
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A strategy inspired from lower bounds

I Lower bound not only provides limiting regret performance.
It shows that in order to be uniformly optimal on a set of
bandit configurations D, sub-optimal arms have to be pulled
some amount of time:

E[Na(T )]KL(νa, ν̃a) > ln(T ) as T →∞, when a ∈ A?(ν̃)

I KL-UCB: Consider {ν̃a : Na(t)KL(νa, ν̃a) 6 ln(t)}
I Pulling a increases Na(t) by one, thus possibly reduces this

set: try to remove the environment with largest mean reward.
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The class of KL-ucb algorithms

Use empirical distributions: ν̂a(t) = 1
Na(t)

∑t
s=1 δYs I{as =a}.

KL-ucb for a family D (generic form)
Pick arm at+1 ∈ Argmax

a∈A
Ua(t) where

Ua(t)=sup
{
µ̃a : ν̃∈Da and Na(t)KL

(
ΠD
(
ν̂a(t)

)
, ν̃
)
6 f (t)

}
.

with Operator ΠD : P(R)→ D; Non-decreasing f : N→ R

Rewriting lemma (Cappe et al., 2013)
Under mild assumption on D ⊂ P([µ−, µ+]),

Ua(t)=max
{
µ̃ ∈ [µ−, µ+) : Ka

(
ΠD (ν̂a(t)) , µ̃

)
6

f (t)
Na(t)

}
.
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a∈A
Ua(t) where

Ua(t)=sup
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µ̃a : ν̃∈Da and Na(t)KL

(
ΠD
(
ν̂a(t)

)
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)
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t
Na(t)

)}
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Rewriting lemma (Cappe et al., 2013)
Under mild assumption on D ⊂ P([µ−, µ+]),

Ua(t)=max
{
µ̃ ∈ [µ−, µ+) : Ka

(
ΠD (ν̂a(t)) , µ̃

)
6

f (t/Na(t))
Na(t)

}
.
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KL-UCB: Class of distributions

The strategy depends on the considered class D. Example of D:
I Bernoulli: νθ = B(θ)
I Standard Gaussian: νθ = N (θ, 1)
I Exponential family of dimension 1:{

νθ∈P(X ) : ∀x ∈X νθ(x)=exp
(
θx−ψ(θ)

)
ν0(x), θ∈R

}
,
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Exponential families of higher dimension

The exponential family E(F ; ν0) generated by the function F and
the reference measure ν0 on the set X is{
νθ∈P(X ) : ∀x ∈X νθ(x)=exp

(
〈θ,F (x)〉−ψ(θ)

)
ν0(x), θ∈RK

}
,

with

I Log-partition function: ψ(θ) def= ln
∫
X exp

(
〈θ,F (x)〉

)
ν0(dx)

I Canonical parameter set: ΘD
def=
{
θ∈RK :ψ(θ)<∞

}
I Invertible parameter set:

ΘI
def=
{
θ∈ΘD :0<λMIN(∇2ψ(θ))6λMAX(∇2ψ(θ))<∞

}
where λMIN(M) and λMAX(M) are the minimum and maximum
eigenvalues of a semi-definite positive matrix M.

Examples
Bernoulli (K = 1, F (x) = x), Gaussian (K = 2, F (x) = (x , x2)).
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Exponential families of higher dimension

The exponential family E(F ; ν0) generated by the function F and
the reference measure ν0 on the set X is{
νθ∈P(X ) : ∀x ∈X νθ(x)=exp

(
〈θ,F (x)〉−ψ(θ)

)
ν0(x), θ∈RK

}
,

with
I Log-partition function: ψ(θ) def= ln

∫
X exp

(
〈θ,F (x)〉

)
ν0(dx)
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Introduction

Multi-armed bandits

Regret lower-bounds

Near-optimal strategies

Boundary crossing for regret analysis
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From regret to boundary crossing probabilities

The number of pulls of a sub-optimal arm a ∈ A by Algorithm
KL-ucb satisfies

E
[
Na(T )

]
6 2 + inf

n06T

{
n0 +

T∑
n>n0+1

P
{
ν̂a,n ∈ Cµ?−ε

(
f (T )/n

)}
︸ ︷︷ ︸

Finite-time Sanov term

}

+
T−1∑
t=|A|

P
{

Na?(t) Ka?
(
ΠD(ν̂a?,Na? (t)), µ? − ε

)
> f (t)

}
︸ ︷︷ ︸

Boundary Crossing Probability

.

for any ε ∈ R+ such that ε ∈ (0,mina∈A\{a?}∆a), and introducing
the (open, convex) set

Cµ(γ) =
{
ν ′ ∈ P(R) : Ka(Πa(ν ′), µ) < γ

}
.
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From regret to boundary crossing probabilities: Goal

T−1∑
t=|A|

P
{

Na?(t) Ka?
(
ΠD(ν̂a?,Na? (t)), µ? − ε

)
> f (t/Na?(t))

}
︸ ︷︷ ︸

Goal: o(1/t)

= o(ln(T ))
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From regret to boundary crossing probabilities: Goal

P
{ t⋃

n=1
nKa?

(
ΠD(ν̂a?,n), µ? − ε

)
> f (t/n)

}
= o(1/t)
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From regret to boundary crossing probabilities: Goal

Pν
{ t⋃

n=1
nK

(
ΠD(ν̂n), E [ν]− ε

)
> f (t/n)

}
= o(1/t)
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Boundary-crossingprobabilities
A tribute to T.L. Lai



Boundary crossing probabilities

K -dimensional exponential families

Existing results

Main results
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Exponential families
Exponential family
The exponential family E(F ; ν0) generated by the function F and
the reference measure ν0 on the set X is{
νθ∈M1(X ) : ∀x ∈X νθ(x)=exp

(
〈θ,F (x)〉−ψ(θ)

)
ν0(x), θ∈RK

}
,

with
I Log-partition function: ψ(θ) def= ln

∫
X exp

(
〈θ,F (x)〉

)
ν0(dx)

I Canonical parameter set: ΘD
def=
{
θ∈RK :ψ(θ)<∞

}
I Invertible parameter set:

ΘI
def=
{
θ∈ΘD :0<λMIN(∇2ψ(θ))6λMAX(∇2ψ(θ))<∞

}
where λMIN(M) and λMAX(M) are the minimum and maximum
eigenvalues of a semi-definite positive matrix M.

Examples
Bernoulli (K = 1, F (x) = x), Gaussian (K = 2, F (x) = (x , x2)).
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Useful properties

Bregman divergence
KL(νθ, νθ′) = Bψ(θ, θ′) def= ψ(θ′)− ψ(θ)− 〈θ′ − θ,∇ψ(θ)〉 .

Bregman smoothness property

‖θ − θ′‖vΘ
2 6 Bψ(θ, θ′) 6 ‖θ − θ′‖VΘ

2
where vΘ = infθ∈Θ λMAX(∇2ψ(θ)), VΘ = supθ∈Θ λMAX(∇2ψ(θ)).

We can rewrite: K(νθ, µ) = inf{KL(νθ, νθ′) : E [νθ′ ] > µ}.
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Boundary crossing probabilities

K -dimensional exponential families

Existing results

Main results
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What was known

I Optimality of KL-UCB strategy is only known for specific
classes of distributions:
Bernoulli, Gaussian, exponential families fo dimension 1,
Discrete distributions.

I Goal: Exponential families of arbitrary dimension K > 1.
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Technicalities: large enough sets.

Estimation
F̂n = 1

n
∑n

i=1 F (Xi ) ∈ RK , then ”θ̂n = ∇ψ−1(F̂n)”.
(Assumption required, essentially regular family and θ? ∈ Θ̊I)

Enlarged parameter set
The enlargement of size ρ ∈ R+ of Θ is defined by

Θρ
def=
{
θ ∈ RK ; inf

θ′∈Θ
‖θ − θ′‖ < ρ

}
.

Further, let vρ
def= inf

θ∈Θρ
λMIN(∇2ψ(θ)), Vρ

def= sup
θ∈Θρ

λMAX(∇2ψ(θ)) .

ΘD
ΘI

Θ

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 49



Technicalities: large enough sets.

Estimation
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n
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θ ∈ RK ; inf

θ′∈Θ
‖θ − θ′‖ < ρ

}
.

Further, let vρ
def= inf

θ∈Θρ
λMIN(∇2ψ(θ)), Vρ

def= sup
θ∈Θρ

λMAX(∇2ψ(θ)) .

ΘD
ΘI

Θρ

For ρ = −/2, when F̂n∈∇ψ(Θρ),

∃θ̂n∈Θρ⊂Θ̊I ,∇ψ(θ̂n)= F̂n.
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Existing results
Theorem [Cappe et al. 2013]
For the canonical (F (x)=x) exponential family of dimension 1,

Pθ?
{ t⋃

n=1
nK
(
Π(ν̂n), µ?

)
> f
(
t
)
∩ µ?>µ̂n

}
6 edf (t) ln(t)ee−f (t) .

Use f (x) = ln(x) + 3 ln ln(x) makes the bound o(1/t).

Theorem [Lai, 1988] (exp. family of dimension K )
Define the cone Cp(θ) = {θ′ ∈ RK : 〈θ′, θ〉 > p‖θ‖‖θ′‖}, for p > 0.
Let f (x) = α ln(x) + ξ ln ln(x). Then for all θ∈Θ such that
|θ−θ?|2 > δt , where δt

t→∞→ 0, tδt
t→∞→ ∞,

Pθ?
{ t⋃

n=1
θ̂n∈Θρ ∩nBψ(θ̂n, θ)> f

( t
n
)
∩

Cone condition︷ ︸︸ ︷
∇ψ(θ̂n)−∇ψ(θ)∈Cp(θ−θ?)

}
t→∞= O

(
t−α|θ−θ?|−2α ln−ξ−α+K/2(t|θ−θ?|2)

)
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Discussion
Comparison

[Cappe et al. 2013] [Lai 1988]
• f (t) (KL-ucb) • f (t/n) (KL-ucb+)
• Dimension 1 or discrete • Dimension K .
• Finite time • Asymptotic + Cone condition
• o(1/t) requires ξ>2 and ξ>3 • o(1/t) requires ξ > K/2−1 .

[Lai, 1988]: proof based on a change of measure argument.
Takes advantage of gap between µ? and µ? − ε.
Proof written for K = 1, sketched for general K .

Goals
I remove cone condition: cone covering of the space.
I make it non asymptotic: finite-time concentration.
I fully explicit proof.
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A note about cone condition

I Already present in dimension 1:
Pθ?
{⋃t

n=1 nK
(
Π(ν̂n), µ?

)
> f
(
t
)
∩ µ?>µ̂n︸ ︷︷ ︸

Cone condition !

}
I Cones are natural objects to define partial orders on any

structure.
Cp(θ) = {θ′ ∈ RK : 〈θ′, θ〉 > p‖θ‖‖θ′‖} is a (convex, pointed,
salient) cone and induces such a partial order on RK .

I Cones are one of the most powerful geometric objects in
maths.
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Main result overview (informal statement)

Theorem (Informal)
Let f (x) = ln(x) + ξ ln ln(x). Let D be an exponential family:{

νθ : ∀x ∈X νθ(x) = exp
(
〈θ,F (x)〉−ψ(θ)

)
ν0(x), θ∈RK

}
,

with parameter function F : X → RK and reference measure ν0.
Then, under some mild condition on D, it holds ∀ε∈R+, ∀t∈N

P
{ t⋃

n=1
nK

(
ΠD(ν̂n), E [ν]−ε

)
> f (t)

}
6

C
t ln(t)K/2−ξe−c

√
f (t) ,

with c,C explicit (small) constants depending on D and ε.

We recommend in practice: ξ ' (K/2− 2c)+ or (K − 1)/2.
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Main result overview (informal statement)

Theorem (Informal)
Let f (x) = ln(x) + ξ ln ln(x). Let D be an exponential family:{

νθ : ∀x ∈X νθ(x) = exp
(
〈θ,F (x)〉−ψ(θ)

)
ν0(x), θ∈RK

}
,

with parameter function F : X → RK and reference measure ν0.
Then, under some mild condition on D, it holds ∀ε∈R+, ∀t > t0

P
{ t⋃

n=1
nK

(
Π(ν̂n), E [ν]−ε

)
> f (t/n)

}
6

C
t ln(tc)K/2−ξ−1 ,

with c,C , t0 explicit (small) constants depending on D and ε.

This suggests to tune ξ as: ξ ' (K/2− 1)+.
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Boundary crossing probabilities

K -dimensional exponential families

Existing results

Main result

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 54



Main results I
� For ε > 0, let ρε = inf{‖θ′ − θ‖ : µθ′ = µ? − ε, µθ = µ?}.
� Let Cp,η,K be the cone-covering number of ∇ψ

(
Θρ\B2(θ?, ρε)

)
with minimal angular separation p, excluding ∇ψ

(
Θρ\B2(θ?, ηρε)

)
.

Θρ ∇ψ(Θρ)

For all η<1, Cp,η,K = O((1− p)−K ), Cp,η,K
η→1→ ∞; Cp,η,1 = 2.

� Let χ = pη
√

2vρ2/Vρ and

C = Cp,η,K
(

2 max
{ 8Vρ4

pρ2v6
ρ

,
Vρ3

vρ4 ,
16Vρ5

pvρ6( 1
2 + 1

K )

}K/2
+ 1

)
.

For Bernoulli with means µ∈ [µρ, 1−µρ]: C 6 1
4µ3
ρ(1−µρ)3 +2.
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Main results

Main result for f (t)
For all ρ < ρ? and all t such that f (t) > 1 it holds

Pθ?
{ ⋃

16n<t
θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f (t)/n

}
6

C(1+ 1
χρε

)
t

(
1+ξ ln ln(t)

ln(t)

)K/2
ln(t)−ξ+K/2e−χρε

√
ln(t)+ξ ln ln(t) .

We recommend ξ > K/2−2χρε since otherwise the asymptotic
regime of χρε

√
ln(t)− (K/2−ξ) ln ln(t) may take a massive

amount of time to kick-in. In practice ξ = K/2− 1/2 is
interesting, since ln(t)K/2−ξ =

√
ln(t) < 5 for all t 6 109.
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Main result for f (t/n)

Main result for f (t/n)
For all ρ<ρ?, it holds for ξ > (K/2−1)+ and t >85χ−2,

Pθ?
{ t⋃

n=1
θ̂n∈Θρ ∩ K(Π(ν̂n), µ?−ε)> f (t/n)/n

}
6C

[
e−χρε

√
tf (4)/4+

(1+ξ)K/2

ct ln(tc)


16
3 ln(tc ln(tc)

4 )K/2−ξ+80 ln(1.25)K/2−ξ if ξ>K/2
16
3 ln( t

3 )K/2−ξ+80 ln(t c ln(tc)
4−c ln(tc) )K/2−ξ if ξ∈ [ K

2 −1, K
2 ]

]
,

where c = ρ2
εχ

2

4 ln(5)2 .
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ln(t)
)

if ξ > K
2 − 1



Practical consequences

The restriction to t >85χ−2
ε is merely for ξ'K/2−1. It is less

restrictive as ξ gets larger. For ξ>K/2, it becomes t >76χ−2
ε .

Critical value
K/2−1 (when non-negative) is a critical value for ξ: bounds on
boundary crossing probabilities are summable in t iff ξ>K/2−1.
In practice we recommend ξ to be away from K/2−1.

Adequacy with experiments
When K =1, max(K/2−1, 0)=0: sharp phase transition observed
for KL-ucb+ precisely at ξ=0: Linear regret for ξ<0 and
logarithmic regret for ξ=0.
For KL-ucb, smooth transition at ξ=0 depending on the problem.
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Boundary crossing probabilities

K -dimensional exponential families

Existing and novel results

Proof techniques
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Main ideas of the proof

I Peeling argument: sandwich N(t) ∈ [ni , ni+1), i ∈ N.
new Cone covering: to localize θ̂n outside of B2(θ?, ρε); introduce

points (θ?c )c6C and (dual) cones C(θ?c ).
I Double change of measure: 1) from θ? to θc , then 2) from θ?c

to the ball ∇ψ−1(B2(∇ψ(θ?c ), η) ∩ C(θ?c )).
I Bregman divergence and Hessian: explicit computations.

new Concentration and boundary effects: finite-time
concentration inside a cone.

3 Tight handling of peeling ratios: from ξ ' K/2 to K/2− 1.

Odalric-Ambrym Maillard - Boundary crossing probabilities October 15, 2017 - 60



Peeling and covering
Let β, η ∈ (0, 1), b > 1 and define It = dlnb(β(t + 1))e. Then

Pθ?
{ ⋃

16n6t
θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f (t/n)/n

}
6

It−1∑
i=0

C∑
c=1

Pθ?
{bi+1−1⋃

n=bi

Ec,p(n,t)︷ ︸︸ ︷
θ̂n∈Θρ ∩ F̂n∈Cp(θ?c ) ∩ Bψ(θ̂n, θ

?
c )> f (t/n)

n
}
,

where C = Cp,η,K cone covering number of ∇ψ(Θρ\B2(θ?, ρε))
with cones ∀c 6C , Cp(θ?c ) := Cp(∇ψ(θ?c ); θ?−θ?c ), θ?c /∈ B2(θ?, ηρε),

where Cp(y ; ∆)=
{

y ′∈RK : 〈y ′−y ,∆〉 > p‖y ′−y‖‖∆‖
}

:

Θρ ∇ψ(Θρ)

For all η<1, Cp,η,K = O((1− p)−K ), Cp,η,K
η→1→ ∞; Cp,η,1 = 2.
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First change of measure
Change of measure
If n→ nf (t/n) is non-decreasing, then for any increasing sequence
{ni}i>0 of non-negative integers it holds

Pθ?
{ni+1−1⋃

n=ni

Ec,p(n, t)
}
6exp

(
−niα

2−χ
√

ni f
( t

ni

))
Pθ?c
{ni+1−1⋃

n=ni

Ec,p(n, t)
}

where α = ηρε
√

vρ/2 and χ = pηρε
√

2v2
ρ/Vρ.
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Decomposition

Pθ?c
{ ⋃

ni6n<ni+1

Ec,p(n, t)
}

6 Pθ?c
{ ⋃

ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ?c )− F̂n‖ < εt,i ,c
}

+Pθ?c
{ ⋃

ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ?c )−F̂n‖ > εt,i ,c
}
.
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F̂n



Localization and second change of measure
Localization plus change of measure (first term)
For any sequence of positive values {εt,i ,c}i>0, it holds

Pθ?c
{ ⋃

ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ < εt,i ,c
}

6 βρ,K e
−f
(

t
ni+1−1

)
min

{
ρ2v2

ρ , ε̃
2
t,i ,c ,

(K + 2)v2
ρ

K (ni+1−1)Vρ

}−K/2
ε̃K

t,i ,c ,

where ε̃t,i ,c = min{εt,i ,c ,Diam
(
∇ψ(Θρ) ∩ Cp(θ?c )

)
} and

βρ,K = 2
vK
ρ

(
Vρ
vρ

)3K/2
ωp,K−2
ωp′,K−2

with p′ > max{p, 2√
5}, with

ωp,K =
∫ 1

p
√

1− z2K dz for K > 0 and wp,−1 = 1.
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Localization and second change of measure
Localization plus change of measure (first term)
For any sequence of positive values {εt,i ,c}i>0, it holds

Pθ?c
{ ⋃

ni6n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n)−∇ψ(θ?c )‖ < εt,i ,c
}

6 βρ,K e
−f
(

t
ni+1−1

)
min

{
ρ2v2

ρ , ε̃
2
t,i ,c ,

(K + 2)v2
ρ

K (ni+1−1)Vρ

}−K/2
ε̃K

t,i ,c ,

where ε̃t,i ,c = min{εt,i ,c ,Diam
(
∇ψ(Θρ) ∩ Cp(θ?c )

)
} and

βρ,K = 2
vK
ρ

(
Vρ
vρ

)3K/2
ωp,K−2
ωp′,K−2

with p′ > max{p, 2√
5}, with

ωp,K =
∫ 1

p
√

1− z2K dz for K > 0 and wp,−1 = 1.
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Concentration of measure and boundary effects

We recall that ∇ψ(θ̂n) = F̂n = 1
n
∑n

i=1 F (Xi ) ∈ RK , and that
Cp(θ?c ) = {θ∈Θ : 〈 θ?−θ?c

‖θ?−θ?c ‖
, ∇ψ(θ?c )−∇ψ(θ)
‖∇ψ(θ?c )−∇ψ(θ)‖〉 > p}.

Concentration of measure (second term)
Let εmax

c = Diam(∇ψ(Θρ∩Cp(θ?c ))). Then, for all εt,i ,c , it holds

Pθ?c
{ni+1−1⋃

n=ni

Ec,p(n, t)∩‖∇ψ(θ̂n)−∇ψ(θ?c )‖>εt,i ,c
}

6 exp
(
−

n2
i pε2

t,i ,c
2Vρ(ni+1−1)

)
I{εt,i ,c 6εc}.

Remark
Non trivial due to the boundary of the space.
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Combining the different steps

Pθ?
{ ⋃

16n6t
θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f (t/n)/n

}
6

C∑
c=1

It−1∑
i=0

exp
(
−niα

2−χ
√

ni f (t/ni )
)

︸ ︷︷ ︸
change of measure

[
exp
(
−

n2
i pε2

t,i ,c
2Vρ(ni+1−1)

)
I{εt,i ,c 6εc}︸ ︷︷ ︸

concentration

+βp,K exp
(
−f
( t

ni+1−1
))

min
{
ρ2v2

ρ , ε
2
t,i ,c ,

(K + 2)v2
ρ

K (ni+1−1)Vρ

}−K/2
εK

t,i ,c︸ ︷︷ ︸
localization + change of measure

]
,
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Boundary crossing for f (t)

� Choose εt,i ,c =
√

2Vρ(ni+1−1)f (t/(ni+1−1))
pn2

i
and ni = bi :

Pθ?
{ ⋃

16n<t
θ̂n ∈ Θρ ∩ K(Π(ν̂n), µ? − ε) > f (t)/n

}

6
C
t

It−1∑
i=0

e−α2bi−χ
√

bi f (t)︸ ︷︷ ︸
si

ln(t)K/2−ξ
(

1+ξ ln ln(t)
ln(t)

)K/2
.

� idea: Tight control of si+1
si

.
� This enables to go up to ξ & K/2− 1, instead of ξ > K/2 + 1.
� Similar (but more involved) approach for f (t/n).
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Conclusion
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Summary
Tribute to T.L. Lai
I 30 years ago: sharp understanding of boundary crossing

probabilities (Read old papers!)
I Key proof based on change of measure argument.
I Cone constraint plus sharp peeling.

Modern rewriting
I Non-asymptotic result plus more explicit/smaller constants.
I Complete proof for dimension K .
I Tricky steps: cone covering, cone-constrained concentration

inequalities.
I Guarantee for KL-ucb and KL-ucb+ for exponential families of

dimension K (out of reach of previous analyses).
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