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How can we make effective use of spike-timing 
dependent plasticity (STDP) in artificial neural networks?

Hebb’s rule (’49) STDP (’90s)Cells that fire together, 
wire together

Bi & Poo (1998)
Dan & Poo (2006)

Amount of changes depends 
on timing of spikes

Today’s artificial neural networks ?
[Nessler et al. 2013, 
Bengio et al. 2016, 
Scellier & Bengio 2016] 



Takayuki Osogami and Makoto Otsuka, “Seven neurons 
memorizing sequences of alphabetical images via spike-timing 
dependent plasticity,” Scientific Reports, 5, 14149 (2015).  
www.nature.com/articles/srep14149
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This talk

• Boltzmann machine, Hebb’s rule, STDP

• Dynamic Boltzmann machine [O & Otsuka (2015)]

• Experiments [O & Otsuka (2015), Dasgupta & O (2017)]



Boltzmann machine

xi

xj
wij

Energy of being x:
𝐸 𝒙 = −𝒙⊤𝑾𝒙

Probability of being x:

𝑃 𝒙 =
1

𝑍
exp −𝐸 𝒙

Parameters: 𝑾 = (𝑤𝑖𝑗)

Variables: x = (x1,x2,…)
𝑍 ≡ 

 𝒙

exp(−𝐸  𝒙 )



Learning rule of Boltzmann machine, maximizing log-
likelihood [Hinton et al. ’83]

Neuron i

xi

Neuron j

xj

Synapse
wij

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝜂 𝑥𝑖 𝑥𝑗− 𝑋𝑖 𝑋𝑗

𝜕

𝜕𝑤𝑖𝑗
𝐿𝐿 𝐷 =  

𝒙∈𝐷

𝑥𝑖 𝑥𝑗− 𝑋𝑖 𝑋𝑗

Expected value:

𝑋𝑖 𝑋𝑗 ≡ 

 𝒙

𝑃  𝒙  𝑥𝑖  𝑥𝑗

Log likelihood of training data D:

𝐿𝐿 𝐷 =  

𝒙∈𝐷

log(𝑃 𝒙 )

cf. Hebb’s rule

Stochastic gradient



Do not distribute

Pre-synaptic neuron

Post-synaptic neuron

Image courtesy of dream designs at FreeDigitalPhotos.net



Spike-timing dependent plasticity (STDP): Amount of 
changes depends on timing of spikes

Synapse strengthened
(Long Term Potentiation)

Bi & Poo (1998)
Dan & Poo (2006)

Pre-synaptic
neuron i

xi

Post-synaptic
neuron j

xj

Synapse
wij

Synapse weakened
(Long Term Depression)



We will construct a dynamic Boltzmann machine as a 
limit of a sequence of Boltzmann machines

x[0]x[-1]x[-T]

Time

𝑇 → ∞ Dynamic Boltzmann machine
Boltzmann machine for a 
T-th order Markov model

Historical values Next value

Particular parametric 
form of weight
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LTP: Weight is strengthened when the post-synaptic 
neuron fires shortly after the pre-synaptic neuron

Synapse strengthened
(Long Term Potentiation)

Pre-synaptic
neuron i

xi

Post-synaptic
neuron j

xj

Synapse
wij

Bi & Poo (1998)
Dan & Poo (2006)



Dynamic Boltzmann machine as a limit of a sequence of 
Boltzmann machines

x[0]x[-1]x[-T]

Time

𝑇 → ∞ Dynamic Boltzmann machine
Boltzmann machine for a 
T-th order Markov model

Historical values Next value

Weight from neuron i at time t 
to neuron j at time t + 𝛿

𝑤𝑖𝑗
𝛿
= 𝑢𝑖𝑗 𝜆

𝛿−𝑑𝑖𝑗

𝛿
𝑑𝑖𝑗

We learn 𝑢𝑖𝑗



Dynamic Boltzmann machine (LTP only)

xi
[t] xj

[t]xi
[t-1]

Conduction delay, dij

Synaptic eligibility trace:

𝛼𝑖𝑗
[𝑡−1]

≡  

𝑠<𝑡−𝑑𝑖𝑗

𝜆𝑡−𝑠−𝑑𝑖𝑗 𝑥𝑖
𝑠

𝛼𝑖𝑗
[𝑡]

← 𝜆 𝛼𝑖𝑗
𝑡−1

+ 𝑥
𝑖

𝑡−𝑑𝑖𝑗

xi
[t-2] xi

[t-3]
Probability for neuron j to fire at time t:

𝑋𝑗
𝑡

≡ 𝑃 𝑥𝑗
𝑡
= 1|𝑥 :𝑡−1

=
1

1 + exp − 𝑖 𝑢𝑖𝑗 𝛼𝑖𝑗
𝑡−1



Learning rule of DyBM, maximizing log-likelihood
𝜕

𝜕𝑢𝑖𝑗
log 𝑃 𝑥 𝑡 𝑥[:𝑡−1] = 𝛼𝑖𝑗

𝑡−1
𝑥𝑗

𝑡
− 𝑋𝑗

𝑡

Stochastic gradient for LTP weight:

𝑢𝑖𝑗 ← 𝑢𝑖𝑗 + 𝜂 𝛼𝑖𝑗
𝑡−1

𝑥𝑗
𝑡
− 𝑋𝑗

𝑡

Spike-timing dependent

How recently/often 
spikes reached 
from neuron i

xi
[t] xj

[t]xi
[t-1]

Conduction delay, dij

xi
[t-2] xi

[t-3]

cf. Boltzmann machine
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝜂(𝑥𝑖 𝑥𝑗− 𝑋𝑖 𝑋𝑗 )

Synaptic eligibility trace:

𝛼𝑖𝑗
[𝑡−1]

≡  

𝑠<𝑡−𝑑𝑖𝑗

𝜆𝑡−𝑠−𝑑𝑖𝑗 𝑥𝑖
𝑠

𝛼𝑖𝑗
[𝑡]

← 𝜆 𝛼𝑖𝑗
𝑡−1

+ 𝑥
𝑖

𝑡−𝑑𝑖𝑗
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LTP: Weight is strengthened when the pre-synaptic 
neuron fires shortly after the post-synaptic neuron

Bi & Poo (1998)
Dan & Poo (2006)

Pre-synaptic
neuron i

xi

Post-synaptic
neuron j

xj

Synapse
wij

Synapse weakened
(Long Term Depression)



Interpreting LTD as negative LTP for a connection from 
post-synaptic neuron to pre-synaptic neuron

Time from pre-spike to post-spike Time from post-spike to pre-spike

Bi & Poo (1998)
Dan & Poo (2006)



Pre-synaptic neuron

Post-synaptic neuron

Image courtesy of dream designs at FreeDigitalPhotos.net



Dynamic Boltzmann machine as a limit of a sequence of 
Boltzmann machines

x[0]x[-1]x[-T]

Time

𝑇 → ∞ Dynamic Boltzmann machine
Boltzmann machine for a 
T-th order Markov model

Historical values Next value

Weight from neuron i at time t 
to neuron j at time t + 𝛿

 𝑤𝑖𝑗
𝛿
= 𝑢𝑖𝑗 𝜆

𝛿−𝑑𝑖𝑗

𝛿
𝑑𝑖𝑗

 𝑤𝑖𝑗
𝛿
= −𝑣𝑖𝑗 𝜇

−𝛿



Dynamic Boltzmann machine as a limit of a sequence of 
Boltzmann machines

x[0]x[-1]x[-T]

Time

𝑇 → ∞ Dynamic Boltzmann machine
Boltzmann machine for a 
T-th order Markov model

Historical values Next value

Weight from neuron i at time t 
to neuron j at time t + 𝛿

 𝑤𝑖𝑗
𝛿
= 𝑢𝑖𝑗 𝜆

𝛿−𝑑𝑖𝑗

𝛿
𝑑𝑖𝑗

 𝑤𝑖𝑗
𝛿
= −𝑣𝑖𝑗 𝜇

−𝛿

weight from post to pre



Dynamic Boltzmann machine (LTP & LTD)

xi
[t] xj

[t]xi
[t-1]

Conduction delay, dij

xi
[t-2] xi

[t-3]

𝛽𝑖𝑗
𝑡−1

≡  

𝑠=−𝑑𝑖𝑗+1

−𝟏

𝑥𝑖
𝑡+𝑠

𝜇𝑠

Probability for neuron j to fire at time t:

𝑋𝑗
𝑡

≡ 𝑃 𝑥𝑗
[𝑡]

= 1|𝑥[:𝑡−1] =
1

1 + exp  𝑖 −𝑢𝑖𝑗 𝛼𝑖𝑗
𝑡−1

+ 𝑣𝑖𝑗 𝛽𝑖𝑗
𝑡−1

+ 𝑣𝑗𝑖 𝛾𝑖
𝑡−1

Neural eligibility trace:

𝛾𝑖
[𝑡]

← 𝜇 𝛾𝑖
𝑡−1

+ 𝑥𝑖
𝑡

Synaptic eligibility trace:

𝛼𝑖𝑗
[𝑡]

← 𝜆 𝛼𝑖𝑗
𝑡−1

+ 𝑥
𝑖

𝑡−𝑑𝑖𝑗



Learning rule for Dynamic Boltzmann machine (LTP & LTD)

Stochastic gradient for LTD weight:

𝑣𝑖𝑗 ← 𝑣𝑖𝑗 + 𝜂 𝛽𝑖𝑗
𝑡−1

𝑋𝑗
𝑡

− 𝑥𝑗
𝑡

+ 𝜂 𝛾𝑗
𝑡−1

𝑋𝑖
𝑡

− 𝑥𝑖
𝑡

Stochastic gradient for LTP weight:

𝑢𝑖𝑗 ← 𝑢𝑖𝑗 + 𝜂 𝛼𝑖𝑗
𝑡−1

𝑥𝑗
𝑡
− 𝑋𝑗

𝑡

xi
[t] xj

[t]xi
[t-1]

Conduction delay, dij

xi
[t-2] xi

[t-3]

𝛽𝑖𝑗
𝑡−1

≡  

𝑠=−𝑑𝑖𝑗+1

−𝟏

𝑥𝑖
𝑡+𝑠

𝜇𝑠

Neural eligibility trace:

𝛾𝑖
[𝑡]

← 𝜇 𝛾𝑖
𝑡−1

+ 𝑥𝑖
𝑡

Synaptic eligibility trace:

𝛼𝑖𝑗
[𝑡]

← 𝜆 𝛼𝑖𝑗
𝑡−1

+ 𝑥
𝑖

𝑡−𝑑𝑖𝑗



We can use multiple eligibility traces with varying decay 
rates for long term memory

xi
[t] xj

[t]xi
[t-1]

Conduction delay, dij

xi
[t-2] xi

[t-3]

𝛽𝑖𝑗ℓ
𝑡−1

≡  

𝑠=−𝑑𝑖𝑗+1

−𝟏

𝑥𝑖
𝑡+𝑠

𝜇ℓ
𝑠

ℓ = 1,2,… 𝑘 = 1,2,…

Neural eligibility trace:

𝛾𝑖
[𝑡]

← 𝜇 𝛾𝑖
𝑡−1

+ 𝑥𝑖
𝑡

Synaptic eligibility trace:

𝛼𝑖𝑗
[𝑡]

← 𝜆 𝛼𝑖𝑗
𝑡−1

+ 𝑥
𝑖

𝑡−𝑑𝑖𝑗
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Presenting sequences of 7-bit patterns to a dynamic 
Boltzmann machine



DyBM as associative memory for sequential patterns 
[O & Otsuka (2015)]

Giving DyBM a partial 
sequence as a cue

DyBM completes the 
remaining sequence

Energy landscape of DyBM evolves 
depending on the past patterns

Images from www.nature.com/articles/srep14149



DyBM detecting anomaly [O & Otsuka (2015)]

Negative log-likelihood

Beginning of anomalous sequence

Image from www.nature.com/articles/srep14149



Time

DyBM learning a generative model of human evolution 
[O & Otsuka (2015)]

20 neurons

Images from www.nature.com/articles/srep14149



DyBM learning a generative model of Ich bin ein Musikante
[O & Otsuka (2015)]

• 12 neurons
• Sounds prepared by Shohei Ohsawa

& Yachiko Obara

Images from www.nature.com/articles/srep14149



Comparison between DyBM and LSTM 
[Dasgupta & O (AAAI-17)]

Model Retail price of gasoline & diesel
• 8 dimensions
• 20 hidden units

Sunspot number
• 1 dimension
• 50 hidden units

LSTM 0.067 0.073

DyBM (delay=2) 0.058 0.082

DyBM (delay=3) 0.056 0.077

DyBM (delay=4) 0.060 0.077

Root mean squared error after learning for 20 epochs

DyBM and LSTM have comparable structures

Systematic approaches to tuning 
DyBM’s hyperparameters
[Dasgupta, Yoshizumi, O (ICPR 2016)]
[O & Dasgupta (IBM R&D J. 2017)]



Comparison between DyBM and LSTM 
[Dasgupta & O (AAAI-17)]

DyBM

LSTM (Keras library)

Learning Prediction

Comparable accuracy

RMSE = 0.073

RMSE = 0.077

DyBM learns 16 times faster

Time per epoch = 0.7 sec.

Time per epoch = 11.2 sec.

Learning and predicting sunspot number
Images from IBM Research Report RT0975



Summary: Dynamic Boltzmann machine

Boltzmann machine

Dynamic Boltzmann machine

Hebb’s rule

Spike-timing dependent plasticity

Bi & Poo (1998)
Dan & Poo (2006)

xi

xj
wij

MLE

MLE Cells that fire together, wire together

Formal limit Refine



We provide theoretical underpinnings for STDP

Hebb’s rule (’49)

Motivated artificial 
neural networks
- Perceptron (’58)

Failure

1950 1960 1970 1980 1990

Theoretical underpinnings
- Hopfield network (’82)
- Boltzmann machine (’83)

2000 2010

Success
- Deep learning

STDP (’90s)

Theoretical underpinnings
- Dynamic Boltzmann machine
[This talk]

Successful 
applications
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