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Abstract: Let d-dimensional column vectors x1, . . . , xn be an i.i.d. sample drawn from

the d-dimensional standard normal distribution. Let S be
∑n

i=1 xix
⊤
i /n. The left and

the right tail probabilities for the sum of any k eigenvalues of S is uniformly evaluated

non-asymptotically from above, by using upper bound of the VC dimensions of principal

component analysis and by using a Vapnik’s theorem of generalization errors in empirical

risk minimization. For the right tail probability, we represent a subspace with the kernel of a

linear mapping and then employ a concentration inequality for the chi square distributions.

1 Introduction

Let x1, . . . , xn be independently distributed, each sub-

ject to d-dimensional normal distribution N(0,Σ). Then

the distribution of
∑n

i=1 xix
⊤
i is defined to be Wishart

distribution, denoted by W (Σ, n). If Σ = Ed, the iden-

tity matrix Ed of size d, then so-called data covari-

ance matrix 1
n

∑n
i=1 xix

⊤
i of the sample is subject to

W (Ed/n, n).

Johnstone [6] proved that for a matrix subject to

W (Ed, n), if the largest eigenvalue is appropriately cen-

tered and scaled, then the distribution approaches to

the Tracy-Widom law of order 1, as n, d goes to infinity

with n/d fixed γ ≥ 1. On the other hand, for the data

covariance matrix S = 1
n

∑n
i=1 xix

⊤
i , as n → ∞ with

d being fixed, the sum of any k eigenvalues of S tends

to k almost surely, because the law of large numbers

guarantees that S converges to the identity matrix Ed

almost surely. In terms of principal component analy-
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sis (PCA), the sum of the largest k eigenvalues of S is

the sum of variances of principal component and the

sum of the square distances of data and the approxi-

mate affine subspace.

Below, the left and the right tail probabilities for

the sum of any k eigenvalues of the data covariance ma-

trix S is uniformly evaluated non-asymptotically from

above, by using upper bound of the VC dimensions

of principal component analysis and by using a theo-

rem [9, (5.43)] of Vapnik’s statistical learning theory.

For the right tail probability, we represent a subspace

with the kernel of a linear mapping and then employ

a concentration inequality [7, (5.1)] for the chi square

distributions.

Johnstone’s result [6] is satisfied if the number n

of observations and the dimensions p are large enough

with n/d fixed. On the other hand, our results are

useful in the case that n/d = Ω(n
1
2+ϵ), i.e. d/n =

O(n−( 1
2+ϵ)), where ϵ is any positive number, especially,

in the case that d is fixed and n is large.

For the largest eigenvalue λ1 of a symmetric ran-

dom matrix whose entries are independent random vari-



ables with absolute value bounded by 1, the sub-gaussian

evaluation of the right tail of λ1 is derived in [1] from

Talagrand’s inequality. Our result is for Gaussian ran-

dom variables, which vary from −∞ to ∞.

This paper is organized as follows: In the next sec-

tion, we review VC theory. In Section 3, we relate the

sum of eigenvalues of the data covariance matrix to the

statistical learning that formulates PCA. In Section 4,

we provide an upper bound of VC dimension of the

PCA. In Section 5, we present a concentration inequal-

ity for the sum of eigenvalues of the data covariance

matrix for an i.i.d. sample from the multi-dimensional

standard normal distribution. In the final section, we

mention future work, which are hopefully related to

concentration inequality and model selection.

2 VC theory

In the framework of statistical learning theory [9], a

learning model in general consists of (i) an unknown

distribution F (z) of training data z drawn from a space

Z, (ii) a class Λ of hypotheses, (iii) a loss function

Q : Z × Λ → R. Here Q(z, α) stands for the loss of

training data z against a hypothesis α. The risk of

α ∈ Λ is defined to be R(α) = Ez[Q(z, α)]. The goal

of learning is to estimate

α0 ∈ Λ s.t. R(α0) = min
α∈Λ

R(α)

from training data z1, · · · , zn which are independently

drawn from the distribution F .

Proposition 1 ([9, (5.43)]). Let {Q(x, α) : α ∈ Λ} be

any class of unbounded class of nonnegative, functions.

Then for any α ∈ Λ, with probability greater than or

equal to 1 − η, it holds that

R(α) − Remp (α) < R(α)τ(p)

(
1
2

(
p − 1
p − 2

)p−1
)1/p

ε.

Here p > 2 is such that

sup
α∈Λ

Ex [Q(x, α)p]1/p

Ex [Q(x, α)]
< τ(p),

and

η := 4 exp
{(

GΛ(2n)
n

− ε2

4

)
n

}
.

GΛ(n) is the so-called growth function for Λ, and

GΛ(n)

= n log 2 (n ≤ v)

≤ v(log n
v + 1) (n > v),

where v is the VC dimension of the class of {x ∈ Z :

Q(x, α) ≥ r} such that α ∈ Λ and r ∈ R.

Let C be a nonempty class of subset of Z. We say

a finite subset X of Z is shattered by C, if {X ∩ C :

C ∈ C} is the class of subsets of X. By the VC di-

mension of the class C, we mean the supremum of the

cardinality of a set X ⊂ Z shattered by C. Important

properties on the VC dimension in the study of empir-

ical process(=statistical learning) are found in [5].

3 Eigenvalues of data covariance

matrix and empirical risks

First, we relate the eigenvalues of the data covariance

matrix S, to the empirical risk of a statistical learning.

Put Λ to be the set of d × k real matrices T such

that T⊤T = Ek. We represent a (d − k)-dimensional

subspace H by any T ∈ Λ such that H = kerT . For

any x ∈ Rd and any T ∈ Λ, we define a loss function

Q(x, T ) to be dist(x, ker T )2 = ∥T⊤x∥2. On the other

hand, we represent a k-dimensional subspace K by any

T ∈ Λ such that K = Im T . For any x ∈ Rd and any

T ∈ Λ, we define another loss function Q′(x, T ) to be

dist(x, Im T )2.

The empirical risks caused by T ∈ Λ are

Remp (T ) =
1
n

n∑
i=1

∥T⊤xi∥2,

R′
emp (T ) =

1
n

n∑
i=1

∥xi∥2 − Remp (T )

=
1
n

n∑
i=1

x⊤
i (Ed − TT⊤)xi.

If T consists of the k orthonormal eigenvectors of the

data covariance matrix S, then Remp (T ) is the sum X



of the k corresponding eigenvalues λ1, . . . , λk of S and

R′
emp (T ) is 1

n

∑n
i=1∥xi∥2 − X.

4 VC dimension of PCA formu-

lated as statistical learning

Put Cd
k be the class of {x ∈ Rd : dist(x, H) < r} such

that H is any k-dimensional affine subspace and the r

is any positive real number.

Theorem 1. There exists a positive constant c such

that the VC dimension of Cd
k is less than c(k + 1)(d −

k + 1).

Corollary 1. Let Dd
k denote the class of {x ∈ Rd :

dist(x, H) < r} such that H is any k-dimensional sub-

space and the r is any positive real number. Then the

VC dimension of Dd
k is less than c(k + 1)(d − k + 1),

where c is an absolute positive constant.

The proof of the theorem uses a fact that any linear

subspace is represented as a kernel and an image, as

well as rather a standard evaluation of the number of

sign sequences arising from an algebraic variety.

We prove this proposition by following Basu-Pollack-

Roy’s argument [2]:

For an element a ∈ R,

sgn(a) :=


0 if a = 0,

1 if a > 0,

−1 if a < 0.

Let Q and P be finite subsets of R[x1, . . . , xm]. A sign

condition on P is an element of {0, 1,−1}P .

The realization of the sign condition σ over Q, R(σ,Q),

is the real semi-algebraic set

{x ∈ Rm : g(x) = 0 for all g ∈ Q, and

sgn (P (x)) = σ (P ) for all P ∈ P} .

Let bi (σ,Q) denote the i-th Betti number of R(σ,Q),

i.e., the dimension of the i-th singular homology group

of R(σ,Q) as a Q vector space, and let bi (Q,P) =∑
σ bi (σ,Q). Especially, b0 (σ,Q) is the total number

of semi-algebraically connected components of the re-

alizations of all realizable sign conditions of P over Q.

We write bi(d, m,L, s) for the maximum of bi (Q,P)

over all Q, P where Q and P are finite subsets of

R[x1, . . . , xm], whose elements have degree at most d ≥
1, the cardinality of P is s, and the algebraic set {x ∈
Rm : g(x) = 0 for all g ∈ Q} has real dimension L.

Proposition 2 ([2]).

bi(d,m,L, s) ≤ d(2d − 1)m−1
L−i∑
j=0

4j

(
s

j

)
.

Let (Cd
k)♭ be the class of open sets {x ∈ Rd :

dist(x, H) < r} ∈ Cd
k such that the k-dimensional

affine subspace H intersects with the (d−k)-dimensional

subspace x1 = · · · = xk = 0 at exactly one point. Note

that VCdim(Cd
k) = VCdim((Cd

k)♭), because if Cd
k shat-

ters a finite set then (Cd
k)♭ does the set by appropriate

perturbation.

Lemma 1. Let L = (k+1)(d−k)+1. Then, there exist

a positive integer m ≤ 2L, an L-dimensional smooth

submanifold V in Rm defined by m−L quadratic equa-

tions in m variables, and Φ : V → Cd
k with the following

properties:

(a) VCdim(Cd
k) = VCdim(Φ(V )); and

(b) for each p ∈ Rd, there exists a quadratic m-

variate real polynomial fp such that for all x ∈ V ,

fp(x) > 0 if p is in Φ(x), while fp(x) < 0 if p is

not in the closure of Φ(x).

Proof. First, we consider the case k ≥ d/2. Let m =

(d − k)(d + 1) + 1. Then it is indeed m ≤ 2L. For

(F, b, r) ∈ Rm where F is a d × (d − k) real matrix,

b ∈ Rd−k and r ∈ R, we consider a system of (d−k)2 =

m − L quadratic equations∑
u

FuiFuj − δij = 0 (1 ≤ i ≤ j ≤ d − k),

Fi+k, j = 0 (1 ≤ i < j ≤ d − k).

This defines an L-dimensional smooth submanifold V

of Rm by the implicit function theorem.



For (F, b, r) ∈ V where F ∈ Rd×(d−k), b ∈ Rd−k

and r ∈ R, define Φ(F, b, r) ∈ Cd
k to be the set of points

whose distance from a k-dimensional affine space

{ z ∈ Rd : (F⊤)z = b } (1)

is less than |r|. Then Φ satisfies the property (a), since

Φ(V ) ⊆ Cd
k contains (Cd

k)♭. Moreover, for p ∈ Rd, define

fp by

fp(F, b, r) = r2 − ∥(F⊤)p − b∥2.

This satisfies the property (b), because ∥(F⊤)p−b∥2 is

equal to the square of the distance from p to the affine

subspace (1).

Next we consider the case k < d/2. Let m = dk +

d + 1. Then it is indeed m ≤ 2L. For (E, t, r) ∈ Rm

where E is a d × k real matrix, t ∈ Rd and r ∈ R,

we consider a system of k + k2 = m − L quadratic

equations, consisting of k equations∑
u

tuEuj = 0 (1 ≤ j ≤ k) (2)

and k2 equations∑
u

EuiEuj − δij = 0 (1 ≤ i ≤ j ≤ k),

Eij = 0 (1 ≤ i < j ≤ k).

The system defines an L-dimensional smooth subman-

ifold V of Rm, by the implicit function theorem. For

any (E, t, r) ∈ V with E ∈ Rd×k, t ∈ Rd, r ∈ R, define

Φ(E, t, r) to be the set of points whose distance from

{Ex + t : x ∈ Rk } (3)

is less than |r|. Then Φ satisfies the property (a), since

Φ(V ) contains (Cd
k)♭. Moreover, for p ∈ Rd, define fp

by

fp(E, t, r) = r2 − ∥p − t∥2 + ∥(p⊤)E∥2.

Then fp is clearly quadratic. By (2), we have ∥p −
t∥2 − ∥(p⊤)E∥2 = ∥p − t∥2 − ∥(p − t)⊤E∥2, which is

equal to the square of the distance from p to the affine

subspace (3). Thus we have the property (b).

Now we will complete the proof of the upper bound.

Proof of Theorem 1. Let m,L, V, Φ be as in the previ-

ous lemma. Take a set Q consisting of quadratic m-

variate real polynomials g1, . . . , gm−L so that equations

g1 = · · · = gm−L = 0 define V . Let {p1, . . . , ps} ⊆ Rd

be a set shattered by Cd
k . By (a) of the previous lemma,

it is shattered by Φ(V ). If s ≤ m, then because the

previous lemma implies m ≤ 2L, we have s ≤ m ≤ 2L

as desired. If s > m, then put P := {fp1 , . . . , fps}. Be-

cause {p1, . . . , ps} is shattered, 2s ≤ #{σ ∈ {−1, 1}P :

R(σ,Q) ̸= ∅}. Then 2s ≤ b0(Q,P) ≤ b0(2,m,L, s)

by the definition. From Proposition 2, we have 2s ≤
d(2d− 1)m−1

∑L
j=0 4j

(
s
j

)
which is less than or equal to

2 · 32L−1 · 4L
∑L

j=0

(
s
j

)
≤ 36L

(
es
L

)L

. This gives 2s/L ≤
36e(s/L), or s/L ≤ c where c is large enough.

5 The concentration inequalities

Let x1, . . . , xn be an i.i.d. sample drawn from N(0, Ed)

and let λ1, . . . , λk be eigenvalues of the data covari-

ance S = 1
n

∑n
i=1 xix

⊤
i . Let T ∈ Rd×k consist of

the corresponding orthonormal eigenvectors, as in Sec-

tion 3. For the loss functions given there, the risks

caused by T are R(T ) = E[∥T⊤x∥2] and R′(T ) =

E[x⊤(Ed − TT⊤)x]. Because TT⊤ is an orthogonal

projection of rank k, the loss functions are random

variables subject to chi square distributions:

∥T⊤x∥2 ∼ χ2
k, ∥x∥2 − ∥T⊤x∥2 ∼ χ2

d−k, (4)

where χ2
m is the chi square distribution with degree m

of freedom. So R(T ) = k and R′(T ) = d − k. By this

and the last paragraph of Section 3,

k − (λ1 + · · · + λk) = R(T ) − Remp (T ) , (5)

and

(λ1 + · · · + λk) − k

= R′(T ) − R′
emp (T ) +

(
1
n

n∑
i=1

∥xi∥2 − d

)
. (6)

By applying Proposition 1 to R and R′, we have in-

equalities for left and right tail probabilities of the sum

of any k eigenvalues of S. But for the last term in the



inequality (6), we use a following inequality [7, (5.1)]

for right tail probability of the chi square distribution:

P

(
Y ≥

(√
d +

√
2y

)2
)

≤ e−y (Y ∼ χ2
d, y > 0),

(7)

which is proved by using Gaussian logarithmic Sobolev

inequality [7, Theorem 3.4].

The p-th noncentral moment of the chi square dis-

tribution of degree k of freedom is written as m(k, p),

which is k(k + 2)(k + 4) · · · (k + 2p − 2).

Theorem 2. Let x1, . . . , xn be an i.i.d. sample drawn

from the d-dimensional standard normal distribution,

λ1, . . . , λk (k ≤ d) be any eigenvalues of the data co-

variance d × d matrix
(

1
n

∑n
i=1 xix

⊤
i

)
, p > 2, ε > 0

and δ > 0. Then, the left tail probability of
∑k

i=1 λi

satisfies the following:

P

k −
k∑

i=1

λi ≥ ε

(
m(k, p)

2

(
p − 1
p − 2

)p−1
)1/p


≤ 4 exp

{(
GDd

d−k
(2n)

n
− ε2

4

)
n

}
.

The right tail probability of
∑k

i=1 λi satisfies the fol-

lowing:

P

 k∑
i=1

λi − k ≥ ε

(
m(d − k, p)

2

(
p − 1
p − 2

)p−1
)1/p

+ δ


≤ 4 exp

{(
GDd

k
(2n)

n
− ε2

4

)
n

}

+ exp

−1
2
nd

(√
1 +

δ

d
− 1

)2
 .

In particular, if n > v/2 with v being c(k + 1)(d −
k + 1) where c is an absolute positive constant, then

the inequalities can be made concrete by replacing the

two growth functions GDd
d−k

(2n) and GDd
k
(2n) in the

inequalities with v(log 2n
v + 1).

Proof. As for the left tail probability, in Proposition 1,

as the loss function Q(T, x) is subject to χ2
k by (4), we

can take τ(p) = m(k, p)1/p/k and thus k −
∑k

i=1 λi,

which is R(T ) − Remp (T ) by (5), exceeds

ε

(
m(k, p)

2

(
p − 1
p − 2

)p−1
)1/p

,

with probability at most

4 exp

((
GDd

d−k(2n)

n
− ε2

4

)
n

)
. (8)

As for the right tail probability, in Proposition 1,

as the loss function Q′(T, x) is subject to χ2
d−k by (4),

we can take τ(p) = m(d − k, p)1/p/(d − k) and thus(∑k
i=1 λi − k

)
−

(
1
n

∑n
i=1∥xi∥2 − d

)
, which is R′(T )−

R′
emp (T ) by (6), exceeds

a := ε

(
m(d − k, p)

2

(
p − 1
p − 2

)p−1
)1/p

,

with probability at most 4 exp
((

GDd
k(2n)/n − ε2/4

)
n
)
.

But by taking Y =
∑n

i=1∥xi∥2 ∼ χ2
nd and y =(√

nd + nδ −
√

nd
)2

/2 in (7), we have 1
n

∑n
i=1∥xi∥2−

d ≥ δ with probability at most

b := exp

−nd

2

(√
1 +

δ

d
− 1

)2
 .

Therefore either
∑k

i=1 λi−k ≥ a or 1
n

∑n
i=1∥xi∥2−d ≥

δ holds with probability at most

P

(
k∑

i=1

λi − k −

(
1
n

n∑
i=1

∥xi∥2 − d

)
≥ a

)

+ P

(
1
n

n∑
i=1

∥xi∥2 − d ≥ δ

)
.

But the former summand is less than or equal to (8)

with k replaced by d − k, while the latter is less than

or equal to b.

6 Future work: concentration and

model selection

Some mathematicians may be interested in how our

approach is related to (1) papers of the local theory

of Banach spaces on concentration of measure that is

directly relevant (e.g. [8]), and (2) to the work on Tala-

grand’s work on concentration of measure. Talagrand’s

inequalities for concentration of measure are recently

employed in [7, Chapter 8], for statistical learning prob-

lems with the class of loss functions being uniformly

bounded, as follows:



1. Bousquet’s version of Talagrand’s concentration

inequality for empirical process is used to derive

a new general upper bound of the difference be-

tween the expected risk and the empirical risk.

2. A concentration inequality is used to analyze Vap-

nik’s structural risk minimization [9], a model se-

lection method in terms of VC dimensions.

PCA has the unbounded class of loss functions x ∈
Rd 7→ dist(x,H)2 where H is any k-dimensional affine

subspace. We hope similar concentration inequalities

which improves (1) previous Theorem for PCA and (2)

model selection (i.e., selecting k) for PCA.

This research is encouraged by a researcher who

majors in concentration inequality and/or consistency

of principal component analysis. We read in [7],

“Since the impressive works of Talagrand,

concentration inequalities have been recog-

nized as fundamental tools in several do-

mains such as geometry of Banach spaces

or random combinatorics. They also turn

out to be essential tools to develop a non-

asymptotic theory in statistics, exactly as

the central limit theorem and large devia-

tions are known to play a central part in

the asymptotic theory. An overview of a

non-asymptotic theory for model selection

is given here and some selected applications

to variable selection, change points detec-

tion and statistical learning are discussed.

....”

We hope our work is connected to such applications

and so on.
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