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tionLatent Diri
hlet allo
ation (LDA)(Blei et al., 2003)is one of the most famous topi
 models in do
umentmodeling where do
uments are represented as randommixtures over latent topi
s (
lasses) and ea
h topi
 is
hara
terized by a distribution over words. In termsof 
lustering, LDA is regarded as a semanti
 
lusteringmodel for words in do
uments. In this study, we ex-plore a Bayesian inferen
e algorithm to estimate topi
s(word 
lasses) in LDA by introdu
ing \quantum e�e
t"where we assume that the states of latent topi
s arequantum states.Several studies that are related to ma
hine learn-ing with quantum me
hani
s have re
ently been 
on-du
ted. The main idea behind these has been basedon a generalization of the probability distribution ob-tained by using a density matrix, whi
h is a self-adjointpositive-semide�nite matrix of tra
e one. Wolf (2006)
onne
ts the basi
 probability rule of quantum me-
hani
s, 
alled the \Born Rule", whi
h formulates ageneralized probability by using a density matrix, tospe
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son (2006) 
ombined a margin maximization s
hemewith a probabilisti
 modeling approa
h by in
orporat-ing the 
on
epts of quantum dete
tion and estimationtheory (Helstrom, 1969). Tanaka and Horigu
hi (2002)proposed a quantum Markov random �eld using a den-sity matrix and quantum me
hani
s and applied to im-age restoration.Generalizing a Bayesian framework based on a den-sity matrix has also been proposed. S
ha
k et al. (2001)proposed a \quantum Bayes rule" for 
onditional den-sity between two probability spa
es. Warmuth et al.generalized the Bayes rule to treat a 
ase where theprior was a density matrix (Warmuth, 2005) and uni-�ed Bayesian probability 
al
ulus for density matri
eswith rules for translation between joints and 
ondition-als (Warmuth, 2006). Typi
ally, the formulas derivedby quantum me
hani
s generalization have retainedthe 
onventional theory as a spe
ial 
ase when thedensity matri
es have been diagonal. Computing thefull posterior distributions over model parameters forprobabilisti
 graphi
al models, su
h as latent Diri
h-let allo
ation (Blei et al., 2003), remains diÆ
ult inthese quantum Bayesian frameworks, as well as 
lassi-
al Bayesian frameworks. In this paper, we generalizethe variational Bayes inferen
e (Attias, 1999), whi
h iswidely used framework for probabilisti
 graphi
al mod-els, based on ideas that have been used in quantumme
hani
s.Variational Bayes (VB) inferen
e has been widelyused as an approximation of Bayesian inferen
e forprobabilisti
 models that have dis
rete latent variables.



For example, in a probabilisti
 mixture model, su
h asa mixture of Gaussians, ea
h data point is assigned toa latent 
lass, and a latent variable 
orresponding toa data point indi
ates the latent 
lass. VB is an op-timization algorithm that minimizes the 
ost fun
tion.The 
ost fun
tion, 
alled the negative variational freeenergy, is a fun
tion of latent variables. We have 
alledthe 
ost fun
tion \energy" in this paper.Sin
e VB is a gradient algorithm similar to the Ex-pe
tation Maximization (EM) algorithm, it su�ers froma lo
al optimal problem in pra
ti
e. Deterministi
 an-nealing (DA) algorithms have been proposed for theEM algorithm (Ueda and Nakano, 1995) and VB (Katahiraet al., 2008) based on simulated annealing (SA) (Kirk-patri
k et al., 1983) to over
ome issue with lo
al op-tima. We 
alled simulated annealing based VB SAVB.SA is one of the most well known physi
s based ap-proa
hes to ma
hine learning. SA is based on the
on
ept of statisti
al me
hani
s, 
alled \temperature".We de
rease the parameter of \temperature" gradu-ally in SA. Be
ause the energy lands
ape be
omes 
atat high temperature, it is easy to 
hange the state(see Fig.1(a)). However, the state is trapped at lowtemperature be
ause of the valley in the energy bar-rier and the transition probability be
omes very low.Therefore, SA does not ne
essarily �nd a global opti-mum in the pra
ti
al 
ooling s
hedule of temperatureT . In physi
s, quantum annealing (QA) has attra
tedattention as an alternative annealing method of opti-mization problems by a pro
ess that is analogous toquantum 
u
tuations (Apolloni et al., 1989; Kadowakiand Nishimori, 1998; Santoro et al., 2002). QA is ex-pe
ted to help states avoid being trapped by poor lo
aloptima at low temperatures.The main point of this paper is to explain the novelDA algorithm for VB based on the QA (QAVB) wederived and present the e�e
ts of QAVB we obtainedthrough experiments. QAVB is a generalization of VBand SAVB attained by using a density matrix. Wedes
ribe our motivation for deriving QAVB in termsof a density matrix in Se
tion 3. Here, we overviewthe QAVB that we derived. Interestingly, althoughQAVB is generalized and formulated by a density ma-trix, the algorithm for QAVB we �nally derived doesnot need operations for a density matrix su
h as eigen-value de
omposition and only has simple 
hanges from

the SAVB algorithm.Sin
e SAVB does not ne
essarily �nd a global op-timum, we still need to run multiple SAVBs indepen-dently with di�erent random initializations where mdenote the number of SAVBs. Here, let us 
onsiderrunning dependently, not independently, multiple SAVBswhere \dependently" means that we run multiple SAVBsintrodu
ing intera
tion f among neighboring SAVBsthat are randomly numbered su
h as j� 1, j and j+1(see Fig.1(b)). In Fig.1, �j indi
ates the latent 
lassstates of N data points in the j-th SAVB. The inde-pendent SAVBs have a very low transition probabil-ity among states, i.e., they have been trapped, at hightemperature as shown in Fig.1(
), while the dependentQAVBs 
an 
hanges the state in that situation. Thisis be
ause intera
tion f starts from zero (i.e., \inde-pendent"), gradually in
reases, and makes �j�1 and�j approa
h ea
h other, the state will then be movedinto ��. If there is a better state around sub-optimalstates that the independent SAVBs �nd, the depen-dent SAVBs are expe
ted to work well. The depen-dent SAVBs are just QAVB where intera
tion f andthe above s
heme are derived from QA me
hanisms aswill be explained in the following se
tion.This paper is organized as follows. In Se
tion 2, weintrodu
e the notations used in this paper. In Se
-tion 3, we motivate QAVB in terms of a density ma-trix. Se
tion 4 and 5 explain how we derive QAVB andpresent the experimental results in latent Diri
hlet al-lo
ation (LDA). Se
tion 6 
on
ludes this paper.2 PreliminariesWe assume that we have N data points, and theyare assigned to K latent 
lasses. The latent 
lass ofthe i-th data point is denoted by the latent variable zi.zi = k indi
ates that the latent 
lass of the i-th datapoint is k. The latent 
lass of the i-th data point isalso denoted by K dimensional binary indi
ator ve
-tor ~�i where if zi is equal to k, the k-th element of~�i is equal to 1 and the other elements are all equalto 0. The number of available 
lass assignment of alldata points is KN . The 
lass assignment of all datapoints is denoted by KN dimensional binary indi
atorve
tor � = NNi=1 ~�i where N is the Krone
ker prod-u
t, whi
h is a spe
ial 
ase of a tensor produ
t. If Ais k-by-l matrix and B is an m-by-n matrix, then the
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図 1: (a) S
hemati
 pi
ture of SAVB. (Upper panel) At low temperature, the state often falls into lo
al optima.(Bottom panel) At high temperature, sin
e the energy lands
ape be
omes 
at, the state 
an 
hange over a widerange. (b) and (
) S
hemati
 pi
ture of QAVB. (b) QAVB 
onne
ts neighboring SAVBs. (
) �j 
an rea
h ��owing to the intera
tion f . It seems to go through energy barrier.Krone
ker produ
t ANB is the km-by-ln blo
k ma-trix as follows: ANB = 0BB�a11B � � � a1lB... . . . ...ak1B � � � aklB1CCA. Forexample, if K = 2, N = 2, z1 = 1 (~�1 = (1; 0)T ) andz2 = 2 (~�2 = (0; 1)T ), then � = ~�1N ~�2 = (0; 1; 0; 0)T .Let x = (x1; � � � ;xN ) denote the N observed datapoints and � denote the model parameters. �(l) indi-
ates the l-th latent 
lass states of KN available la-tent 
lass states. For example, if K = 2 and N = 2,then �(1) = (1; 0; 0; 0)T , �(2) = (0; 1; 0; 0)T , �(3) =(0; 0; 1; 0)T and �(4) = (0; 0; 0; 1)T . The set of avail-able latent 
lass states is denoted by � = f�(l)j(l =1; 2; � � � ;KN )g.3 Motivation for QAVB in termsof Density matrixFor those unfamiliar with quantum information pro-
essing, we will explain a density matrix whi
h 
an beused as an extension of 
onventional probability. Ourde�nition of a density matrix is based on (Warmuth,2006).A density matrix is a self-adjoint positive-semide�nitematrix and its tra
e is one. Conventional probabilitywhi
h we 
alled 
lassi
al statisti
s 
an be expressed bya diagonal density matrix as follows. For example, letus 
onsider the 
ase of two data points and two la-tent 
lasses as well as Se
tion 2. We de�ne four states,denoted by indi
ator ve
tors f�(i)g4i=1, and probabil-

ity ve
tor p = (p1; p2; p3; p4)T , where pi indi
ates theo

urren
e probability of the i-th state �(i).Then, the density matrix of this system is given bydiagfp1; p2; p3; p4g = 4Xi=1 pi�(i)�(i)T ; (1)where diagf�g indi
ates diagonal matrix. We 
an ex-tend the 
on
ept of probability by introdu
ing non-diagonal elements in a density matrix whi
h is 
alledquantum statisti
s. A state of a system in quantumstatisti
s is de�ned by a unit (
olumn) real ve
tor1 , u,where dyaduuT has tra
e one, Tr �uuT � = Tr �uTu� =1. A density matrix, �, generalizes a �nite probabilitydistribution and 
an be de�ned as a mixture of dyads,� =Xi piuiuTi ; (2)where pi is a mixture proportion (
oeÆ
ient) that isnon-negative and sums to one. pi spe
i�es the propor-tion of the system in state ui. A density matrix as-signs a probability to the unit ve
tor or its asso
iateddyad given by p(u) = Tr ��uuT � (= uT�u). This is
alled the \Born rule" in quantum me
hanisms. A
-
ording to Gleason's theorem, there is a one to one
orresponden
e between generalized probability distri-butions and density matri
es (Gleason, 1957). For ex-ample, when a state ve
tor is u = � 12 ; 0; p32 ; 0�, it1A state ve
tor generally does not need to be a restri
ted realve
tor. If we 
onsider a 
omplex ve
tor, the de�nition of thetra
e of a dyad is repla
ed by Tr (uu�) = Tr (u�u) = 1, whereu� indi
ates 
omplex 
onjugate of u. However, for simpli
ity,we have restri
ted the real ve
tor in this paper.



represents the mixture of the �rst state and the thirdstate with probability � 12�2 = 14 and �p32 �2 = 34 , re-spe
tively.A probabilisti
 model employs un
ertainty to modelphenomena, and has demonstrated its pra
ti
ally inmany s
ienti�
 �elds. Although 
lassi
al statisti
s in-volves un
ertainty over mixture proportions (fpig), itrestri
ts state ve
tors to indi
ator ve
tors (f�(i)g). In
ontrast, quantum statisti
s involves un
ertainty overnot only mixture proportions (fpig) but also state ve
-tors (fuig) be
ause if density matrix � has o�-diagonalelements, state ve
tors fuig take arbitrary ve
tors.Therefore, a probabilisti
 model based on quantumstatisti
s is a more generalized model in terms of un
er-tainty, and the generalization is expe
ted to be moreuseful. In the same way, sin
e 
lassi
al VB inferen
ein
luding SA variants only involves un
ertainty overmixture proportions, this paper proposes a method ofmaintaining un
ertainty over state ve
tors.Finally, Fig 2 sums up the relationship between VB,SAVB, and QAVB in terms of a density matrix. SAVBand QAVB 
ontrol un
ertainty of mixture proportionsvia temperature T . However, QAVB 
an 
ontrol theun
ertainty of state ve
tors by introdu
ing quantume�e
t parameter � that is des
ribed in Se
tion 4, lead-ing to enhan
ed generalization.
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図 2: The un
ertainty over mixture proportions hasbeen well studied in ma
hine learning. VB and SAVBalso only involve un
ertainty over mixture proportions.We study the un
ertainty over another 
omponent ofa density matrix, state ve
tors. QAVB involves un
er-tainty over not only mixture proportions but also stateve
tors.

4 Quantum Annealing for Vari-ational Bayes Inferen
eThis se
tion explains how we derive update equa-tions for QAVB. First, we de�ne the lower bound of themarginal likelihood in QAVB as typi
al VB. Then, weapply Suzuki-Trotter expansion (Trotter, 1959; Suzuki,1976) to the marginal of QA to analyti
ally obtain up-date equations.4.1 Introdu
ing Quantum E�e
tWe de�ne H
 with a KN by KN diagonal matrix asfollows:H
 = diagf� logp(x; �(1)); � � � ;� log p(x; �(KN ))g(3)The 
onditional probability of indi
ator state ve
tor �given x is 
al
ulated byp(�jx) = p(x; �)p(x) = �T e�H
�Tr (e�H
) = �T�
� = Tr ��
��T �;(4)where �
 = e�H
Tr (e�H
 ) is a density matrix.The marginal log-likelihood of N data points is for-mulated as log p(x) = logTrfe�H
g: (5)Sin
e the fully 
onditional posteriors are intra
table,VB inferen
e is proposed as an approximated algo-rithm for estimating 
onditional posteriors.The marginal log-likelihood of p(x) 
an be lowerbounded by introdu
ing distribution over latent vari-ables �, parameters � and the approximate distribu-tion q(�)q(�) of a posteriori distribution p(�;�jx) asfollows.log p(x) �X� Z q(�)q(�) log p(x; �;�)q(�)q(�) d� (6)= ~F [q(�); q(�)℄: (7)We maximize ~F [q(�); q(�)℄ with respe
t to q(�)q(�)to obtain a better approximation of p(�;�jx) in VBinferen
e. ~F [q(�); q(�)℄ is 
alled the variational freeenergy.We derive QAVB by maximizing the lower bound ofthe following marginal log-likelihood.log p(x;�;�) = logTrfe��Hg; (8)



where � is the quantum e�e
t parameter, � is inversetemperature, i.e., � = 1T , and we de�ne H with a KNby KN matrix as follows:H =H
 +Hq; (9)Hq = NXi=1 �xi; �xi = 0� i�1Oj=1 EK1A
 �x 
 NOl=i+1 EK! ;�x =�(EK � 1K); (10)where EK is the K by K identity matrix, 1K is the Kby K matrix whose elements are all one, and Hq is asymmetri
al matrix. The aboveH is a standard settingfor QA (Kadowaki and Nishimori, 1998). The 
ondi-tional probability of � given x, � and � is 
al
ulatedbyp(�jx;�;�) = �T e��H�Tr (e��H) = �T�q� = Tr ��q��T �;(11)where �q = e��HTr (e��H) is a density matrix.Note that H be
omes diagonal if � is zero, in whi
h
ase it redu
es toH
, and quantum log-likelihood log p(x; �; �)in Eq. (8) be
omes 
lassi
al loglikelihood log p(x) inEq. (5) if � is one.The following se
tion explains how we derived anapproximated posteriori distributions that maximizedthe lower bound of log p(x; �; �).4.2 DerivationLet �j be one of all the available 
lass assignmentstates of N data points, s.t. �j 2 �. The 
lass ofthe i-th data point in �j is denoted by ~�j;i, s.t. �j =NNi=1 ~�j;i. It is intra
table to evaluate logTrfe��Hgbe
ause H is not diagonal. However, we 
an approxi-mately tra
e e��H by Suzuki-Trotter expansion as fol-lows2 (Suzuki, 1976).p(x; �; �) � p(x; �; �;m) +O��2m� ; (12)p(x; �; �;m) =X�1 :::X�m mYj=1 e �m log p(x;�j)bNes(�j ;�j+1)f(�;�); (13)
2For details, please refer to Appendix of full version athttp://www.r.dl.it
.u-tokyo.a
.jp/~sato/paper/IBIS2009.pdf

s(�j ; �j+1) = NXi=1 Æ(~�j;i; ~�j+1;i); f(�;�) = log(a+ bb );(14)a = exp(���m ); b = 1Ka(a�K � 1); (15)where Æ(~�j;i; ~�j+1;i) = 1 if ~�j;i = ~�j+1;i, and Æ(~�j;i; ~�j+1;i) =0 otherwise. We assume a periodi
 boundary 
ondi-tion, i.e., ~�m+1;i = ~�1;i. m is 
alled Trotter num-ber where the above tra
e 
an be a

urately evaluatedwithin the limit of m ! 1. 1N s(�j ; �j+1) indi
ates asimilarity measure that takes [0,1℄ where 1N s(�j ; �j+1) =1 when �j = �j+1 and 1N s(�j ; �j+1) = 0 when �j and�j+1 are 
ompletely di�erent.In the following, we derive the lower bound of log p(x; �; �;m)by introdu
ing the approximated distributions q(�j)and q(�j) (j = 1; � � � ;m).log p(x; �; �;m) � F
[m;�℄ + Fq[m;�℄; (16)F
[m;�℄ =mXj=1fX�j Z q(�j)q(�j)�log p(x; �j ;�j)�effq(�j)q(�j) � d�jg; (17)Fq[m;�℄ =mXj=1X�j X�j+1 q(�j)q(�j+1)(N log b+ s(�j ; �j+1)f(�;�));(18)where �e� = �m is 
alled the e�e
tive inverse tempera-ture. If �e� = 1, F
[m;�℄ is the sum of m 
lassi
al vari-ational free energy, i.e., F
[m;� = 1℄ =Pmj=1 ~F [q(�j); q(�j)℄.Fq[m;�℄ be
omes large as �j and �j+1 move approa
hea
h other. In pra
ti
e, the Trotter number m indi-
ates the number of multiple SAVBs with di�erent ini-tializations. q(�j) and q(�j) are the approximations ofposterior distributions in the j-th SAVB where indexj = 1; � � � ;m is randomly labeled. f(�;�) indi
ates theintera
tion between the j-th and the j + 1-th SAVB.One problem 
rops up here. The 
lass labels arenot always 
onsistent between the j-th and the j + 1-th SAVB, i.e., 
lass label k in the j-th SAVB doesnot always 
orrespond to 
lass label k in the j + 1-th SAVB be
ause the initialization of SAVBs is notthe same. For example, assume that (zj;1; zj;2; zj;3) =(1; 1; 2) and (zj+1;1; zj+1;2; zj+1;3) = (2; 2; 1) where zj;idenotes the latent 
lass label of the i-th data point inthe j-th SAVB. In this situation, it 
an be said that




lass label 1 in the j-th SAVB does not 
orrespond to
lass label 1 but 
lass label 2 in the j + 1-th SAVB.Let us introdu
e the proje
tion �j in 
lass labels toabsorb the di�eren
e of 
lass labels between the j-thand the j + 1-th SAVB. k0 = �j(k) indi
ates that k inthe j-th SAVB 
orresponds to k0 in the j+1-th SAVB.In this way, we have Æ(~�j;i; ~�j+1;i) =PKk=1 �j;i;k�j+1;i;�j (k)where ~�j;i = (�j;i;1; � � � ; �j;i;K), i.e., �j;i;k takes 1 ifzj;i = k, and otherwise 0. q(�j;i;k) denotes q(zj;i = k).We haveFq[m;�℄ =mN log b+ f(�;�) mXj=1 NXi=1 KXk=1 q(�j;i;k)q(�j+1;i;�(k)):(19)Therefore, we obtain the following updates by takingthe fun
tional derivatives of F
[m;�℄ + Fq[m;�℄ withrespe
t to q(�j;i;k) and q(�j) , and equating them tozeroq(�j;i;k) / expfZ q(�j)�e� log p(x; �j ;�j)d�j+f(�;�)(q(�j�1;i;��1j�1 (k)) + q(�j+1;i;�j (k)))g(20)q(�j) /p(�j)�eff expfX�j q(�j)�e� log p(x; �j ;�j)g;(21)where ��1 is the inverse proje
tion of �. q(�j;i;k) in-di
ates the probability that the latent 
lass of the i-thdata point will be k in the j-th SAVB. As 
lari�edby Eq. (20), q(�j;i;k) approa
hes q(�j�1;i;��1j�1(k)) andq(�j+1;i;�j (k)) as f(�;�) In
reases. Therefore, f(�;�)works as the intera
tion explained by Fig 1(b).4.3 Estimates of Class-Label Proje
tion�We estimate the 
lass label proje
tion, �, be
ausesu
h proje
tions represent impli
it information. Weestimate � by maximizing F
[m;�℄ + Fq[m;�℄．To bemore pre
ise, we extra
t the pairs (k; �j(k))(j = 1; � � � ;m)that maximize mXj=1 NXi=1 KXk=1 q(�j;i;k)q(�j+1;i;�j (k)) in Eq.(19). This is 
alled the \assignment problem", whi
his one of the fundamental 
ombinatorial optimizationproblems. Even though the Hungarian algorithm solvesthe assignment problem with 
omputational 
omplex-

ity O(K3), we use the following approximation algo-rithm whose 
omputational 
omplexity is O(K2)�j(k) = argmaxk0 NXi=1 q(�j;i;k)q(�j+1;i;k0 ); (22)��1j�1(k) = argmaxk0 NXi=1 q(�j;i;k)q(�j�1;i;k0 ): (23)The �j above means that k in the j-th SAVB 
orre-sponds to k0 in the j + 1-th SAVB that has the high-est 
orrelation between (q(�j;1;k); � � � ; q(�j;N;k)) and(q(�j+1;1;k0 ); � � � ; q(�j+1;N;k0 )).5 ExperimentsWe applied SAVB and QAVB to latent Diri
hlet allo-
ation (LDA) (Blei et al., 2003). We used the Reuters
orpus3 and the Medline 
orpus4.We randomly 
hose1,000 do
uments from the Reuters 
orpus that had avo
abulary of 12,788 items. We randomly 
hose 1,000do
uments from the Medline 
orpus that had a vo
ab-ulary of14,252 items. We set the number of topi
s ofLDA to 20.5.1 Annealing s
heduleThe annealing s
hedule of temperature T (in pra
-ti
e, inverse temperature � = 1T ) and quantum e�e
tparameter � exert a substantial in
uen
e of SAVB andQAVB pro
esses. Although a 
erti�ed s
hedule fortemperature is well known in Monte Carlo simulations(Geman and Geman, 1984), we have not yet obtainedany mathemati
ally rigorous arguments for T and �in SAVB and QAVB. Sin
e intera
tion f is a fun
tionof � and �, we have to 
onsider the s
hedule of f inpra
ti
e.In this paper, we use the annealing s
hedule � =�0rt� and �e� = �e�0rt�eff that Katahira et al. (2008)used. t denotes the t-th iteration.We also use the following annealing s
hedule � =�0 1pt Kadowaki and Nishimori (1998) used. We triedthe s
hedules of � with 
ombinations of �0=0:2, 0:4,0:6 and 0:8, and r�=1:05, 1:1 and 1:2 in SAVB. Asa results, we observed �0 = 0:6 and r� = 1:05 
re-ated an e�e
tive s
hedule in SAVB for LDA. The toolow inverse temperature did not work well in LDA.3http://www.daviddlewis.
om/resour
es/test
olle
tions/reuters21578/4http://www.nlm.nih.gov/pubs/fa
tsheets/medline.html



This observation was similar to SAVB for the hiddenMarkov model (Katahira et al., 2008). Therefore, weset �0 = �e�0 = 0:6 and r� = r�eff = 1:05 in SAVB andQAVB. We varied �0 and have shown the s
hedule of� and f in Fig.3.5.2 Experimental resultsWe ran QAVB �ve times in all experiments with aTrotter number, m, of 10. The results from this exper-iment were the average of the minimum negative varia-tional free energy, minjf� ~F [q(�j); q(�j)℄g, of ea
h run.SAVB was randomly restarted until it 
onsumed thesame amount of time as QAVB. We ran �ve bat
hesof SAVB, and ea
h bat
h 
onsisted of 20 repetitionsof SAVB. The results from this experiment were theaverage of the minimum variational free energy of allbat
hes. These experimental 
onditions for QAVB andSAVB enabled a fair 
omparison of these two experi-ments in terms of the exe
ution time. In fa
t, theaveraged exe
ution times for QAVB (m = 10) and 20SAVBs 
orresponds to 20.5 and 22.3 h for Reuters, and20.4 and 22.9 h for Medline. We set the number of it-erations to 300 in SAVB and QAVB for LDA.Fig.4 plots the averages for the minimum negativevariational free energy with the mean squared error forReuters and Medline. In both 
orpora, ea
h of whi
hhas di�erent properties, QAVB outperforms SAVB forea
h �0 be
ause the introdu
tion of a novel un
er-tainty into a model, in this 
ase LDA, works well.QAVB approa
hes SAVB as �0 in
reases be
ause in-tera
tion f remains 0 in the limited number of iter-ations. Moreover, we observed QAVB worked well ifintera
tion f > 0 after SAVBs �nd sub-optimal states.We think fast s
hedules, i.e. small �0, did not performwell be
ause the term with intera
tion f in Eq. (20)is noisy when q(�) is not estimated a

urately in thesmall number of iterations.6 Con
lusionWe proposed quantum annealing for variational Bayesinferen
e (QAVB). QAVB is a generalization of the
onventional variational Bayes (VB) inferen
e and sim-ulated annealing based VB (SAVB) inferen
e obtainedby using a density matrix that generalizes a �nite prob-ability distribution. QAVB is as easy as SAVB to im-plement be
ause QAVB only has to add intera
tion

図 3: S
hedules for inverse temperature � and intera
-tion f .

図 4: Comparison of QAVB and SAVB in Reuters(Top) and Medline (Bottom). The horizontal axis is�0. The verti
al axis is the average for the minimumenergy where the low energy is preferable.f to multiple SAVBs, and only one parameter, �0,is added in pra
ti
e. The 
omputational 
omplexityof QAVB is larger than that of SAVB be
ause QAVBlooks like m parallel SAVBs with intera
tions. How-ever, we empiri
ally demonstrated that QAVB worksbetter than SAVB whi
h is randomly restarted untilit uses the same amount of time as QAVB in latentDiri
hlet allo
ation (LDA). A
tually, it is typi
al torun SAVB many times be
ause SAVB does not ne
es-sarily �nd a global optimum and is trapped by poorlo
al optima at low temperature. In pra
ti
e, the bot-tlene
k in QAVB is the 
omputational 
omplexity ofthe proje
tion of 
lass labels in Se
tion 4.3, whi
h is a



sear
h problem for one nearest neighbor. An improve-ment in this algorithm to proje
t 
lass labels wouldlead to more e�e
tive QAVB.Finally, let us des
ribe future work. We intend to in-vestigate an e�e
tive proje
tion algorithm, other 
on-stru
tions of quantum e�e
t Hq, and a suitable s
hed-ule of a quantum �eld for �. We also plan to applyQAVB to the hidden Markov model.A
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