
情報論的学習理論テクニカルレポート 2009Tehnial Report on Information-Based Indu-tion Sienes 2009 (IBIS2009)Latent Dirihlet Alloationの量子アニーリング変分ベイズ学習
佐藤一誠�Issei Sato 栗原賢一yKenihi Kurihara 田中宗zShu Tanaka 宮下 精二xSeiji Miyashita 中川 裕志{Hiroshi NakagawaAbstrat: This paper presents a quantum annealing variant of variational Bayes (QAVB)for Latent Dirihlet alloation(LDA). QAVB estimates latent topis in LDA by introduing\quantum e�et" where we assume that the states of latent topis are quantum states.Experiments revealed QAVB �nds a better loal optimum than simulated annealing interms of the variational free energy in LDA.Keywords: Latent Dirihlet alloation, Variational Bayes, Quantum annealing1 IntrodutionLatent Dirihlet alloation (LDA)(Blei et al., 2003)is one of the most famous topi models in doumentmodeling where douments are represented as randommixtures over latent topis (lasses) and eah topi isharaterized by a distribution over words. In termsof lustering, LDA is regarded as a semanti lusteringmodel for words in douments. In this study, we ex-plore a Bayesian inferene algorithm to estimate topis(word lasses) in LDA by introduing \quantum e�et"where we assume that the states of latent topis arequantum states.Several studies that are related to mahine learn-ing with quantum mehanis have reently been on-duted. The main idea behind these has been basedon a generalization of the probability distribution ob-tained by using a density matrix, whih is a self-adjointpositive-semide�nite matrix of trae one. Wolf (2006)onnets the basi probability rule of quantum me-hanis, alled the \Born Rule", whih formulates ageneralized probability by using a density matrix, tospetral lustering and other mahine learning algo-rithms based on spetral theory. Crammer and Glober-�東京大学情報理工学系研究科, e-mail sato�r.dl.it.u-tokyo.a.jp,Information Siene and Tehnology, University of TokyoyGoogle, e-mail kenihi.kurihara�gmail.om,z東京大学 物性研究所, e-mail shu-t�issp.u-tokyo.a.jp,Institute for Solid State Physis, University of Tokyox東 京 大 学 理 学 系 研 究 科, CREST, JST, e-mailmiya�spin.phys.s.u-tokyo.a.jp,Dept. of Physis, University of Tokyo, CREST and JST{東京大学 情報基盤センター, e-mail nakagawa�dl.it.u-tokyo.a.jp,Information Tehnology Center, University of Tokyo

son (2006) ombined a margin maximization shemewith a probabilisti modeling approah by inorporat-ing the onepts of quantum detetion and estimationtheory (Helstrom, 1969). Tanaka and Horiguhi (2002)proposed a quantum Markov random �eld using a den-sity matrix and quantum mehanis and applied to im-age restoration.Generalizing a Bayesian framework based on a den-sity matrix has also been proposed. Shak et al. (2001)proposed a \quantum Bayes rule" for onditional den-sity between two probability spaes. Warmuth et al.generalized the Bayes rule to treat a ase where theprior was a density matrix (Warmuth, 2005) and uni-�ed Bayesian probability alulus for density matrieswith rules for translation between joints and ondition-als (Warmuth, 2006). Typially, the formulas derivedby quantum mehanis generalization have retainedthe onventional theory as a speial ase when thedensity matries have been diagonal. Computing thefull posterior distributions over model parameters forprobabilisti graphial models, suh as latent Dirih-let alloation (Blei et al., 2003), remains diÆult inthese quantum Bayesian frameworks, as well as lassi-al Bayesian frameworks. In this paper, we generalizethe variational Bayes inferene (Attias, 1999), whih iswidely used framework for probabilisti graphial mod-els, based on ideas that have been used in quantummehanis.Variational Bayes (VB) inferene has been widelyused as an approximation of Bayesian inferene forprobabilisti models that have disrete latent variables.



For example, in a probabilisti mixture model, suh asa mixture of Gaussians, eah data point is assigned toa latent lass, and a latent variable orresponding toa data point indiates the latent lass. VB is an op-timization algorithm that minimizes the ost funtion.The ost funtion, alled the negative variational freeenergy, is a funtion of latent variables. We have alledthe ost funtion \energy" in this paper.Sine VB is a gradient algorithm similar to the Ex-petation Maximization (EM) algorithm, it su�ers froma loal optimal problem in pratie. Deterministi an-nealing (DA) algorithms have been proposed for theEM algorithm (Ueda and Nakano, 1995) and VB (Katahiraet al., 2008) based on simulated annealing (SA) (Kirk-patrik et al., 1983) to overome issue with loal op-tima. We alled simulated annealing based VB SAVB.SA is one of the most well known physis based ap-proahes to mahine learning. SA is based on theonept of statistial mehanis, alled \temperature".We derease the parameter of \temperature" gradu-ally in SA. Beause the energy landsape beomes atat high temperature, it is easy to hange the state(see Fig.1(a)). However, the state is trapped at lowtemperature beause of the valley in the energy bar-rier and the transition probability beomes very low.Therefore, SA does not neessarily �nd a global opti-mum in the pratial ooling shedule of temperatureT . In physis, quantum annealing (QA) has attratedattention as an alternative annealing method of opti-mization problems by a proess that is analogous toquantum utuations (Apolloni et al., 1989; Kadowakiand Nishimori, 1998; Santoro et al., 2002). QA is ex-peted to help states avoid being trapped by poor loaloptima at low temperatures.The main point of this paper is to explain the novelDA algorithm for VB based on the QA (QAVB) wederived and present the e�ets of QAVB we obtainedthrough experiments. QAVB is a generalization of VBand SAVB attained by using a density matrix. Wedesribe our motivation for deriving QAVB in termsof a density matrix in Setion 3. Here, we overviewthe QAVB that we derived. Interestingly, althoughQAVB is generalized and formulated by a density ma-trix, the algorithm for QAVB we �nally derived doesnot need operations for a density matrix suh as eigen-value deomposition and only has simple hanges from

the SAVB algorithm.Sine SAVB does not neessarily �nd a global op-timum, we still need to run multiple SAVBs indepen-dently with di�erent random initializations where mdenote the number of SAVBs. Here, let us onsiderrunning dependently, not independently, multiple SAVBswhere \dependently" means that we run multiple SAVBsintroduing interation f among neighboring SAVBsthat are randomly numbered suh as j� 1, j and j+1(see Fig.1(b)). In Fig.1, �j indiates the latent lassstates of N data points in the j-th SAVB. The inde-pendent SAVBs have a very low transition probabil-ity among states, i.e., they have been trapped, at hightemperature as shown in Fig.1(), while the dependentQAVBs an hanges the state in that situation. Thisis beause interation f starts from zero (i.e., \inde-pendent"), gradually inreases, and makes �j�1 and�j approah eah other, the state will then be movedinto ��. If there is a better state around sub-optimalstates that the independent SAVBs �nd, the depen-dent SAVBs are expeted to work well. The depen-dent SAVBs are just QAVB where interation f andthe above sheme are derived from QA mehanisms aswill be explained in the following setion.This paper is organized as follows. In Setion 2, weintrodue the notations used in this paper. In Se-tion 3, we motivate QAVB in terms of a density ma-trix. Setion 4 and 5 explain how we derive QAVB andpresent the experimental results in latent Dirihlet al-loation (LDA). Setion 6 onludes this paper.2 PreliminariesWe assume that we have N data points, and theyare assigned to K latent lasses. The latent lass ofthe i-th data point is denoted by the latent variable zi.zi = k indiates that the latent lass of the i-th datapoint is k. The latent lass of the i-th data point isalso denoted by K dimensional binary indiator ve-tor ~�i where if zi is equal to k, the k-th element of~�i is equal to 1 and the other elements are all equalto 0. The number of available lass assignment of alldata points is KN . The lass assignment of all datapoints is denoted by KN dimensional binary indiatorvetor � = NNi=1 ~�i where N is the Kroneker prod-ut, whih is a speial ase of a tensor produt. If Ais k-by-l matrix and B is an m-by-n matrix, then the
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図 1: (a) Shemati piture of SAVB. (Upper panel) At low temperature, the state often falls into loal optima.(Bottom panel) At high temperature, sine the energy landsape beomes at, the state an hange over a widerange. (b) and () Shemati piture of QAVB. (b) QAVB onnets neighboring SAVBs. () �j an reah ��owing to the interation f . It seems to go through energy barrier.Kroneker produt ANB is the km-by-ln blok ma-trix as follows: ANB = 0BB�a11B � � � a1lB... . . . ...ak1B � � � aklB1CCA. Forexample, if K = 2, N = 2, z1 = 1 (~�1 = (1; 0)T ) andz2 = 2 (~�2 = (0; 1)T ), then � = ~�1N ~�2 = (0; 1; 0; 0)T .Let x = (x1; � � � ;xN ) denote the N observed datapoints and � denote the model parameters. �(l) indi-ates the l-th latent lass states of KN available la-tent lass states. For example, if K = 2 and N = 2,then �(1) = (1; 0; 0; 0)T , �(2) = (0; 1; 0; 0)T , �(3) =(0; 0; 1; 0)T and �(4) = (0; 0; 0; 1)T . The set of avail-able latent lass states is denoted by � = f�(l)j(l =1; 2; � � � ;KN )g.3 Motivation for QAVB in termsof Density matrixFor those unfamiliar with quantum information pro-essing, we will explain a density matrix whih an beused as an extension of onventional probability. Ourde�nition of a density matrix is based on (Warmuth,2006).A density matrix is a self-adjoint positive-semide�nitematrix and its trae is one. Conventional probabilitywhih we alled lassial statistis an be expressed bya diagonal density matrix as follows. For example, letus onsider the ase of two data points and two la-tent lasses as well as Setion 2. We de�ne four states,denoted by indiator vetors f�(i)g4i=1, and probabil-

ity vetor p = (p1; p2; p3; p4)T , where pi indiates theourrene probability of the i-th state �(i).Then, the density matrix of this system is given bydiagfp1; p2; p3; p4g = 4Xi=1 pi�(i)�(i)T ; (1)where diagf�g indiates diagonal matrix. We an ex-tend the onept of probability by introduing non-diagonal elements in a density matrix whih is alledquantum statistis. A state of a system in quantumstatistis is de�ned by a unit (olumn) real vetor1 , u,where dyaduuT has trae one, Tr �uuT � = Tr �uTu� =1. A density matrix, �, generalizes a �nite probabilitydistribution and an be de�ned as a mixture of dyads,� =Xi piuiuTi ; (2)where pi is a mixture proportion (oeÆient) that isnon-negative and sums to one. pi spei�es the propor-tion of the system in state ui. A density matrix as-signs a probability to the unit vetor or its assoiateddyad given by p(u) = Tr ��uuT � (= uT�u). This isalled the \Born rule" in quantum mehanisms. A-ording to Gleason's theorem, there is a one to oneorrespondene between generalized probability distri-butions and density matries (Gleason, 1957). For ex-ample, when a state vetor is u = � 12 ; 0; p32 ; 0�, it1A state vetor generally does not need to be a restrited realvetor. If we onsider a omplex vetor, the de�nition of thetrae of a dyad is replaed by Tr (uu�) = Tr (u�u) = 1, whereu� indiates omplex onjugate of u. However, for simpliity,we have restrited the real vetor in this paper.



represents the mixture of the �rst state and the thirdstate with probability � 12�2 = 14 and �p32 �2 = 34 , re-spetively.A probabilisti model employs unertainty to modelphenomena, and has demonstrated its pratially inmany sienti� �elds. Although lassial statistis in-volves unertainty over mixture proportions (fpig), itrestrits state vetors to indiator vetors (f�(i)g). Inontrast, quantum statistis involves unertainty overnot only mixture proportions (fpig) but also state ve-tors (fuig) beause if density matrix � has o�-diagonalelements, state vetors fuig take arbitrary vetors.Therefore, a probabilisti model based on quantumstatistis is a more generalized model in terms of uner-tainty, and the generalization is expeted to be moreuseful. In the same way, sine lassial VB infereneinluding SA variants only involves unertainty overmixture proportions, this paper proposes a method ofmaintaining unertainty over state vetors.Finally, Fig 2 sums up the relationship between VB,SAVB, and QAVB in terms of a density matrix. SAVBand QAVB ontrol unertainty of mixture proportionsvia temperature T . However, QAVB an ontrol theunertainty of state vetors by introduing quantume�et parameter � that is desribed in Setion 4, lead-ing to enhaned generalization.
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図 2: The unertainty over mixture proportions hasbeen well studied in mahine learning. VB and SAVBalso only involve unertainty over mixture proportions.We study the unertainty over another omponent ofa density matrix, state vetors. QAVB involves uner-tainty over not only mixture proportions but also statevetors.

4 Quantum Annealing for Vari-ational Bayes InfereneThis setion explains how we derive update equa-tions for QAVB. First, we de�ne the lower bound of themarginal likelihood in QAVB as typial VB. Then, weapply Suzuki-Trotter expansion (Trotter, 1959; Suzuki,1976) to the marginal of QA to analytially obtain up-date equations.4.1 Introduing Quantum E�etWe de�ne H with a KN by KN diagonal matrix asfollows:H = diagf� logp(x; �(1)); � � � ;� log p(x; �(KN ))g(3)The onditional probability of indiator state vetor �given x is alulated byp(�jx) = p(x; �)p(x) = �T e�H�Tr (e�H) = �T�� = Tr ����T �;(4)where � = e�HTr (e�H ) is a density matrix.The marginal log-likelihood of N data points is for-mulated as log p(x) = logTrfe�Hg: (5)Sine the fully onditional posteriors are intratable,VB inferene is proposed as an approximated algo-rithm for estimating onditional posteriors.The marginal log-likelihood of p(x) an be lowerbounded by introduing distribution over latent vari-ables �, parameters � and the approximate distribu-tion q(�)q(�) of a posteriori distribution p(�;�jx) asfollows.log p(x) �X� Z q(�)q(�) log p(x; �;�)q(�)q(�) d� (6)= ~F [q(�); q(�)℄: (7)We maximize ~F [q(�); q(�)℄ with respet to q(�)q(�)to obtain a better approximation of p(�;�jx) in VBinferene. ~F [q(�); q(�)℄ is alled the variational freeenergy.We derive QAVB by maximizing the lower bound ofthe following marginal log-likelihood.log p(x;�;�) = logTrfe��Hg; (8)



where � is the quantum e�et parameter, � is inversetemperature, i.e., � = 1T , and we de�ne H with a KNby KN matrix as follows:H =H +Hq; (9)Hq = NXi=1 �xi; �xi = 0� i�1Oj=1 EK1A
 �x 
 NOl=i+1 EK! ;�x =�(EK � 1K); (10)where EK is the K by K identity matrix, 1K is the Kby K matrix whose elements are all one, and Hq is asymmetrial matrix. The aboveH is a standard settingfor QA (Kadowaki and Nishimori, 1998). The ondi-tional probability of � given x, � and � is alulatedbyp(�jx;�;�) = �T e��H�Tr (e��H) = �T�q� = Tr ��q��T �;(11)where �q = e��HTr (e��H) is a density matrix.Note that H beomes diagonal if � is zero, in whihase it redues toH, and quantum log-likelihood log p(x; �; �)in Eq. (8) beomes lassial loglikelihood log p(x) inEq. (5) if � is one.The following setion explains how we derived anapproximated posteriori distributions that maximizedthe lower bound of log p(x; �; �).4.2 DerivationLet �j be one of all the available lass assignmentstates of N data points, s.t. �j 2 �. The lass ofthe i-th data point in �j is denoted by ~�j;i, s.t. �j =NNi=1 ~�j;i. It is intratable to evaluate logTrfe��Hgbeause H is not diagonal. However, we an approxi-mately trae e��H by Suzuki-Trotter expansion as fol-lows2 (Suzuki, 1976).p(x; �; �) � p(x; �; �;m) +O��2m� ; (12)p(x; �; �;m) =X�1 :::X�m mYj=1 e �m log p(x;�j)bNes(�j ;�j+1)f(�;�); (13)
2For details, please refer to Appendix of full version athttp://www.r.dl.it.u-tokyo.a.jp/~sato/paper/IBIS2009.pdf

s(�j ; �j+1) = NXi=1 Æ(~�j;i; ~�j+1;i); f(�;�) = log(a+ bb );(14)a = exp(���m ); b = 1Ka(a�K � 1); (15)where Æ(~�j;i; ~�j+1;i) = 1 if ~�j;i = ~�j+1;i, and Æ(~�j;i; ~�j+1;i) =0 otherwise. We assume a periodi boundary ondi-tion, i.e., ~�m+1;i = ~�1;i. m is alled Trotter num-ber where the above trae an be aurately evaluatedwithin the limit of m ! 1. 1N s(�j ; �j+1) indiates asimilarity measure that takes [0,1℄ where 1N s(�j ; �j+1) =1 when �j = �j+1 and 1N s(�j ; �j+1) = 0 when �j and�j+1 are ompletely di�erent.In the following, we derive the lower bound of log p(x; �; �;m)by introduing the approximated distributions q(�j)and q(�j) (j = 1; � � � ;m).log p(x; �; �;m) � F[m;�℄ + Fq[m;�℄; (16)F[m;�℄ =mXj=1fX�j Z q(�j)q(�j)�log p(x; �j ;�j)�effq(�j)q(�j) � d�jg; (17)Fq[m;�℄ =mXj=1X�j X�j+1 q(�j)q(�j+1)(N log b+ s(�j ; �j+1)f(�;�));(18)where �e� = �m is alled the e�etive inverse tempera-ture. If �e� = 1, F[m;�℄ is the sum of m lassial vari-ational free energy, i.e., F[m;� = 1℄ =Pmj=1 ~F [q(�j); q(�j)℄.Fq[m;�℄ beomes large as �j and �j+1 move approaheah other. In pratie, the Trotter number m indi-ates the number of multiple SAVBs with di�erent ini-tializations. q(�j) and q(�j) are the approximations ofposterior distributions in the j-th SAVB where indexj = 1; � � � ;m is randomly labeled. f(�;�) indiates theinteration between the j-th and the j + 1-th SAVB.One problem rops up here. The lass labels arenot always onsistent between the j-th and the j + 1-th SAVB, i.e., lass label k in the j-th SAVB doesnot always orrespond to lass label k in the j + 1-th SAVB beause the initialization of SAVBs is notthe same. For example, assume that (zj;1; zj;2; zj;3) =(1; 1; 2) and (zj+1;1; zj+1;2; zj+1;3) = (2; 2; 1) where zj;idenotes the latent lass label of the i-th data point inthe j-th SAVB. In this situation, it an be said that



lass label 1 in the j-th SAVB does not orrespond tolass label 1 but lass label 2 in the j + 1-th SAVB.Let us introdue the projetion �j in lass labels toabsorb the di�erene of lass labels between the j-thand the j + 1-th SAVB. k0 = �j(k) indiates that k inthe j-th SAVB orresponds to k0 in the j+1-th SAVB.In this way, we have Æ(~�j;i; ~�j+1;i) =PKk=1 �j;i;k�j+1;i;�j (k)where ~�j;i = (�j;i;1; � � � ; �j;i;K), i.e., �j;i;k takes 1 ifzj;i = k, and otherwise 0. q(�j;i;k) denotes q(zj;i = k).We haveFq[m;�℄ =mN log b+ f(�;�) mXj=1 NXi=1 KXk=1 q(�j;i;k)q(�j+1;i;�(k)):(19)Therefore, we obtain the following updates by takingthe funtional derivatives of F[m;�℄ + Fq[m;�℄ withrespet to q(�j;i;k) and q(�j) , and equating them tozeroq(�j;i;k) / expfZ q(�j)�e� log p(x; �j ;�j)d�j+f(�;�)(q(�j�1;i;��1j�1 (k)) + q(�j+1;i;�j (k)))g(20)q(�j) /p(�j)�eff expfX�j q(�j)�e� log p(x; �j ;�j)g;(21)where ��1 is the inverse projetion of �. q(�j;i;k) in-diates the probability that the latent lass of the i-thdata point will be k in the j-th SAVB. As lari�edby Eq. (20), q(�j;i;k) approahes q(�j�1;i;��1j�1(k)) andq(�j+1;i;�j (k)) as f(�;�) Inreases. Therefore, f(�;�)works as the interation explained by Fig 1(b).4.3 Estimates of Class-Label Projetion�We estimate the lass label projetion, �, beausesuh projetions represent impliit information. Weestimate � by maximizing F[m;�℄ + Fq[m;�℄．To bemore preise, we extrat the pairs (k; �j(k))(j = 1; � � � ;m)that maximize mXj=1 NXi=1 KXk=1 q(�j;i;k)q(�j+1;i;�j (k)) in Eq.(19). This is alled the \assignment problem", whihis one of the fundamental ombinatorial optimizationproblems. Even though the Hungarian algorithm solvesthe assignment problem with omputational omplex-

ity O(K3), we use the following approximation algo-rithm whose omputational omplexity is O(K2)�j(k) = argmaxk0 NXi=1 q(�j;i;k)q(�j+1;i;k0 ); (22)��1j�1(k) = argmaxk0 NXi=1 q(�j;i;k)q(�j�1;i;k0 ): (23)The �j above means that k in the j-th SAVB orre-sponds to k0 in the j + 1-th SAVB that has the high-est orrelation between (q(�j;1;k); � � � ; q(�j;N;k)) and(q(�j+1;1;k0 ); � � � ; q(�j+1;N;k0 )).5 ExperimentsWe applied SAVB and QAVB to latent Dirihlet allo-ation (LDA) (Blei et al., 2003). We used the Reutersorpus3 and the Medline orpus4.We randomly hose1,000 douments from the Reuters orpus that had avoabulary of 12,788 items. We randomly hose 1,000douments from the Medline orpus that had a voab-ulary of14,252 items. We set the number of topis ofLDA to 20.5.1 Annealing sheduleThe annealing shedule of temperature T (in pra-tie, inverse temperature � = 1T ) and quantum e�etparameter � exert a substantial inuene of SAVB andQAVB proesses. Although a erti�ed shedule fortemperature is well known in Monte Carlo simulations(Geman and Geman, 1984), we have not yet obtainedany mathematially rigorous arguments for T and �in SAVB and QAVB. Sine interation f is a funtionof � and �, we have to onsider the shedule of f inpratie.In this paper, we use the annealing shedule � =�0rt� and �e� = �e�0rt�eff that Katahira et al. (2008)used. t denotes the t-th iteration.We also use the following annealing shedule � =�0 1pt Kadowaki and Nishimori (1998) used. We triedthe shedules of � with ombinations of �0=0:2, 0:4,0:6 and 0:8, and r�=1:05, 1:1 and 1:2 in SAVB. Asa results, we observed �0 = 0:6 and r� = 1:05 re-ated an e�etive shedule in SAVB for LDA. The toolow inverse temperature did not work well in LDA.3http://www.daviddlewis.om/resoures/testolletions/reuters21578/4http://www.nlm.nih.gov/pubs/fatsheets/medline.html



This observation was similar to SAVB for the hiddenMarkov model (Katahira et al., 2008). Therefore, weset �0 = �e�0 = 0:6 and r� = r�eff = 1:05 in SAVB andQAVB. We varied �0 and have shown the shedule of� and f in Fig.3.5.2 Experimental resultsWe ran QAVB �ve times in all experiments with aTrotter number, m, of 10. The results from this exper-iment were the average of the minimum negative varia-tional free energy, minjf� ~F [q(�j); q(�j)℄g, of eah run.SAVB was randomly restarted until it onsumed thesame amount of time as QAVB. We ran �ve bathesof SAVB, and eah bath onsisted of 20 repetitionsof SAVB. The results from this experiment were theaverage of the minimum variational free energy of allbathes. These experimental onditions for QAVB andSAVB enabled a fair omparison of these two experi-ments in terms of the exeution time. In fat, theaveraged exeution times for QAVB (m = 10) and 20SAVBs orresponds to 20.5 and 22.3 h for Reuters, and20.4 and 22.9 h for Medline. We set the number of it-erations to 300 in SAVB and QAVB for LDA.Fig.4 plots the averages for the minimum negativevariational free energy with the mean squared error forReuters and Medline. In both orpora, eah of whihhas di�erent properties, QAVB outperforms SAVB foreah �0 beause the introdution of a novel uner-tainty into a model, in this ase LDA, works well.QAVB approahes SAVB as �0 inreases beause in-teration f remains 0 in the limited number of iter-ations. Moreover, we observed QAVB worked well ifinteration f > 0 after SAVBs �nd sub-optimal states.We think fast shedules, i.e. small �0, did not performwell beause the term with interation f in Eq. (20)is noisy when q(�) is not estimated aurately in thesmall number of iterations.6 ConlusionWe proposed quantum annealing for variational Bayesinferene (QAVB). QAVB is a generalization of theonventional variational Bayes (VB) inferene and sim-ulated annealing based VB (SAVB) inferene obtainedby using a density matrix that generalizes a �nite prob-ability distribution. QAVB is as easy as SAVB to im-plement beause QAVB only has to add interation

図 3: Shedules for inverse temperature � and intera-tion f .

図 4: Comparison of QAVB and SAVB in Reuters(Top) and Medline (Bottom). The horizontal axis is�0. The vertial axis is the average for the minimumenergy where the low energy is preferable.f to multiple SAVBs, and only one parameter, �0,is added in pratie. The omputational omplexityof QAVB is larger than that of SAVB beause QAVBlooks like m parallel SAVBs with interations. How-ever, we empirially demonstrated that QAVB worksbetter than SAVB whih is randomly restarted untilit uses the same amount of time as QAVB in latentDirihlet alloation (LDA). Atually, it is typial torun SAVB many times beause SAVB does not nees-sarily �nd a global optimum and is trapped by poorloal optima at low temperature. In pratie, the bot-tlenek in QAVB is the omputational omplexity ofthe projetion of lass labels in Setion 4.3, whih is a
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