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Extending the Use of Instrumental Variables for the Identification of

Direct Causal Effects in SEMs
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Abstract: In this paper, we present an extended set of graphical criteria for the iden-
tification of direct causal effects in linear Structural Equation Models (SEMs). Previous
methods of graphical identification of direct causal effects in linear SEMs include methods
such as the single door criterion, the instrumental variable and the IV-pair, and the ac-
cessory set. However, there remain graphical models where a direct causal effect can be
identified and these graphical criteria all fail. We present a few of these examples, and
presents an extended set of graphical criteria which uses descendants of the cause variable
as “path-specific instrumental variables”. The results can be used to identify the direct
causal effect as long as an certain conditions based on an extended set of graphical criteria
and the identifiability of other causal effects are satisfied.
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1 Introduction

Structural Equation Models (SEM) is a useful tool for
causal analysis, and is widely used in areas of social
science such as economics [Bollen 1989, Duncan 1975].
Research by scientists, social scientists, and computer
scientists in this area has allowed the problem to be
applied in real-life models.

In a linear SEM, the relationships between observed
variables are expressed in linear equations. The struc-
ture of the equations is such that they not only express
the linear relationships between the variables, together
with a stochastic error term for unobserved factors,
but also the causal dependence among the observed
variables. For each variable Y , its structural equation
where it appears on the left-hand side, the presence
(and absence) of a variable X on the right-hand side
specifies that X is (or is not) a direct cause of Y .

A fundamental problem in linear SEMs is to esti-
mate the strength of a certain direct causal effect from
one variable to another from a combination of observed
data and model structure. This is called the identifica-
tion problem [Fisher 1966]. Although many methods,
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both algebraic and graphical, have been developed over
the years, this problem is still not solved. Currently
there are no sufficient or necessary criteria for deciding
whether a causal effect can be identified from observed
data. Current identification methods based on graph-
ical criteria, including the single door criterion, the
front door criterion and the back door criterion, the
instrumental variable and the IV-pair, and the acces-
sory set, can be used to identify direct causal effects
only when certain conditions are met. However, there
exist direct causal effects that can be found using alge-
braic methods by solving for a set of equations involv-
ing the causal effects and the covariances but cannot
be identified using these methods.

The aim of this paper is thus to provide an ex-
tended set of graphical criteria for the identification
of direct causal effects in linear SEMs. We will show
examples where the desired causal effect can be iden-
tified using algebraic methods but cannot be identified
by current graphical methods. Then based on the alge-
bra involved in solving for these causal effects, we will
propose this new set of graphical criteria, where the
motivation is as follows. We will treat descendants of
the cause variable as “path-specific instrumental vari-
ables”, and find certain path-specific total effects which
can be used to compute the desired causal effect. This
extended set of graphical criteria we develop will thus
check if these path-specific effects can be computed
from covariance values that are available from observed
data based on the graphical model.



The outline of this paper is as follows. First, we
provide the preliminary definitions for this paper, in-
cluding linear SEMs, graphical models, statistical terms
such as covariances, Wright’s method of analysis, and
the identification problem. Then, we recap previous re-
sults in solving the parameter identification problem,
most notably IV-pairs [Brito and Pearl 2002a] and ac-
cessory sets [Tian 2007b]. Next, we present our new
results for the identification of direct causal effects in
linear SEMs based on an extended set of graphical cri-
teria, which are able to identify direct causal effects
which are not possible using previous results based on
graphical criteria. Finally, we conclude our paper and
provide a few discussions on future work on this topic.

2 Preliminaries

In statistical causal analysis, a directed acyclic graph
(DAG) that represents cause-effect relationships is called
a path diagram. A directed graph is a pair G = (V , E),
where V is a finite set of vertices and the set E of di-
rected edges is a subset of the set V × V of ordered
pairs of distinct vertices. Regarding the graph theo-
retic terminology used in this paper, for example, refer
to Pearl [Pearl 2000] and Spirtes et al. [Spirtes 2000].

Suppose a directed acyclic graph G = (V , E) with
a set V = {V1, · · · , Vn} of variables is given. The graph
G is called a path diagram, when each child-parent
family in the graph G represents a linear structural
equation model (SEM):

Vi =
∑

Vj∈pa(Vi)

αvivj
Vj + εvi

i = 1, . . . , n, (1)

where pa(Vi) is a set of parents of Vi and αvivj
(�= 0)

is called a direct causal effect. In addition random dis-
turbances εv1 , . . . , εvn

are assumed to be normally dis-
tributed with mean 0. Here, when εvi

is correlated
with εvj

(i �= j), this relationship is represented by
a bi-directed (dashed) arc between Xi and Xj in the
graph G.

Given a graph G, we define a path between the
variables X and Y as a sequence of variables, (V0 =
X, V1, . . . , Vn = Y ), where there is an edge between
each Vi and Vi+1 and each variable appears only once
in the sequence. A path is a directed path from X to
Y if all edges between Vi and Vi+1 are directed edges
from Vi to Vi+1.

We say that Vi is a collider in the path if both the
edges between Vi−1 and Vi and between Vi and Vi+1

point into Vi. If there are no colliders in the path, we
say that the path is an unblocked path between X and
Y . Given a set of variables Z, we say the path is an
open path if for all variables Vi which are not colliders
on the path, Vi /∈ Z, and for all variables Vi which are
colliders on the path, V ∈ Z where V is either Vi or a
descendant of Vi. If there are no open paths between
X and Y given Z, we say that X and Y are d-separated
given Z. Otherwise, we say that they are d-connected.

The conditional independence induced from a set
of equations in the form of Equation 1 can be ob-
tained from the graph G according to d-separation
[Pearl 2000], that is, when Z d-separates X from Y in
a path diagram G, X is conditionally independent of Y

given Z in the corresponding linear SEM [Spirtes 2000].
In this paper, it is assumed that a path diagram G

and the corresponding linear SEM are faithful to each
other; that is, the conditional independence relation-
ships in the linear SEM are also reflected in G, and
vice versa [Spirtes 2000].

Here, we denote some notations for further discus-
sion. Let σxy·z = cov(X, Y |Z = z), σyy·z = var(Y |Z =
z) and βyx·z = σxy·z/σxx·z be a conditional covariance
between X and Y given Z = z, a conditional variance
of Y given Z = z and the regression coefficient of x

in the regression model of Y on x and z, respectively.
When Z is an empty set, they are omitted from these
arguments.

A total effect τyx of X on Y is defined as the to-
tal sum of the products of the direct causal effects on
the sequence of directed edges along all directed paths
from X to Y . In addition, γyx = σxy − τyx is called a
spurious correlation between X and Y .

A path-specific total effect is defined as the total
sum of the product of the direct causal effects on the
sequence of directed edges along directed paths of our
interests from X to Y . For example, we define τyx·z
as the path-specific effects where all paths that pass
through any variable in Z are not counted. Similar
terms such as a path-specific correlation and a path-
specific spurious correlation can be defined similarly.

Wright’s method of path analysis [Wright 1934], which
plays an important role in this paper, can be used to
compute the covariance of two variables X and Y given
a graph G. If the set S contains all paths path = (V0 =
X, V1, . . . , Vn = Y ) that are unblocked paths between



X and Y , we have:

σxy =
∑

path

pv0v0

∏

i=0,...,n−1

pvivi+1 , (2)

where pvivi+1 is the parameter of the edge between Vi

and Vi+1, which is either αvi+1vi
(or αvivi+1) if it is a

directed edge, or γvi+1vi
if it is a bi-directed edge. We

define pv0v0 as σv0v0 if all edges in path are directed
edges, or 1 otherwise.

Given the matrix of observed covariances, we say
that a causal parameter, such as a total effect and a
direct causal effect, is identified if there is a unique
solution of this parameter given the covariances. If all
direct causal effects can be identified, we say that the
model is identified.

The single door criterion is one of the famous graph-
ical identification conditions for the direct causal ef-
fects, that is, the direct causal effect αyx of X on Y is
identifiable and is equal to βyx·z, if there exist a set Z

of variables such that (i) Z contains no descendant of
Y , and (ii) Z d-separates X from Y in GX→Y , formed
by removing X → Y from G [Pearl 2000]. A set Z

of variable satisfying both (i) and (ii) is said to satisfy
the single door criterion relative to (X, Y ).

3 Previous Results on Parame-
ter Identification

There have been many work done on the problems of
model identification and parameter identification us-
ing graphical test [Pearl 2000, Brito and Pearl 2002a,
Brito and Pearl 2002b, Brito and Pearl 2002c, Tian 2004,
Tian 2005]. Here we will focus only on the problem of
parameter identification, in particular the identifica-
tion of direct causal effects.

The previous most general result for the graphical
identification of direct causal effects is the use of an
IV-pair [Brito and Pearl 2002a], which embraces both
instrumental variables [Bowden and Turkington 1984]
and regression methods.

Lemma 1 Let the graph G contain the directed edge
X → Y , and let W be a variable. Given Z, a (pos-
sibly empty) set of variables which consists of non-
descendants of Y and distinct from W , we say that
W can be used as an instrumental variable given Z if
the following two conditions are satisfied:

1. In the graph GX→Y , formed by removing X → Y

from G, W and Y are d-separated given Z;

Figure 1: A path diagram where a multiple IV-pair are
necessary to identify the direct causal effects of X1 (or
X2) to Y .

2. In the graph G, W and X are d-connected given
Z, or W = X.

If the above conditions are satisfied, the direct causal
effect αyx is given by:

αyx =
σwy·z
σwx·z

. (3)

The pair (W, Z) can also be called an IV-pair.

Some identifiable direct causal effects cannot be
found using a single IV-pair, but by the collective ac-
tion of a multiple IV-pair, such as the example in Fig-
ure 1. We now define the conditions where a set of
direct causal effects can be identified using multiple IV-
pairs. The following lemma is adapted from previous
work, where the multiple IV-pair are called accessory
sets [Tian 2007a].

Lemma 2 Let the graph G contain the directed edges
X1 → Y, . . . , Xk → Y , and let ({W1, . . . , Wk} be a list
of variables. Given Z, a (possibly empty) set of vari-
ables which consists of non-descendants of Y and dis-
tinct from W1, . . . , Wk, we say that W1, . . . , Wk can be
used as instrumental variables given Z if the following
three conditions are satisfied:

1. In the graph GX1→Y,...,Xk→Y , formed by remov-
ing {X1 → Y, . . . , Xk → Y } from G, {W1, . . . , Wk}
and Y are d-separated given Z;

2. In the graph G, each pair of Wi and Xi are d-
connected given Z, or Wi = Xi, where we denote
this path as pathi;

3. If two different paths, pathi (from Wi to Xi) and
pathj (from Wj to Xj), have a common variable
U , then either both pathi[Wi, . . . , U ] and pathj [U,

. . . , Xj ] point into U , or pathj [Wj , . . . , U ] and
pathi[U, . . . , Xi] point into U , but not both, i.e.,
U cannot be a collider. Here, pathi[Wi, . . . , U ] is
a sub-path between Wi and U included in pathi,
and the similar notation is used for other paths.



Figure 2: Path diagram for Example 1.

If the above conditions are satisfied, the direct causal
effects αyx1 , . . . , αyxk

can be solved by a system of equa-
tions involving equation coefficients:

Pi,j = σwixj ·z,

Qi = σwiy·z,

where Qi =
∑

j Pi,jαyxj
.

The last criterion is adapted from the G criterion
[Brito and Pearl 2006] by adding the conditions neces-
sary to deal with colliders. This criterion ensures that
the system of equations we use to solve for the param-
eters αyx1 , . . . , αyxk

are linearly independent. It is a
sufficient condition for parameter identifiability.

However, there are many cases where a single direct
causal effect is identifiable even though neither IV-pair
nor a set of variables satisfying the single door criterion
can be found. We will illustrate this in the next section
with a few examples, and extend previous results on
graphical identification to find the direct causal effects.

4 New Results on Parameter Iden-
tification

Example 1 Assume that cause-effect relationships be-
tween variables can be described as the DAG shown in
Figure 2 and the corresponding linear SEM. The direct
causal effects of αxv and αwx can be identified easily
by the single door criterion [Pearl 2000]:

αxv = βxv,

αwx = βwx·v.

We now want to find the direct causal effect of αyx.
However, no IV-pair can be used to find αyx using
our previously shown results. Instead, we use Wright’s
method of path analysis (Equation 2). In particular,
we have:

σwy = (γwvαyx + γyvαwx)αxv + (σxxαyx + γyx)αwx,

σwx = γwvαxv + σxxαwx,

σyx = γyvαxv + σxxαyx + γyx.

Therefore, σwy − σyxβwx·v = γwvαyxαxv, and σwx −
σxxβwx·v = γwvαxv. Therefore, αyx can be computed
by:

αyx =
σwy − σyxβwx·v
σwx − σxxβwx·v

.

Notice that in this example, neither W nor V can
be used in any IV-pair to identify αyx. In particular for
W , the presence of an open path W ← X ↔ Y in the
graph GX→Y makes it invalid to be used as an instru-
mental variable. However, if we consider a latent vari-
able U along the bi-directed edge between W and X,
this latent variable, if observable, can be used as an in-
strumental variable to identify αwx [Cai and Kuroki 2008],
meaning we need to aim to find a method to “indi-
rectly” estimate the correlations both between U and
X, and U and Y . To do this, we use W , which is
a descendant of the cause variable X, as a “path-
specific instrumental variable”, and estimate the cor-
relations both between W and X, and between W and
Y , through certain paths in the graph. To proceed
with our discussion, we make the following definition.

Definition 1 Let the graph G contain the directed edge
X → Y , and let W be a descendant of X (but not Y ).
Given Z, a (possibly empty) set of variables which con-
sists of non-descendants of X and Y distinct from W ,
we say that W can be used as a “path-specific instru-
mental variable” given Z if the following two condi-
tions are satisfied:

1. In the graph G, W and X are d-connected given
Z, where at least one open path between W and
X given Z is not a directed path from X to W .

2. In the graph GX→Y , formed by removing X → Y

from G, W and Y are either d-separated given Z,
or d-connected such that all open paths between
W and Y given Z must contain a sub-path which
is a directed path from X to W .

The path diagram in Figure 2 satisfies the con-
ditions in Definition 1. In particular, in the graph
GX→Y , formed by removing X → Y from G, W and Y

are d-connected only through the path W ← X ↔ Y ,
where it contains a directed path from X to W .

Now we are ready to compute the direct causal ef-
fect αyx. We classify all open paths between W and Y

given Z in the graph G into two subsets:

1. S′
wy·z: Paths that contain a sub-path which is

a directed path from X to W (a path-specific
correlation between Y on W , denoted as s′wy·z);



2. Swy·z: Paths that do not contain a sub-path which
is a directed path from X to W (a path-specific
spurious correlation between Y and W , denoted
as swy·z).

Similarly, we classify all open paths between W and X

given Z in the graph G into two subsets:

1. S′
wx·z: Paths that are directed paths from X to

W (a path-specific total effect of X on W , de-
noted as s′wx·z);

2. Swx·z: Paths that are not directed paths from X

to W (a path-specific correlation between X and
W , denoted as swx·z).

First, the subsets S′
wy·z and Swy·z are mutually ex-

clusive, and so are the subsets S′
wx·z and Swx·z. There-

fore, we have:

s′wy·z + swy·z = σwy·z;

σxx·zs′wx·z + swx·z = σwx·z.

Second, S′
wx·z contains all open directed paths from

X to W given Z in the graph G. Since Z does not
contain any descendants of X, this is equivalent to all
open directed paths from X to W . Therefore, we have:

s′wx·z = τwx.

Third, any open path between X and Y given Z in the
graph G must not pass through W . Otherwise, as the
sub-path between W and Y does not pass through X,
this would violate the second condition of Definition 1.
Moreover, as all paths in S′

wx·z are directed paths from
X to W , they do not point into X. This means a path
in S′

wy·z can be (and must be) formed by extending a
path in S′

wx·z by an open path between X and Y given
Z. Therefore, we have:

s′wy·z = σyx·zs′wx·z = σyx·zτwx.

Fourth, as all paths in Swy·z do not contain a sub-path
which is a directed path from X to W , they must con-
tain the directed edge X → Y , otherwise this would vi-
olate the second condition of Definition 1. This means
a path in Swy·z can be (and must be) formed by ex-
tending a path in Swx·z by the directed edge X → Y .
Therefore, we have:

swy·z = αyxswx·z.

Finally, the first condition of Definition 1 (and the
faithfulness condition) ensures that swx·z �= 0. Com-
bining all equations, we have the following theorem.

Figure 3: Path diagram which satisfies the conditions
of Definition 1.

Theorem 1 Given a path diagram which satisfies the
conditions in Definition 1, the direct causal effect αyx

is given by:

αyx =
σwy·z − σyx·zτwx

σwx·z − σxx·zτwx
. (4)

Theorem 1 (Equation 4) expands on the the use
of the IV-pair in Lemma 1 (Equation 3), by allowing
the use of the “path-specific instrumental variable” W

which is a descendant of X, showing that the direct
causal effect αyx is identifiable as long as the total ef-
fect of X on W given Z, τwx, is identifiable.

For example, in the path diagram in Figure 2, the
total effect of X on W is given by τwx = αwx = βwx·v,
and we can use Equation 4 to compute αyx. For an-
other example, in the path diagram in Figure 3, given
Z, W can be used as an “path-specific instrumental
variable” for the direct causal effect of X → Y , and
the total effect of X on W is given by τwx = βwx·vz.

We conclude this section by stating that we can
use a set of multiple “path-specific instrumental vari-
ables” to identify multiple direct causal effects similar
to Lemma 2, as long as the G criterion is satisfied.
However, we do not state the details here.

5 Discussion and Conclusion

In this paper, we presented our new results for the iden-
tification of direct causal effects in linear SEMs based
on an extended set of graphical criteria, which are able
to identify direct causal effects which are not possible
using previous results based on graphical criteria. The
results are useful in the sense that they allow us to
effectively identify the desired direct causal effect, by
first checking whether the model satisfies the graphical
criteria, then using the necessary covariance values and
other total effects to compute the causal effect, instead
of solving the whole set of equations for all variables
given by Wright’s method of analysis.

In future work, there are three main areas which
we will pursue:



Algorithm We need to find an algorithm where we
can easily test for the satisfaction of our graphical cri-
teria given in this paper. Previous work on IV-pairs
and accessory sets use flow analysis to find the neces-
sary variables, and we look to adapt these algorithms
for our extended set of graphical criteria.

Completeness It remains to be seen if the graphi-
cal criteria given in this paper, combined with previ-
ous methods such as IV-pairs, are complete, i.e., they
are necessary conditions for the identification of causal
effects in linear SEMs. If not, we will look for counter-
examples, and if possible, extend further our graphical
criteria. In particular, our new graphical criteria are
dependent on a latent variable U , if observable, being a
valid instrumental variable for our direct causal effect.
Recent work has looked at the role of a latent variable
in identifying causal effects [Cai and Kuroki 2008].

Robustness Even in models where previous graphi-
cal criteria, such as instrumental variables, can be used
to identify a certain causal effect, our new set of cri-
teria may provide another distinct function for com-
puting this causal effect. The concept of robustness
[Pearl 2004] deals with whether a function for com-
puting a causal effect is still valid when certain inde-
pendence relations are relaxed in a model (by adding
edges between variables). If for all super-graphs of our
current graph, function A is valid whenever function
B is valid, then we say that function A is at least as
robust as function B, and should at leat be more pre-
ferred than function B, because function A will remain
valid even in cases where function B is no longer valid
when some of our current independence relations are
relaxed. Moreover, if we are given two functions that
are no more robust than one another, then the com-
putation of the desired causal effect using these two
different functions (and the fact that the two compu-
tations agree) will greatly confirm the correctness of
our model. Therefore, we would like to compare the
robustness quality of our new set of criteria compared
with previous graphical criteria.
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