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Abstract: This paper proposes the ellipsoidal SVM (e-SVM) that uses an ellipsoid center,

in the version space, to approximate the Bayes point. Since SVM approximates it by

a sphere center, e-SVM provides an extension to SVM for better approximation of the

Bayes point. Although the idea has been mentioned before [11], no work has been done

for formulating and kernelizing the method. Starting from the maximum volume ellipsoid

problem, we successfully formulate and kernelize it by employing relaxations. The resulting

e-SVM optimization framework has much similarity to SVM; it is naturally extendable to

other loss functions and other problems. A variant of the sequential minimal optimization

is provided for efficient implementation. The empirical results are shown to be consistent

with the Bayes point machines, in terms of classification performance, and difference from

other related methods is highlighted by using high dimensional datasets.
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1 Introduction

The most common interpretation of the support vec-

tor machines (SVMs) [19, 12] is that it separates posi-

tive and negative examples by maximizing the margin

that is the distance between supporting hyperplanes

of both examples. Another interpretation comes from

a concept called the version space. The version space

is a space of consistent hypotheses, or models with no

error. SVM maximizes the inscribing hypersphere to

find the center that is the SVM weight vector w. Given

the version space, the “sphere center” completely char-

acterizes the SVM model. The Bayes point is a point

through which all hyperplanes bisect the version space

by half, and is shown to have better generalization abil-

ity theoretically and empirically[6, 11].

Attempts to approximately find the Bayes point have

been done since the early studies of the version space

and the Bayes point. SVM can be considered as an

example. The Bayes point machines (BPM) [6] uses

a kernel billiard algorithm to find the center of mass
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in the version space. The analytic center machines

(ACM) [18] approximate the Bayes point by analytic

points of linear constraints.

The idea of using an ellipsoid rather than a sphere

has been mentioned in [11], although it was neither for-

mulated nor implemented because of its projected high

computational cost O(n3.5). Then a billiard algorithm

including BPM has been developed to alleviate the

computational challenge. However, as we have seen in

the history of SVM, seemingly expensive problem can

be made efficient by exploiting special structures in the

problem. Sequential minimal optimization (SMO) or

decomposition methods are notable examples of such

algorithms[9, 3]. Furthermore, recent development of

large scale linear SVMs [13, 8] impressively improves

the scalability of the quadratic optimization into prac-

tially linear order. Learning from the experience, we

are encouraged to develop and study the method of el-

lipsoidal approximation to BPM, which we refer to as

the ellipsoidal SVM (e-SVM).

e-SVM is formulated just like SVMs. Advantages in

formulating in such a way include possible adaptation

of theoretical characterization, optimization methods

developed for SVM. Furthermore, extensions to chang-



ing loss function or application to other kind of prob-

lems should be possible. These advantages would not

be obtained if we stick to BPM that has to rely on

sampling techniques that scale poorly on a large scale

dataset; In BPM, even the soft boundary formulation

is nontrivial and the kernel regularization is used after

all.

The e-SVM formulation is based on the maximum

volume inscribed ellipsoid (MVIE) problem. The origi-

nal MVIE problem consists of second order cone (SOC)

constraints and a semidefinite constraint. Although

the problem is convex and an interior point type method

can be applied for polynomial time convergence, the

“natural” kernelization, i.e, the inner-product based

mapping, is left as a challenge. For example, the sec-

ond order cone program in [16] resorts to the direct

kernel method where the original data matrix is re-

placed by the kernel matrix. e-SVM uses relaxation of

SOC constraints to make the dual kernelizable. This

technique has not been used before to the best of our

knowledge.

As with the MVIE problem, e-SVM has the log-

determinant term in the objective. Similar problems

can be seen in [14, 5, 4, 16]. e-SVM problem may be in-

terpreted as a combination of the regular SVM and the

minimum volume covering ellipsoid (MVCE) problem.

Thus, when optimized separately, e-SVM becomes very

similar to ellipsoidal kernel machine (EKM) [14]. If ap-

plied to one class problem, e-SVM would become simi-

lar to [5]. In other words, e-SVM can subsume other re-

lated methods and possesses bigger optimization prob-

lem. By changing the loss function to a strict convex

Bregman function, the Bregman’s method would be

applicable to solving e-SVM [4].

One direct interpretation of e-SVM is that it learns

the Mahalanobis metric in margin. That is, e-SVM

maximizes margin by adjusting the metric. In terms of

adjusting margin, the relative margin machines (RMM)

[15] address impact of data scaling on the performance

in SVM. Since SVMs do not take into consideration

of spread of data, a bad scaling can hurt the perfor-

mance. Although e-SVM has more degree of freedom

to adjust the margin, these two methods learn quite

different models as we will see in Section 4.

As the first step to solving the challenging e-SVM

problem efficiently, we adopt the sequential minimal

optimization (SMO). The modified SMO algorithm in-

deed shares many convenient features with that for

SVM, such as the closed-form solution for the min-

imal problem, Karush-Kuhn-Tucker (KKT) condition

violation check, etc. Although there should exist faster

algorithm to solve depending on the type of problems,

we decide to start from the simpler SMO algorithm

and study how e-SVM compares against BPM, SVM

and other related methods.

Section 2 formulates the e-SVM optimization prob-

lem. Section 3 describes the SMO algorithm adapted

for the e-SVM problem. Section 4 compares related

methods by a simple example. Section 5 gives experi-

mental results. Section 6 concludes the paper.

Notation: Throughout the paper, we assume that

m data points xi in n-dimensional space and the cor-

responding (target) label yi ∈ {−1, 1} are given. The

bold small letters represent vectors and the capital let-

ters represent matrices. The vector/matrix transpose

is T . The kernel matrix is given by K with Kij as its

element. trA denotes the trace of a matrix A. “s.t.”

in optimization problems means “subject to”. I is an

index set of m data points: I ∈ {1, . . . , m}. ‖A‖2 de-

notes the matrix 2-norm and ‖x‖2 the L2-norm of a

vector x.

2 Ellipsoidal support vector ma-

chine formulations

In this section, the e-SVM optimization problem is

formulated starting from that of SVM in the version

space, since it is a simpler counterpart of e-SVM.

The version space is a space of error zero models. For

linear models, it is the error-zero subspace of weight

vectors w. The data points are considered as hyper-

planes and the classification constraints are the feasible

region that is a polyhedron. The problem of finding a

maximum hypersphere inside the polyhedron can be

formulated as follows:

max
ρ,w,b

ρ s.t.
yi

(
xT

i w + b
)

‖xi‖2
≥ ρ, ‖w‖2 ≤ 1, i ∈ I

which corresponds to maximization of the minimum

distance between the center and the hyperplanes, in

the absence of the bias b. By allowing errors in the

above problem, we can get a soft-margin version of the



above problem.

min
ρ,w,b,ζ

−mρ + 1/ν

m∑

i=1

ζi

s.t. yi

(
xT

i w + b
)

+ t2i ζi ≥ t2i ρ, ‖w‖2 ≤ 1, i ∈ I (1)

where ti is defined to be ‖xi‖2 and ν > 0 is a given

constant. Note in the special case with ti = 1, Problem

1 becomes identical to the ν-SVM formulation.

To better approximate the “center of models”, an

ellipsoid, instead of a hypersphere, will be used to in-

scribe the polyhedron. The MVIE problem is a well-

known log-determinant optimization problem, see e.g.

[2]. A representation of an ellipsoid centered at w is

given by E = {Eu + w | ‖u‖2 ≤ 1, E � 0}. Thus the

constraints for SVM (1) are modified as follows:

yi

(
xT

i (Eu + w) + b
)
+ t2i ζi ≥ t2i ρ, ∀u, ‖u‖2 ≤ 1 (2)

Since Equation 2 holds for any u, it suffices to use the

lower bound of lhs in order to remove u:

yi

(
xT

i (Eu + w) + b
)

+ t2i ζi

≥ yi

(
xT

i w + b
)
− ‖Exi‖2 + t2i ζi ≥ t2i ρ (3)

where − yiExi

‖Exi‖2

= arg minu, ‖u‖=1(yix
T
i Eu) is used.

Furthermore, in order to obtain the largest ellipsoid

inscribing a polyhedron, the volume of the ellipsoid

should be maximized, which corresponds to maximiz-

ing the determinant of E (|E|), as the volume of an

ellipsoid is proportional to the determinant. In an op-

timization problem, log det is easier to handle and thus

adopted here as well. The resulting optimization prob-

lem is given as follows:

min
E,ρ,ζ,w,b

−λ (r log |E| + (1 − r)trE) − mρ +
1

ν

∑
ζi

s.t. yi

(
xT

i w + b
)
− ‖Exi‖2 ≥ t2i ρ − t2i ζi

‖w‖2 ≤ 1, ζi ≥ 0, i ∈ I, E � 0, (4)

where λ > 0 is a trade-off parameter and r is a constant

whose value takes 0 < r ≤ 1. The additional term trE

is introduced to gain numerical stability as suggested

in [5].

Note the role of ρ and |E| as maximizing margin

is similar and redundant; the determinant maximiza-

tion term can subsume the linear maximization of ρ
1. Hence, ρ is dropped from the problem hereafter,

1Our preliminary study confirmed that ρ becomes zero in

most cases

allowing us to remove λ:

min
E,ζ,w,b

−r log |E| + (1 − r)trE +
1

ν

∑
ζi

s.t. yi

(
xT

i w + b
)

+ t2i ζi ≥ ‖Exi‖2

‖w‖2 ≤ 1, ζi ≥ 0, i ∈ I, E � 0. (5)

This MVIE problem can be solved by using existing

techniques, including interior point methods or cut-

ting plane based approaches. Here we relax the SOC

constraint in Problem 5 in order to ease the high com-

putational complexity. This change, as we shall see,

plays a significant role in making the kernelized for-

mulation possible. As the first step, assume the ma-

trix E is written as E = E0 + B, where E0 is the

current solution and B is a deviation from it. By

the Taylor expansion, the SOC constraint is written

as ‖Exi‖2 = κi + 1
κi

xT
i E0Bxi + O(‖B‖2

2) where κi is

given by κi = ‖E0xi‖2. Using the convexity of SOC,

we get the following inequality.

‖Exi‖2 ≥ κi + (1/κi)x
T
i E0Bxi. (6)

Now the SOC constraints are replaced by linear con-

straints that are much easier to handle. In the special

case with E0 = cI, c → +0, the problem becomes

simple and may be used as the initial problem.

min
B,ξ,w,b

−r log |B| + (1 − r)trB +
∑

i

Ciξi

s.t. yi

(
xT

i w + b
)

+ ξi ≥ xT
i Bxi

‖w‖2 ≤ 1, ξ ≥ 0, i ∈ I, B � 0 (7)

where we define ξi = κ2
i ζi and Ci = 1

t2i ν
. This for-

mulates the ellipsoidal support vector machines primal

problem. Note the Taylor approximation gets less ac-

curate when ‖B‖2 becomes larger, which is the cost for

making the formulation feasible for kernelization done

in Section 2.2.

Problem 7 has some interesting similarity with other

methods. By putting B = Σ−1, it can be seen as a

variant of MVCE problem in which the radius in the

original problem is modified to a prediction dependent

constraint. Hence it can be viewed as a supervised ver-

sion of [14, 5]; unlike EKM, e-SVM solves the classifi-

cation problem at the same time. Shivaswamy et al.’s

formulation for handling missing and uncertain data

[16] looks similar to Problem 4, where the metric in

margin is given by the uncertainty in the data point.



In e-SVM, margin is given by the B-norm, which is

optimized simultaneously.

2.1 Dual formulation

It can be readily shown that Problem 7 is a convex

optimization problem with no duality gap. Hence the

complementarity can be used to solve the primal and

the dual problems, just like SVMs. The Lagrangian is

given as follows:

L = −r log |B| + (1 − r) trB +
∑

i

Ciξi

−
∑

i

αi

(
yi

(
xT

i w + b
)
− xT

i Bxi − ξi

)

+γ
(
‖w‖2

2 − 1
)
− πT ξ − tr(BD),

where α, γ, π and D are the Lagrange multipliers

for the classification constraints, norm constraint on

w, nonnegativity on ξ and positive semidefiniteness

on B, respectively. The optimality condition gives the

following relations2:

B−1 =
1

r

(
(1 − r)I +

∑

i

αixix
T
i

)
, D = 0

w =
1

2γ

∑

i

αiyixi,
∑

i

yiαi = 0, Ci − αi − πi = 0.

Thus using the above equations the dual problem is

written as follows:

max
α,γ

r log
∣∣B−1

∣∣− 1

4γ

∑

i,j

αiαjyiyjx
T
i xj − γ

s.t. B−1 =
1

r

(
(1 − r)I +

∑

i

αixix
T
i

)

∑

i

yiαi = 0, 0 ≤ αi ≤ Ci, γ > 0 (8)

A pleasant surprise is that B−1 is always positive

definite since αi ≥ 0, which is a great advantage,

allowing us to remove the constraint B−1 � 0 in (8).

2.2 Kernel formulation

In this subsection, we show how Problem 8 is ker-

nelized. For notational convenience, we use the matrix

notation as well as the vector notation wherever ap-

propriate. Note Problem 8 is very similar to the SVM

problems, with the only difference being the additional

2The log |B| term forces B to be full-rank. Thus D = 0 holds

by complementarity.

r log
∣∣B−1

∣∣ in the objective. By the matrix determi-

nant lemma, the following equality can be shown to

hold;
∣∣B−1

∣∣ =
∣∣∣I + A

1/2
XX

T
A

1/2

(1−r)

∣∣∣
∣∣ 1−r

r I
∣∣ , where X is

the data matrix X = [x1 . . .xm]T and A is a diagonal

matrix whose elements are give by Ai,i = αi. Note

that the last factor is a constant so it can be ignored.

By employing the kernel defined feature mapping

x 7→ φ(x), or XXT 7→ K, we have

∣∣∣I + 1
(1−r)A

1/2XXT A1/2
∣∣∣ 7→

∣∣∣∣I +
1

(1 − r)
A1/2KA1/2

∣∣∣∣

=

∣∣∣∣I +
1

(1 − r)
A1/2ZZT A1/2

∣∣∣∣

=

∣∣∣∣I +
1

(1 − r)
ZT AZ

∣∣∣∣

where K is decomposed as K = ZZT From the 2nd

line to the 3rd line the Sylvester’s determinant theo-

rem, a generalization of the Matrix determinant lemma,

is used. Note also the dimensionality of I changes

before and after the theorem is applied. In general,

Z can be any matrix such that K = ZZT including

Z = K1/2 so that a rank reduction method or sparsi-

fication method such as the incomplete Cholesky fac-

torization may be used. After removing the constant

terms, the kernel e-SVM optimization problem is given

by

max r log

∣∣∣∣∣I +
1

(1 − r)

∑

i

αizizi
T

∣∣∣∣∣

−
1

4γ

∑

i,j

yiyjαiαjKij − γ

s.t.
∑

i

yiαi = 0, 0 ≤ αi ≤ Ci, γ ≥ 0, (9)

with zi being the transpose of the i-th row of the

matrix Z: Z = [z1 . . . zm]T .

3 Sequential minimal optimiza-

tion

Although Problem 9 can be solved by an optimiza-

tion package, a customized solver should be developed

to take advantage of its similarity to the familiar SVM

formulation; ideally an SVM solver can be modified to

handle e-SVM. For this purpose, we develop a variant

of SMO for e-SVM.

The differences from the standard implementation

of SMO include ‖w‖2 being normalized to one, step



size optimization formula, and KKT conditions. The

weight normalization concerns optimization with re-

spect to γ and can be done via the iterative projection.

Step size optimization and active set selection using the

KKT condition are done very similar to those for SVM.

This section focuses on describing essential differences

as a guide to implementation.

3.1 Optimality conditions

SMO chooses an active set, a pair of data points,

to optimize at any iteration. The selection of a pair

critically affects the convergence speed. We adopt the

selection heuristic described in [9]: choose ones that

violate the KKT condition most. This subsection de-

rives the KKT condition and thus gives the criterion

for choosing the active set.

First, consider the dual of (9). The Lagrangian is

given by

L = −r log

∣∣∣∣∣
1 − r

r
I +

1

r

∑

i

αizizi
T

∣∣∣∣∣

+
1

4γ

∑

ij

yiyjαiαjKij + γ − η
∑

i

yiαi

−
∑

i

δiαi +
∑

µi (αi − Ci) .

Solving the optimality conditions, we have

(Fi − γ) yi − δi + µi − zi
T B̃zi = 0 (10)

γ =

√∑

ij

yiyjαiαjKij/2. (11)

with Fi = 1
2γ

∑
Kijyjαj and B̃ =

(
1−r

r I +
∑

i αizizi
T
)−1

.

Hence, by the complementarity, we have the following

KKT conditions:

• For αi = 0, δi > 0, µi = 0 ⇒ (Hi − β) yi ≥ 0

• For 0 < αi < Ci, δi, µi = 0,⇒ (Hi − β) yi = 0

• For αi = Ci, δi = 0, µi > 0 ⇒ (Hi − β) yi ≤ 0

with Hi = Fi − yizi
T B̃zi. Note the first term Fi cor-

responds to that in [9] and the second term is newly

introduced for the e-SVM problem. This means that

replacing Fi by Hi suffices to establish a version of the

SMO algorithm for e-SVM and can be easily integrated

into an existing SVM solver.

3.2 Step size computation

As explained, the KKT condition for e-SVM is easily

adopted to the existing SMO algorithm. Another im-

portant piece in SMO algorithm is to find the optimal

step size. The incremental step for αi can be expressed

as

αnew = αold + s (ei − yiyjej) , (13)

which satisfies the constraint
∑

i yiα
new
i = 0 given αold

is a feasible solution. ei is a vector of zeros except for

the i-th element being unity. Consider the following

objective function, U(s), after removing any constant

terms with respect to s:

U(s) = r log det B̃
−1

−
∑

i,j

1

4γ
αnew

i αnew
j yiyjKij − γ. (14)

The first term is modified using the update formula:

∣∣∣B̃
−1
∣∣∣ =

∣∣∣B̃
old−1 +

s

r

(
zizi

T − yiyjzjzj
T
)∣∣∣

=

∣∣∣∣∣I +
s

r

[
zi

T

−yizj
T

]
B̃

old
[zi yjzj ]

∣∣∣∣∣
∣∣∣B̃

old−1
∣∣∣

=

∣∣∣∣∣
1 + s

r ωii
s
ryjωij

− s
r yiωij 1 − s

r yiyjωjj

∣∣∣∣∣× const (15)

where ωij is defined to be ωij = zi
T B̃

old
zi and the

matrix determinant lemma is used for deriving the 2nd

line. The resulting matrix is merely a 2 × 2 matrix

determinant and easily expandable.

Likewise, we can rewrite the second term in (14) as

follows:

∑

i,j

αnew
i αnew

j yiyjKij =
∑

i,j

αold
i αold

j yiyjKij

−4βsyi (Fi − Fj)

−s2 (Kii − 2Kij + Kjj) .

Hence by putting all the pieces together, we have the

following optimality condition on s.

∂U(s)

∂s
= r

∂ log det B̃
−1

∂s
−

∂

∂s



 1

4γ

∑

ij

αiαjyiyjKij



 = 0

⇒ ra1 − a3 + (2ra2 − a1a3 − a4)s

−(a2a3 + a1a4)s
2 − a2a4s

3 = 0

with a1 = r(ωii−yiyjωjj), a2 = yiyj(ω
2
ij−ωiiωjj), a3 =

yi (Gi − Gj), a4 =
Kii+Kii−2Kij

2γ . This is merely a cubic

equation and can be solved analytically.

3.3 Computing B̃

At each iteration, access to B̃ is needed to calculate

ω’s. Specifically, the diagonal elements ωii are required



for the KKT violaiton check and ωij as well as ωii and

ωjj for the step size computation concerning an update

of αi and αj . Since we solve the dual α, as well as γ

in SMO, B̃
−1

is easily obtained, but getting B̃, in a

naive way, would require an inverse matrix operation

that is never done in practice.

A way to efficiently compute B̃ is to employ the

rank-one update of matrix inversion and factorize the

matrix in the following way: B̃ = B0 +
∑

i σiviv
T
i .

By using the Woodbury formula, B̃ is updated at each

SMO step involving update of αi and αj : B̃
new

=

B̃
old

+ σiviv
T
i + σjvjv

T
j , where vi = B̃

old
zi, ωii =

zi
T vi, σi = − s

r+sωii
. vj =

(
B̃

old
+ σiviv

T
i

)
zj , σj =

syiyj

r−syiyjzj
T vj

. Note this decomposition formula on B̃

enables us to do an incremental update of ω:

ωnew
kl = ωold

kl + σizi
T zkzi

T zl + σjzj
T zkzj

T zl

where ωold
kl = zk

T B̃
old

zl. This update formula is par-

ticularly useful when exploiting efficiency; it is evident

that computing ωkl with B̃ close to full-rank or dense is

overkill as SMO requires many updates. ωij ’s that are

cached will be updated via the vector-vector multipli-

cations. For ωij ’s that are not in the cache may require

the full matrix-vector multiplication, if B̃ is computed

and kept in memory. Otherwise, the conjugate gradi-

ent would need to be employed to calculate ωij from

B̃
−1

, see [7], for example. A recommendation is that

the diagonal elememts ωii are kept in memory as all

of them are used in any case for the KKT condition

violation check.

4 Related methods

Recently, several methods are proposed for improv-

ing generalization ability of SVMs. Ellipsoidal kernel

machines (EKM) are ellipsoidal gap-tolerant classifiers

that have lower bound of the VC dimension than that

of SVMs. The EKM algorithm first finds the minimum

volume ellipsoid enclosing data points. Then the nor-

mal SVM is applied to the transformed space where

data points are placed in a hypersphere.

Relative margin machines (RMM) addresses the is-

sue of scale invariance in SVMs. Being motivated by

a simple example where enlarging one feature dimen-

sion can drastically change the solution of an SVM,

RMM regularizes the amplitude of prediction value, or

projection of data point onto the weight vector w so

as to reduce the effect of influence from badly scaled

features.

5 Experimental study

5.1 Comparison against BPM

It is important to examine the quality of e-SVM solu-

tions to understand how the approximation and relax-

ation used in e-SVM affect the performance. In this

paper, we directly compare the classification perfor-

mance using the standard real dataset as a delegate to

an assessment from an optimization perspective, which

is left for a longer version of the paper. Also, BPM and

e-SVM are compared against SVM to understand how

much performance lift can be realized.

In this regard, a wide range of datasets in the UCI

machine learning repository [1] are used. Both SVM

and e-SVM are implemented in pure MATLAB, using

the SMO. Note ν-SVM formulation is adopted in this

study, since e-SVM is based on ν-SVM. BPM’s imple-

mentation follow [6] and is implemented in C with an

R interface. For the experimental setting, 100 random-

izations are done and the average error rates in percent

is reported in Table 1 and 2. In order to evaluate sig-

nificance of statistics, the paired t-tests are conducted

for comparing BPM with SVM, and e-SVM with SVM.

SVM. Bold numbers denote the test results being sig-

nificant.

Both hard and soft margin/boundary cases are ex-

amined. The training and testing splits are identical

to [10] except for sonar, iono, wisconsin-breastcancer

(WISC-BC). The splits for sonar are set identical to

[6] and those for iono are created randomly in advance

and identical splits are applied for all methods. For e-

SVM and SVM, the tolerance of KKT violation is set

to 10−3. For BPM the tolerance parameter for con-

vergence check is set to 10−3. Model parameters are

selected following [10]: using five-fold cross validation

on the first five set and take the median of the best

parameters. The best model parameters are fixed to

conduct the 100 repetitions. Parameters including C

and r for e-SVM, ν for SVM and λ in BPM are selected

by the cross validation, in which 10-20 parameter val-

ues are used to cover a wide range of the search space.

For hard margin e-SVM, r is set to 1 − 10−6. The ra-

dial basis function kernel is used for this experiment.



Table 1: Error rates for hard boundary/margin classi-

fiers

Data set SVM BPM e-SVM
thyroid 4.96 (.24) 4.24 (.22) 4.42 (.25)
heart 25.86 (.40) 22.58 (.33) 20.87 (.32)
diabetes 33.87 (.21) 31.06 (.22) 29.68 (.24)
wave 13.19 (.12) 12.02 (.08) 11.59 (.07)
banana 16.24 (.14) 13.70 (.10) 12.76 (.08)
wisc-bc 4.22 (.13) 2.56 (.10) 3.28 (.12)
bupa 37.04 (.39) 34.5 (.38) 32.71 (.35)
german 30.07 (.22) 27.16 (.24) 26.34 (.27)
brest 35.17 (.51) 33.04 (.48) 31.96 (.51)
sonar 14.90 (.38) 16.26 (.36) 16.87 (.38)
iono 7.94 (.25) 11.45 (.25) 5.92 (.21)

The kernel width parameters are set to identical to

those reported in [6], except for iono, for the rest of

the datasets, those reported for SVMs in [10] are used.

The overall performance for BPM and e-SVM is very

similar. This suggests that the approximations made

to formulate e-SVM do not affect the classification per-

formance for the datasets examined. In comparison

with SVM, the hard boundary/margin classifiers sig-

nificantly outperform those of SVM. For soft bound-

ary/margin cases, however, the advantage is reduced.

Although performance of BPM and e-SVM is slightly

better than that of SVM, the difference is small, which

is a consistent observation with [6].

Scalability

The computational cost is illustrated to see how e-

SVM scales in comparison with BPM, using the adult

dataset [1]. The entire dataset is split into training,

testing and validation. Model selection is done using

the validation set of size 1000 and fixed for the rest

of the experiments. The size of the training set is in-

creased from 100 up to 4000. Test performance is ob-

served to check if the there is no significant difference

between the methods. Obviously, e-SVM runs much

faster than BPM as the data size grows. Using the

log-log fit, e-SVM scales as m2.1 whereas BPM takes

as much as m2.7. Note SVM takes only 30 secs for the

problem of size 4,000 (not shown); although e-SVM sig-

nificantly beats BPM, there is much room to improve

the efficiency when compared with SVM.

5.2 High dimensional datasets

The datasets used in Subsection 5.1 are in relatively

low dimensions. With the ability to adjust the margin

metric, it is more interesting to see the performance

Table 2: Error rates for soft boundary/margin classi-

fiers

Data set SVM BPM e-SVM
thyroid 5.05 (.22) 4.32 (.20) 4.44 (.22)
heart 15.58 (.30) 16.19 (.29) 16.17 (.32)
diabetes 23.36 (.17) 23.12 (.18) 23.79 (.19)
wave 9.88 (.04) 11.82 (.05) 10.03 (.04)
banana 10.90 (.07) 10.40 (.04) 10.59 (.05)
wisc-bc 2.70 (.10) 2.32 (.10) 2.77 (.09)
bupa 28.80 (.30) 28.37 (.30) 28.38 (.32)
german 23.61 (.20) 23.27 (.22) 23.21 (.22)
breast 29.01 (.43) 26.21 (.46) 26.08 (.48)
sonar 14.93 (.38) 16.49 (.36) 16.12 (.36)
iono 5.94 (.18) 10.16 (.23) 5.16 (.18)
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Figure 1: Scalability for BPM and e-SVM
with a high dimensional dataset. We compare the e-

SVM with other methods mentioned in Section 4. The

20-newsgroup (20NG) and mnist [1] are used for this

purpose. EKM is implemented in MATLAB Optimiza-

tion Toolbox. RMM is implemented in SDPT3 [17].

For 20NG, the number of words is limited to the top

5,000 frequent words and each data point is normal-

ized to length one after the tf-idf weighting. There

are 11,250 data points in the training and 7,486 in the

testing set. mnist contains 60,000 observations in the

training and 10,000 in the testing set in 784 dimen-

sions.

The one-versus-one strategy is applied to solving the

multiclass problem. We set the number of training

data points to 50, 100 and 200 for each pair of classes

in training (100, 200 & 400 in training samples for both

classes). The rest of the training data is reserved as

the validation set that is used for model selection. The

linear kernel is used for all the methods. The results

are shown in Table 3. For 20NG, e-SVM outperforms

other methods. Interestingly, both EKM and RMM

show slightly worse performance than SVM. This in-

dicates the transformation in EKM and regularization

for scaling resistance in RMM seem to have adversary

effect. In turn, for mnist, RMM outperforms other



Table 3: Error rates for SVM, EKM, RMM and e-SVM

SVM EKM RMM e-SVM
ng100 35.0 36.4 37.7 34.0
ng200 30.2 32.8 31.2 29.1
ng400 27.0 31.5 27.8 26.4
mnist100 10.8 13.0 10.5 10.7
mnist200 9.31 10.9 8.92 9.40
mnist400 8.11 9.44 8.10 8.28

methods, which confirms RMM works well when scale

invariance is desired.

6 Conclusion

In this paper, the ellipsoidal support vector machine

was proposed. The formulation is based on that of the

familiar SVM and the sequential minimal optimization

was successfully adapted to solve the e-SVM optimiza-

tion problem. The framework is flexible for possible

modification of loss functions or application to other

problems. Also, by the minimum volume ellipsoid in-

terpretation, it can be used to learn the metric guided

through the maximum margin framework. None of

these advantages is available in BPM and thus novel in

e-SVM. Furthermore, e-SVM showed comparable per-

formance with BPM, indicating the approximations in

e-SVM do not affect the performance over wide variety

of datasets.

The SMO algorithm was shown to provide accept-

able scalability and was much more efficient than BPM.

e-SVM thus can be applicable to real world applica-

tions up to several thousands of data points. Future

work includes developing a more efficient algorithm

that handles caching better and an algorithm for out-

of-memory computation.
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