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Singularities of One-dimensional Linear Dynamical Systems and its

Effect on the Bayesian Generalization Error
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Abstract: Linear dynamical systems are widely used in such fields as system control and

time-dependent data analysis. Such a system can be regarded as a statistical parametric

model, where the coefficients of the state space equations are unknown and given as param-

eters. The properties of parameter learning have not yet been established, in spite of a wide

range of applications. Therefore, this paper investigates the system from the viewpoint of

learning theory. It is revealed that the system has singularities in the parameter space.

The generalization error measured by the prediction accuracy for unseen data sequences is

reduced, due to the presence of these singularities.
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1 Introduction

Linear dynamical systems are widely used for mod-
eling practical complex systems with hidden variables
such as object tracking in image processing [4], and
position detection in car navigation systems [6]. The
system is described via state space equations contain-
ing both observable and hidden variables. The Kalman
filter [5] is an algorithm to estimate the hidden vari-
ables from coefficients given preliminarily .

It is important to be able to estimate coefficients
using the observable data when the coefficients are un-
known. The system is regarded as a parametric learn-
ing model, in which the coefficients correspond to pa-
rameters. As seen in Section 2, the system is expressed
as a generative probability model of the data because
the process and observation noises are taken into ac-

count.
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Parametric models generally fall into two types, reg-
ular and singular. If the relation between the param-
eter and the expressed probability function is one-to-
one, a model is referred to as regular. Otherwise, it is
singular. Therefore, a singular model has a set of pa-
rameters indicating the same function, in which there
are singularities. Because of the singularities, conven-
tional analysis is not applicable; model selection cri-
teria for regular models such as AIC [1] and BIC [7]
are inappropriate. An algebraic geometrical method
has been developed for Bayesian learning to reveal the
asymptotic generalization error and the marginal like-
lihood for several singular models [8]. According to its
application to several models, the presence of singular-
ities results in unique properties of the learning process
(3, 9].

In spite of a wide range of applications, properties of
a linear dynamical system are still unknown in terms
of a learning model. Therefore, the present paper in-
vestigates such a system both theoretically and exper-
imentally. We confirm that the system is a singular
model and analyze the Bayesian generalization error
based on the algebraic geometrical method. Here, the
error is defined as the prediction accuracy for unseen

time-sequence data. This prediction is different from



that of the conventional Kalman situation in which the
primary concern is the set of hidden variables rather
than the observable sequences. Nevertheless, our anal-
ysis can also provide an insight into hidden variable
estimation.

The remainder of the paper is organized as follows.
Section 2 formulates the system. Section 3 introduces
Bayesian learning and summarizes the algebraic geo-
metrical method. Section 4 contains our main con-
tributions, deriving a theoretical upper bound of the
generalization error and showing experimental results
for the error. Section 5 contains a discussion and our

conclusions.

2 Linear Dynamical Systems

Linear dynamical systems can be described by state

space models with hidden state variables:

Zt+1 = AZt + Dwt, (].)
Tt :CZt+Ut, (2)

where z; € R? is the hidden state vector at time t,
r; € RP is an output vector, w; € R? and v; € RP
are process and observation noises, respectively. These
noises are assumed follow a standard normal distribu-
tion. A € R%%7 is the state matrix , C € RP*? is the
output matrix and the elements of D € R%*? are the
coeflicients of the process noise.

The Kalman filter is known as an efficient recursive
filter that estimates hidden states from a series of out-
puts. In what follows, the notations 2,,, and P, ,,
represent the estimates of z at time n and its error co-
variance matrix, respectively, when observations from
t =1 tot =m are given. The Kalman filter has two
phases: Predict and Update. The algorithms are de-

scribed as follows:

Predict
2t|t71 = A2t71|t71 (3)
Pyi—1 = AP,_1;_1A" + DD" (4)
Update
-1
K; = Pt\t—lcT (I + CPt\t—lcT) (5)
2t = Zgje—1 + Ky (xt - Cét\tfl) (6)
Py = (I — KiC) Py (7)

where [ is a unit matrix and K; is called the Kalman
gain. Firstly, the current state z; is estimated as 2y,
from the estimated state of the previous time t — 1
(Eq.3). Then, a more refined value for 2, is calculated
on the basis of Z;;_; after an observation x; is provided
(Eq.6).

From the viewpoint of machine learning, a linear dy-
namical system can be regarded as a learning model
whose parameters are A, C, D and z;. The variable z;
., Tr) €
RPXT Dbe the vector of observations. The probability
p(X|w), where the parameters w = (A, C, D, z1), can

indicates the initial state. Let X = (z1, 22, ..

be calculated as follows:
T

p(X|w) = p(aer|w) [ [ plzr, ... 2i-1,w). (8)

t=2
Using the hidden state z,

p(ze)T1, .- i1, W)

= /p(mt|zt, w)p(ze|xr, ..., xe—1,w)dze.  (9)

Let N (+|u,X) be a multivariate normal distribution
with mean g and covariance matrix X. By the def-
inition of a linear dynamical system (Eq.2) and the

derivation of the Kalman filter,
p(xe]2e, w) = N (24| C2, 1), (10)

Pz, w1, w) = N (2| Zge—1, Prje—1). (11)

Therefore, p(x¢|x1,...,x¢—1,w) is also a normal distri-

bution described by
p(@iwy, . a1, w) = N (2| Clye_r, I + CPy_1CT).
(12)

Eq.8 can be expressed as

T
p(X|w) = HN(33t|C?3t|t—1,I + CPt\t—lcT)- (13)
t=1
where we define 21/g = 21 and Pjq = 0.
Let X" = (Xl,XQ, N

samples. Each X is a time sequence defined by X; =

,Xn) be aset of i.i.d. training

(2%, 2%, ..., 2%). The likelihood of the parameter w =
(A,C, D, z1) can be calculated as

L(w) = [[ p(Xilw)

i=1
n T
= H H/\/(wﬂcf’gi\tfuf + CPZ|t710T) (14)
i=1t=1
where é§|t71 and Pti|t71 are evaluated using the Kalman

filter.



3 Bayesian Learning and the Gen-

eralization Error

This section describes Bayesian learning for time se-
ries data and the theoretical analysis of the generaliza-
tion error.

Let X" = (X1, Xo, ...
ples taken independently and identically from the true

, Xn) be a set of training sam-

distribution ¢(X), where n is the number of training
samples. Each X; (i = 1,...,n) is a sequence whose
length is T, i.e. X; = (2%,...,2%,...,2%). Note that
the sequence data X" are taken as i.i.d. whereas each
sequence X; is not. Let p(X|w) be a learning model,
and ¢(w) be an a priori probability distribution. The
a posteriori probability distribution is defined by

n

pulX") = S [[o(Xiw) (15)
i=1

where Z(X™) is a normalizing constant. The Bayesian

predictive distribution is defined by
P01 = [ pXwp(olXMde. (10

The Bayesian generalization error G(n) is defined by

Gln) = Ex / 4(X) log p(q)ﬁf%dx .

which is the average Kullback information from the
true distribution to the predictive distribution.

The remainder of this section summarizes the alge-
braic geometrical method for deriving the asymptotic
form of the error [8]. Let H(w) be the Kullback infor-
mation from the true distribution ¢(X) to the learner
p(X|w),

q(X)
H(w :/q X)lo dX. 18
() = [ )10z L2 (18)
The function ((z) of one complex variable z, defined
by

() = / H(w)* o(w)duw, (19)

is referred to as the zeta function. It is known that this
zeta function is holomorphic in the region Re(z) > 0,
and can be analytically continued to the meromor-
phic function on the entire complex plane. Then the
poles are all real, negative and rational numbers. Let

0 > —X1 > —X2 > ... be a sequence of poles, and

my, Mg, ... be the respective orders. The asymptotic

form of the generalization error is expressed as

- 2 O(nlsgr) (20)

for n — co. In many cases, it is not straightforward to
find the largest pole —A; and its order m; [3]. When

a pole z = —\ and its order m have been calculated,

m1—1

G(n)

n nlogn

an upper bound is derived as

G(n)<é—m_1+o( ! ) (21)

~n nlogn nlogn

4 Analysis of the Generalization
Error

This section analyzes the Bayesian generalization er-
ror for linear dynamical systems. In order to investi-
gate the effect of redundant hidden states, we study
an essential case, in which the learning model has a
hidden variable and the true model generates i.i.d. se-
quences. This is the simplest setting for singularities to
exist in the parameter space because the i.i.d. model
can be regarded as a model with no hidden states. For
simplicity, we assume that the output vector is one
dimensional, where z;, x;, A, C, and D are all scalar.
Moreover, we assume that the first hidden state is fixed

as z; = 0. Formally, the learning model is defined as

Zt4+1 = Az + dwt, (22)
Ty = czp + vy, (23)

where z;,2; € R! and w; and v; are distributed from
N(:]0,1). The parameter is expressed as w = (a, ¢, d).
The true model is a one-dimensional normal distribu-
tion A (z4]0,1) for all ¢, i.e. z; = v;. Following Eq. 13,

the true model is given by

T
a(X) = [V (a0, 1). (24)

4.1 Theoretical analysis

Based on the algebraic geometrical method, the error

has the following bound:

Theorem 4.1 When the true model and a learning
model are defined by Eq.24 and Eqs 22-23, respectively,
the Bayesian generalization error is bounded above as

follows:




where z1 = 0 and the training sample size n is suffi-

ciently large.

Sketch of Proof: Because the parameter set {c = 0}
attains p(X|w) = q(X), there is a function f.(w) such
that H(w) = ¢?f.(w). The set {d = 0} ensures the
same property for H(w).
mial f(w) such that H(w) = ¢?d®f(w). We can find a
limited support W of the parameter space, such that
H(w) < Cc*d?. Here C is a positive constant. Con-

sidering the following zeta function

Thus, there is a polyno-

o C22z,w
z)f/W{C 42} dw, (26)

the pole z = —pu is a lower bound of z = —X; [8].
1/2 and its order m = 2.
Combining with Eq. 21, we derive the following leading

We can find a pole u =

terms for the bound,

1 1
2n  nlogn’

(27)

which completes the proof.
End of Proof

If the initial state is unknown and is regarded as
a parameter such as w = (a,c¢,d, 21), we can extend

Theorem 4.1 as follows.

Corollary 4.1 Under the same setting as Theorem
4.1, the error has an upper bound

Gn )<i+o(1) (28)

n

We omit the proof for lack of space.

4.2 Experimental results

We experimentally evaluate whether the bound is
valid when finite training data are given. Sampling
from the a posteriori distribution, the predictive dis-
tribution is given by

M
p(X|X") = > p(Xwy), (29)

Jj=1

where (wy,...,wyr) are sampled from p(w|X™). We
use the Markov chain Monte Carlo (MCMC) method
for the sampling technique [2]. The generalization er-

ror is approximated by

G(n) Exn[ Zlo X|Xn (30)

The experimental settings are as follows. The length of
the time sequence is T'= 10. The number of test data
sequences is N = 1,000. The number in the MCMC
sample is M = 500. We obtain the expectation Exn -]
over 100 sets of training data. The a priori distribution
is a normal distribution for a, ¢ and d.

Figure 1-(a) describes an example of sampling from
the a posteriori distribution in the parameter space
(a,c,d). The vertical and horizontal planes indicate
{c = 0} and {d = 0}, respectively.
located around the subspace {¢ = 0} U {d = 0}, for

which the parameters express the true model.

The points are

Figure 1-(b) summarizes the error values correspond-
ing to n = 250, 500, 750 and 1, 000. The horizontal and
vertical axes describe the number of training data se-
quences and the error value, respectively. The heavy
line depicts experimental values for G(n). The dotted
line is the upper bound of Theorem 4.1. The upper

bound is valid as seen in the graph.

5 Discussions and Conclusions

First, let us discuss the upper bound of the gener-
alization error. In the regular case, the error has the
following asymptotic form,

G(n) = dim w +0( ! ), (31)

2n nlogn

which means that Ay = dimw/2 and m; = 1. Note
that even a singular model has this asymptotic form
if the true and learning models have the same dimen-
sion of the hidden state vector. The asymptotic form
indicates that the cost to fit all parameters determines
the error as the dimension dim w appears. Comparing
Theorem 4.1 with the regular case, we can derive the
result that the error is much smaller, i.e.

1 1 1
Gn) < — — ( )
() < 2n nlogn+0 nlogn

<%+0(n1;gn>’ (32)

which confirms that the fitting cost for redundant pa-

rameters is not strongly reflected in the error.

Thus far, we have focused on prediction of the un-
seen observable data sequence X. Next, we consider
estimation of the hidden states z;. According to the
a posteriori distribution, there are two regions for the

optimal parameters; one is around ¢ = 0 and the other



is around d = 0. They imply completely different be-
haviors of the hidden state.

dicates that a and d can take any value, by which

The former, ¢ = 0, in-

q¢(X) = p(X|w). Thus, there are no constraints on
the movement of the hidden state. By taking into ac-
count z; = 0, the latter, d = 0, contrarily implies that
there is no movement because z; = 0 for all times ¢. If
several hidden variables in the true model stop mov-
ing due to disorder in a practical situation, the desired
estimation is d = 0. However, ¢ = 0 can also be an
estimated result; these variables move on the basis of
arbitrarily-estimated a and d. This adverse estimation
can occur along any dimension of the hidden state vec-
tor. Therefore, detection of hidden variable size is an
essential problem to solve.

Finally, we state our conclusions. The present paper
establishes that linear dynamical systems are singu-
lar models. The singularities ensure that the upper
bound of the Bayesian generalization error is small.
The experimental results indicate that the bound is
valid. Moreover, the a posteriori distribution implies
that estimation of hidden states cannot be appropriate

if there are redundant hidden variables.
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