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Background



Motivation: Analysis of Dynamical Systems

- In physics, biology, etc., a wide variety of complex phenomena are
described in terms of dynamical systems.

- In machine learning, state space models are utilized classically.

i1 = f(x), x € M (state space)

® Challenging to know (a part of) properties of nonlinear f.



Background: Operator-theoretic view of nonlinear dynamics

- Fundamental idea: Lift nonlinear system to linear regime by K.

Definition (Koopman operator [koopman '31, Mezié '05])

Let g : M — C be an observable. Koopman operator K is an infinite
dimensional linear operator that describes time-evolution of g, i.e.,

g(f(x)) = Kg(x), g€ g (function space)

© Benefit: control, modal decomposition (— next page), etc.



Modal decomposition based on spectra of K

- Consider eigenvalues ) and eigenfunctions ¢ of K:

Kpi(x) = N wi(x) for i=1,2,...,00.
- For simplicity, assume K has only discrete spectrum (eigenvalues).
- Project ¢g(+) to span{p1(-), ¥2(*),... } — Koopman modes

g(z) = Z pi(x) vi

- Applying K to both sides for ¢ times, we have g(x;)'s decomposition
into quasi-periodic modes (Koopman mode decomposition, KMD):

g(@) = > _ M pi(mo)vi, where

i=1

[A\;| decay rate of w;,
/N; frequency of w;.

w;



Application examples

- fluid mechanics [many], robotics [Berger+ "15], NEUTrOSCi€NCe [Brunton+ 16,
epidemiology [Proctor&Eckhoff 151, finance [Mann&kutz 161, medical care
[Bourantas+ '16], building systems [Georgescu+ "12], pOWer Systems [Raak+ 16,
Susuki+ 16], image processing [kutz- 6], cONtrol [Mauroy&Goncalves 6], etc.



How to compute modal decomposition by Koopman operator?

- KMD can be computed using dynamic mode decomposition (DMD)
[Rowley+ 09, Schmid 10, etc ] if the assumption below is satisfied.

» DMD just computes eigendecomposition of A, where y;11 ~ Ay;.
» A’'s eigvalues and eigvectors converge to K's eigvalues and modes.

Assumption (Dataset from C-invariant subspace [Budigié+ "12])
Time-series data (yo, - - -, y.m) are generated by
Vt, y. = g(x;) where g={[g1 - gn]",
and {g1,...,9,} Spans a subspace that is invariant to £, i.e,,
3G CG st. Vge G, Kge G and span{gi,...,gn} = G.

® Of course, this assumption is not satisfied generally.



Learning Koopman Invariant
Subspaces from Data



To compute KMD, we need data from K-invariant subspace!

- “Data from K-invariant subspace” is not trivial ®
- Previous approaches:

» forget it when data is high-dimensional (e.g. CFD)
» transform data by nonlinear basis functions [williams+ '15]
» define KMD for observables in RKHS [kawahara "16]

- Our approach: Learn a K-invariant subspace using data.



Solution: Idea

Theorem (K-invariant subspace)

A set of observables {¢1,...,g,} Spans a K-invariant subspace if and
only if g =[g1---gn)" and g o f are linearly dependent.

- Main issue: Learn g that makes g and g o f linearly dependent.
— Minimize residual sum of squares of linear LS model:
Lrss(g; To:m) = | Y1 — (V1Y) Yol[E,
Yy = [g(zo) -+ g(xm-1)],
Yi = [g(z1) - g(zn)]

- And minor modifications to:
» Estimate a; from y; x4 1.: (delay-coordinate embedding [Takens '81]).
- because y is often rank-deficient

» Prevent trivial g by adding a term to recover y from the values of g.



Solution: Implementation

- The loss function for learning K-invariant subspace:
L(p,9.h; y) = Lrss(¢.9; Y) + @ Liec(g, b5 y)
N———’
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- Modeling with multilayer perceptrons for each of
> ¢: estimates x; from y;_x+1.; (delay-coordinate embedder)
» g :spans K-invariant subspace
» h: recovers y from values of g (to prevent trivial solution)
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Experiment example

- Generate data from a toy system (A = 0.9, p = 0.5):

zi1 = f(x) = {)\l‘u,

pxe s + ()\2 - N)"E%,t

» [C-invariant subspace of this system is span{z1, zs, 23}, and the
corresponding eigenvalues are X, u, A% (and \'p?).

- Want to estimate the Koopman eigenvalues;
» Proposed method (LKIS) successes even with noise in data.
> (using {z1}) fails with noise.
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Application example: unstable phenomena detection

- The Koopman eigenfunction with small || corresponds to a
rapidly-decaying component.
» Watching such eigenfunction, we can detect unstable phenomena.

- Example: laser pulsation data [santa Fe Time-Series Dataset Al
» Plotting learned eigfun. with small |A|, we see the peaks are
corresponding to the rapid change of amplitude.
» Change-point detection algorithms output similar results.
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Conclusion




Koopman analysis
- lifts analysis of nonlinear dynamical systems
to linear regime by defining Koopman operator.

- Benefit: modal decomposition, control, etc.

Dynamic mode decomposition
- can approximate KMD if data is generated with
observables that span K-inv. subspace.

In this work, we learn K-inv. subspace from data
- RSS minimization with neural networks

Will be presenting at Poster D1-1 tomorrow!
preprint: https://arxiv.org/abs/1710.04340

implementation: https://github.com/thetak11/learning-kis
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