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Background



Motivation: Analysis of Dynamical Systems

• In physics, biology, etc., a wide variety of complex phenomena are
described in terms of dynamical systems.

• In machine learning, state space models are utilized classically.

xt+1 = f(xt), x ∈ M (state space)

/ Challenging to know (a part of) properties of nonlinear f .
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Background: Operator-theoretic view of nonlinear dynamics

• Fundamental idea: Lift nonlinear system to linear regime by K.

Definition (Koopman operator [Koopman ’31, Mezić ’05])
Let g : M → C be an observable. Koopman operator K is an infinite
dimensional linear operator that describes time-evolution of g, i.e.,

g(f(x)) = Kg(x), g ∈ G (function space)

, Benefit: control, modal decomposition (→ next page), etc.
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Modal decomposition based on spectra of K

• Consider eigenvalues λ and eigenfunctions ϕ of K:

K ϕi(x) = λi ϕi(x) for i = 1, 2, . . . ,∞.

• For simplicity, assume K has only discrete spectrum (eigenvalues).
• Project g(·) to span{ϕ1(·), ϕ2(·), . . . } → Koopman modes

g(x) =

∞∑
i=1

ϕi(x) vi

• Applying K to both sides for t times, we have g(xt)’s decomposition
into quasi-periodic modes (Koopman mode decomposition, KMD):

g(xt) =

∞∑
i=1

λt
i ϕi(x0)vi︸ ︷︷ ︸

wi

, where
{
|λi| decay rate of wi,

∠λi frequency of wi.
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Application examples

• fluid mechanics [many], robotics [Berger+ ’15], neuroscience [Brunton+ ’16],
epidemiology [Proctor&Eckhoff ’15], finance [Mann&Kutz ’16], medical care
[Bourantas+ ’16], building systems [Georgescu+ ’12], power systems [Raak+ ’16,
Susuki+ ’16], image processing [Kutz+ ’16], control [Mauroy&Goncalves ’16], etc.
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How to compute modal decomposition by Koopman operator?

• KMD can be computed using dynamic mode decomposition (DMD)
[Rowley+ ’09, Schmid 10, etc.] if the assumption below is satisfied.

I DMD just computes eigendecomposition of A, where yt+1 ≈ Ayt.
I A’s eigvalues and eigvectors converge to K’s eigvalues and modes.

Assumption (Dataset from K-invariant subspace [Budišić+ ’12])
Time-series data (y0, . . . ,ym) are generated by

∀t, yt = g(xt) where g = [g1 · · · gn]T,

and {g1, . . . , gn} spans a subspace that is invariant to K, i.e.,

∃G ⊂ G s.t. ∀g ∈ G, Kg ∈ G and span{g1, . . . , gn} = G．

/ Of course, this assumption is not satisfied generally.
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Learning Koopman Invariant
Subspaces from Data



To compute KMD, we need data from K-invariant subspace!

• “Data from K-invariant subspace” is not trivial /
• Previous approaches:

I forget it when data is high-dimensional (e.g. CFD)
I transform data by nonlinear basis functions [Williams+ ’15]
I define KMD for observables in RKHS [Kawahara ’16]

• Our approach: Learn a K-invariant subspace using data.
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Solution: Idea

Theorem (K-invariant subspace)
A set of observables {g1, . . . , gn} spans a K-invariant subspace if and
only if g = [g1 · · · gn]T and g ◦ f are linearly dependent.

• Main issue: Learn g that makes g and g ◦ f linearly dependent.
→ Minimize residual sum of squares of linear LS model:

LRSS(g;x0:m) = ‖Y1 − (Y1Y
†
0 )Y0‖2F,

Y0 = [g(x0) · · · g(xm−1)],

Y1 = [g(x1) · · · g(xm)]

• And minor modifications to:
I Estimate xt from yt−k+1:t (delay-coordinate embedding [Takens ’81]).

• because y is often rank-deficient
I Prevent trivial g by adding a term to recover y from the values of g.
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Solution: Implementation

• The loss function for learning K-invariant subspace:

L(φ, g,h; y) = L̃RSS(φ, g; y) + α Lrec(g,h; y)︸ ︷︷ ︸∑
t ‖h(gt)−yt‖2

2

• Modeling with multilayer perceptrons for each of
I φ: estimates xt from yt−k+1:t (delay-coordinate embedder)
I g :spans K-invariant subspace
I h: recovers y from values of g (to prevent trivial solution)
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Experiment example

• Generate data from a toy system (λ = 0.9, µ = 0.5):

xt+1 = f(x) =

{
λx1,t,

µx2,t + (λ2 − µ)x2
1,t

I K-invariant subspace of this system is span{x1, x2, x
2
1}, and the

corresponding eigenvalues are λ, µ, λ2 (and λiµj).

• Want to estimate the Koopman eigenvalues;
I Proposed method (LKIS) successes even with noise in data.
I Nonlinear basis function (using {x2

1}) fails with noise.
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Application example: unstable phenomena detection

• The Koopman eigenfunction with small |λ| corresponds to a
rapidly-decaying component.

I Watching such eigenfunction, we can detect unstable phenomena.

• Example: laser pulsation data [Santa Fe Time-Series Dataset A]

I Plotting learned eigfun. with small |λ|, we see the peaks are
corresponding to the rapid change of amplitude.

I Change-point detection algorithms output similar results.
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Figure 6: The left plot shows RMS errors
from 1- to 30-step predictions, and the right
plot shows a part of the 30-step predic-
tion obtained by LKIS-DMD on the (upper)
Lorenz-x series and the (lower) Rossler-x
series.
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Figure 7: The top plot shows the raw time-series
obtained by a far-infrared laser [45]. The other
plots show the results of unstable phenomena
detection, wherein the peaks should correspond
to the occurrences of unstable phenomena.

Unstable phenomena detection One of the most popular applications of DMD is the
investigation of the global characteristics of dynamics by inspecting the spatial distribution of
the dynamic modes. In addition to the spatial distribution, we can investigate the temporal
profiles of mode activations by examining the values of corresponding eigenfunctions. For
example, assume there is an eigenfunction ϕλ�1 that corresponds to a discrete-time eigenvalue
λ whose magnitude is considerably smaller than one. Such a small eigenvalue indicates a
rapidly decaying (i.e., unstable) mode; thus, we can detect occurrences of unstable phenomena
by observing the values of ϕλ�1. We applied LKIS-DMD (n = 10) to a time-series generated
by a far-infrared laser, which was obtained from the Santa Fe Time Series Competition Data
[45]. We investigated the values of eigenfunction ϕλ�1 corresponding to the eigenvalue of the
smallest magnitude. The original time-series and values of ϕλ�1 obtained by LKIS-DMD are
shown in Figure 7. As can be seen, the activations of ϕλ�1 coincide with sudden decays of the
pulsation amplitudes. For comparison, we applied the novelty/change-point detection technique
using one-class support vector machine (OC-SVM) [46] and direct density-ratio estimation by
relative unconstrained least-squares importance fitting (RuLSIF) [47]. We computed AUC,
defining the sudden decays of the amplitudes as the points to be detected, which were 0.924,
0.799, and 0.803 for LKIS, OC-SVM, and RuLSIF, respectively.

7 Conclusion

In this paper, we have proposed a framework for learning Koopman invariant subspaces,
which is a fully data-driven numerical algorithm for Koopman spectral analysis. In contrast
to existing approaches, the proposed method learns (approximately) a Koopman invariant
subspace entirely from the available data based on the minimization of RSS loss. We have
shown empirical results for several typical nonlinear dynamics and application examples.
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Conclusion



Summary

Koopman analysis
• lifts analysis of nonlinear dynamical systems
to linear regime by defining Koopman operator.

• Benefit: modal decomposition, control, etc.

Dynamic mode decomposition
• can approximate KMD if data is generated with
observables that span K-inv. subspace.

In this work, we learn K-inv. subspace from data
• RSS minimization with neural networks

Will be presenting at Poster D1-1 tomorrow!
preprint: https://arxiv.org/abs/1710.04340

implementation: https://github.com/thetak11/learning-kis
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