Learning Discrete Representations via Information Maximizing Self-Augmented Training

Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, Masashi Sugiyama

University of Tokyo

RIKEN

Preferred Networks

ATR

*Based on the work performed at Preferred Networks Univ

Preferred Networks

University of Tokyo

Preferred Networks

University of Tokyo

RIKEN

University of Tokyo

Big success of supervised Deep Learning (Very) deep neural networks

Huge number of Labeled data

airplane	- Alerent	X	-	X	*	**	d.	-1		-
automobile	÷		1-1	1	-		-		-	*
bird	Pa	5	2			-	17	1	2	W.
cat	in the second se		1	3		10	2	<u>A</u> .,	N.	-
deer	1	40	Ц.	R	L.	Y	Y	1	-	ŝ.
dog	1	t.	-	3.	1	2	9	SC:	1	14
frog	.2	-	10	1	1	1	No.	Ste.		
horse	*	-	P	3	67	17A	13	2	6	Ť
ship	-		dirie .	-		-	Ż	NET		-
truck			1	s.				en.		date

Big success of supervised Deep Learning (Very) deep neural networks

Huge number of Labeled data

Unlabeled data

Unlabeled data

Learn to map

Discrete representations

00001110	01111101	00111111	00100111	11000000	11110000	00011011	100000011
00011100	10011000	00000001	00000111	11101110	11111000	00111100	111110100
11111101	00110110	01100011	00100011	00011100	00000111	00110000	111100100
00010101	11100111	11011000	01110010	00111110	01100011	11010110	000110010
11100110	11110111	00100111	11000000	11101110	00000011	10010000	111101111
10001110	10011011	10000001	00000110	10110011	11001100	11110001	110000000
11001101	00000000	10011110	00000000	11000001	11000010	10001100	011111110
01001110	11111011	10110011	00001111	10011011	10000111	11110001	000000110
01001100	10000100	00011001	10011001	11111111	00110011	11000000	110100100
00000111	11111111	00101001	00101011	10000011	01011111	11000011	010010100
00000010	10111111	11110000	11001110	11011111	11011000	111111111	110001100
11111110	00000101	11011110	10011111	11001001	01101101	10010001	100111111
00011011	01100100	11000100	11100011	00011111	00001000	00001100	000111100
00111100	11100011	00011001	00100100	10011011	10000011	10111001	110001011
01000011	00000111	11111010	00000111	11100001	11001000	10000011	000001101
10011100	11111001	11000000	10110100	11001000	10011000	11001111	001001100
11101111	11011111	01001110	00110011	01111001	00101101	10011100	011111000
01000111	01101110	00001100	00001111	11000011	11001101	01101111	011111100
10010011	10000111	10110111	00011100	00111111	00000011	01011010	110000011

Unlabeled data

Learn to map

Discrete representations

Clustering Map to cluster assignments 0, 1, 5, 8, 9, 1, 3, 2, 4, 3, 9, 3, 2, 0, 2, 1, 4, 3, 1, 3

Unlabeled data

Learn to map

Discrete representations

Clustering Map to cluster assignments 0, 1, 5, 8, 9, 1, 3, 2, 4, 3, 9, 3, 2, 0, 2, 1, 4, 3, 1, 3

> Hash Learning Map to binary codes

0001, 0101, 1110, 1111, 0000, 0111, 0000, 1011

Deep Neural Networks (DNN) are Promising

Unlabeled data

Discrete representations

Clustering Map to cluster assignments 0, 1, 5, 8, 9, 1, 3, 2, 4, 3, 9, 3, 2, 0, 2, 1, 4, 3, 1, 3

> Hash Learning Map to binary codes

0001, 0101, 1110, 1111, 0000, 0111, 0000, 1011

• Goal: learn deep probabilistic classifier.

Discrete representations

- 1. Cluster assignment
- 2. Binary codes

• Goal: learn deep probabilistic classifier.

Regularized Information Maximization (RIM) [Gomes+ 2010]

$$\max_{\theta} I(X;Y) - \mathcal{R}(\theta)$$

Regularization (weight-decay)

Mutual Information

• Goal: learn deep probabilistic classifier.

Regularized Information Maximization (RIM) [Gomes+ 2010]

 $\max_{\theta} I(X;Y) - \mathcal{R}(\theta)$ Regularization (weight-decay)

Only applicable to clustering.

• Goal: learn deep probabilistic classifier.

Regularized Information Maximization (RIM) [Gomes+ 2010]

 $\max_{\theta} I(X;Y) - \mathcal{R}(\theta) \quad \textcircled{i} \quad \textbf{Weight-decay is restrictive.}$

Only applicable to clustering.

Outline

1. Introduction

- 2. Proposed Method: IMSAT = IM + SAT
 - Information Maximization (IM)
 - Self-Augmented Training (SAT)
- 3. Experiments
- 4. Conclusions

Better regularization

Previous approach:

InfoMax clustering [Bridle et al., 1991, Gomes et al., 2010]:

Learn
$$p_{\theta}(y|x)$$
 via $\max_{\theta} I(X;Y)$

For discrete representation learning?

For discrete representation learning:

Our proposal:

Learn
$$p_{\theta}(y_1, \ldots, y_D | x)$$
 via $\max_{\theta} I(X; Y_1, \ldots, Y_D)$

For discrete representation learning:

Our proposal:

Learn
$$p_{\theta}(y_1, \ldots, y_D | x)$$
 via $\max_{\theta} I(X; Y_1, \ldots, Y_D)$

• Challenge: Combinatorial summation \sum_{y_1} \rightarrow We need approximation!

 y_2

 y_D

$p_{ heta}(y|x)$ Approximate **up to second order interaction:** [Brown 2009]

Information Maximization

$$I(X; Y_1, \dots, Y_D) \approx \sum_{d=1}^{D} I(X; Y_d) - \sum_{1 \le d \ne d' \le D} I(Y_d; Y_{d'})$$

 $y = (y_1, \ldots, y_D)$

2

0

20

Self-Augmented Training (SAT) Better regularization

More general InfoMax

Self-Augmented Training (SAT)

Augmentation function $T(\cdot) : \mathcal{X} \to \mathcal{X}$ \rightarrow User-specified transformation that does not change the meaning of data

Self-Augmented Training (SAT)

Self-Augmented Training (SAT)

Local perturbation

$$T(x) = x + r, ||r||_2 = \epsilon$$

- Random Perturbation Training (RPT) [Bachman et al., 2014]
- Virtual Adversarial Training (VAT) [Miyato et al., 2016]

IMSAT = Information Maximizing + SAT

Outline

1. Introduction

2. Proposed Method: IMSAT Information Maximization (IM) Self-Augmented Training (SAT)

3. Experiments

4. Conclusions

Experiments (Clustering)

- Measure clustering accuracy
- Batch normalization
- ReLU activation
- Softmax output

X Implementation available online https://github.com/weihua916/imsat

Experiments (Clustering)

Method	MNIST	Omniglot	STL	CIFAR10	CIFAR100	SVHN	Reuters	20news
K-means	53.2	12.0	85.6	34.4	21.5	17.9	54.1	15.5
dAE+K-means	79.8 †	14.1	72.2	44.2	20.8	17.4	67.2	22.1
DEC [Xie et al., 2014]	84.3 †	5.7 (0.3)	78.1 (0.1)	46.9 (0.9)	14.3 (0.6)	11.9 (0.4)	67.3 (0.2)	30.8 (1.8)
Linear RIM	59.6 (2.3)	11.1 (0.2)	73.5 (6.5)	40.3 (2.1)	23.7 (0.8)	20.2 (1.4)	62.8 (7.8)	50.9 (3.1)
Linear IMSAT (VAT)	61.1 (1.9)	12.3 (0.2)	91.7 (0.5)	40.7 (0.6)	23.9 (0.4)	18.2 (1.9)	42.9 (0.8)	43.9 (3.3)
Deep RIM	58.5 (3.5)	5.8 (2.2)	92.5 (2.2)	40.3 (3.5)	13.4 (1.2)	26.8 (3.2)	62.3 (3.9)	25.1 (2.8)
IMSAT (RPT)	89.6 (5.4)	16.4 (3.1)	92.8 (2.5)	45.5 (2.9)	24.7 (0.5)	35.9 (4.3)	71.9 (6.5)	24.4 (4.7)
IMSAT (VAT)	98.4 (0.4)	24.0 (0.9)	94.1 (0.4)	45.6 (0.8)	27.5 (0.4)	57.3 (3.9)	71.0 (4.9)	31.1 (1.9)

- Tested on 8 benchmark datasets.
- Hyper-parameters are fixed throughout the datasets.

Experiments (Clustering)

Method	MNIST	Omniglot	STL	CIFAR10	CIFAR100	SVHN	Reuters	20news
K-means	53.2	12.0	85.6	34.4	21.5	17.9	54.1	15.5
dAE+K-means	79.8 †	14.1	72.2	44.2	20.8	17.4	67.2	22.1
DEC	84.3 †	5.7 (0.3)	78.1 (0.1)	46.9 (0.9)	14.3 (0.6)	11.9 (0.4)	67.3 (0.2)	30.8 (1.8)
Linear RIM	59.6 (2.3)	11.1 (0.2)	73.5 (6.5)	40.3 (2.1)	23.7 (0.8)	20.2 (1.4)	62.8 (7.8)	50.9 (3.1)
Linear IMSAT (VAT)	61.1 (1.9)	12.3 (0.2)	91.7 (0.5)	40.7 (0.6)	23.9 (0.4)	18.2 (1.9)	42.9 (0.8)	43.9 (3.3)
Deep RIM	58.5 (3.5)	5.8 (2.2)	92.5 (2.2)	40.3 (3.5)	13.4 (1.2)	26.8 (3.2)	62.3 (3.9)	25.1 (2.8)
IMSAT (RPT)	89.6 (5.4)	16.4 (3.1)	92.8 (2.5)	45.5 (2.9)	24.7 (0.5)	35.9 (4.3)	71.9 (6.5)	24.4 (4.7)
IMSAT (VAT)	98.4 (0.4)	24.0 (0.9)	94.1 (0.4)	45.6 (0.8)	27.5 (0.4)	57.3 (3.9)	71.0 (4.9)	31.1 (1.9)

- Used perturbation as augmentation function.
- IMSAT (VAT) achieved state-of-the-art performance.

Experiments (Hash Learning)

- 3 evaluation metrics:
 - mean average precision
 - precision @ sample=500
 - precision @ hamming dist=2
- 16-bit (D = 16)

Experiments (Hash Learning)

Method	Hamming r	anking (mAP)	precision @	2 sample = 500	precision @ $r = 2$	
(Dimensions of hidden layers)	MNIST	CIFAR10	MNIST	CIFAR10	MNIST	CIFAR10
Spectral hash (Weiss et al., 2009)	26.6	12.6	56.3	18.8	57.5	18.5
PCA-ITQ (Gong et al., 2013)	41.2	15.7	66.4	22.5	65.7	22.6
Deep Hash (60-30)	43.1	16.2	67.9	23.8	66.1	23.3
Linear RIM	35.9 (0.6)	24.0 (3.5)	68.9 (1.1)	15.9 (0.5)	71.3 (0.9)	14.2 (0.3)
Deep RIM (60-30)	42.7 (2.8)	15.2 (0.5)	67.9 (2.7)	21.8 (0.9)	65.9 (2.7)	21.2 (0.9)
Deep RIM (200-200)	43.7 (3.7)	15.6 (0.6)	68.7 (4.9)	21.6 (1.2)	67.0 (4.9)	21.1 (1.1)
Deep RIM (400-400)	43.9 (2.7)	15.4 (0.2)	69.0 (3.2)	21.5 (0.4)	66.7 (3.2)	20.9 (0.3)
IMSAT (VAT) (60-30)	61.2 (2.5)	19.8 (1.2)	78.6 (2.1)	21.0 (1.8)	76.5 (2.3)	19.3 (1.6)
IMSAT (VAT) (200-200)	80.7 (2.2)	21.2 (0.8)	95.8 (1.0)	27.3 (1.3)	94.6 (1.4)	26.1 (1.3)
IMSAT (VAT) (400-400)	83.9 (2.3)	21.4 (0.5)	97.0 (0.8)	27.3 (1.1)	96.2 (1.1)	26.4 (1.0)

- Tested on 2 benchmark datasets.
- Hyper-parameters are fixed throughout the datasets.

Experiments (Hash Learning)

Method	Hamming r	anking (mAP)	precision @	sample = 500	precision @ $r = 2$	
(Dimensions of hidden layers)	MNIST	CIFAR10	MNIST	CIFAR10	MNIST	CIFAR10
Spectral hash (Weiss et al., 2009)	26.6	12.6	56.3	18.8	57.5	18.5
PCA-ITQ (Gong et al., 2013)	41.2	15.7	66.4	22.5	65.7	22.6
Deep Hash (60-30)	43.1	16.2	67.9	23.8	66.1	23.3
Linear RIM	35.9 (0.6)	24.0 (3.5)	68.9 (1.1)	15.9 (0.5)	71.3 (0.9)	14.2 (0.3)
Deep RIM (60-30)	42.7 (2.8)	15.2 (0.5)	67.9 (2.7)	21.8 (0.9)	65.9 (2.7)	21.2 (0.9)
Deep RIM (200-200)	43.7 (3.7)	15.6 (0.6)	68.7 (4.9)	21.6 (1.2)	67.0 (4.9)	21.1 (1.1)
Deep RIM (400-400)	43.9 (2.7)	15.4 (0.2)	69.0 (3.2)	21.5 (0.4)	66.7 (3.2)	20.9 (0.3)
IMSAT (VAT) (60-30)	61.2 (2.5)	19.8 (1.2)	78.6 (2.1)	21.0 (1.8)	76.5 (2.3)	19.3 (1.6)
IMSAT (VAT) (200-200)	80.7 (2.2)	21.2 (0.8)	95.8 (1.0)	27.3 (1.3)	94.6 (1.4)	26.1 (1.3)
IMSAT (VAT) (400-400)	83.9 (2.3)	21.4 (0.5)	97.0 (0.8)	27.3 (1.1)	96.2 (1.1)	26.4 (1.0)

• IMSAT (VAT) outperformed the previous methods.

Outline

- 1. Introduction
- 2. Background (Regularized Information Maximization [Gomes et al., 2010])
- 3. Proposed Method (Information Maximizing Self-Augmented Training)
- 4. Experiments
- 5. Conclusions

