Budgeted stream-based active learning via adaptive submodular maximization

Kaito Fujii (UTokyo)
(joint work with Hisashi Kashima (KyotoU))

IBIS Workshop
2017.11.8
Table of Contents

1 Application: Pool-/Stream-based Active Learning

2 Previous Work: Adaptive Submodular Maximization

3 Previous Work: Submodular Secretary Problem

4 Proposed Framework

5 Experiments
Supervised Classification

Input
A set of labeled instances \(\{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,...,n} \)

Output
A classifier \(\hat{f} : \mathcal{X} \rightarrow \mathcal{Y} \)

\(\mathcal{X} = \mathbb{R}^2, \)
\(\mathcal{Y} = \{\text{red, blue}\} \)
Supervised Classification

Input
A set of labeled instances \(\{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,\ldots,n} \)

Output
A classifier \(\hat{f} : \mathcal{X} \rightarrow \mathcal{Y} \)

\[
\mathcal{X} = \mathbb{R}^2, \\
\mathcal{Y} = \{ \text{red, blue} \}
\]
Motivation for Active Learning

In some real world scenarios,

- there are a lot of *unlabeled* instances, but
- labeling needs a large *cost* (money or time).

Active Learning

The learner selects which instances to label and can reduce the labeling cost.
All unlabeled instances are given in advance

Unlabeled instances

\[V = \{ x_i \}_{i=1}^{\ldots,n} \subset X \]

Labeling oracle

\[\phi : V \rightarrow Y \]
Pool-based Active Learning

All unlabeled instances are given in advance

Unlabeled instances

\[V = \{x_i\}_{i=1,\ldots,n} \subset \mathcal{X} \]

Labeling oracle

\[\phi : V \rightarrow \mathcal{Y} \]
Pool-based Active Learning

All unlabeled instances are given in advance

Unlabeled instances
\[V = \{ x_i \}_{i=1,\ldots,n} \subset \mathcal{X} \]

Labeling oracle
\[\phi : V \rightarrow \mathcal{Y} \]
Pool-based Active Learning

All unlabeled instances are given in advance

Unlabeled instances
\[V = \{ x_i \}_{i=1,\ldots,n} \subset \mathcal{X} \]

Labeling oracle
\[\phi : V \rightarrow \mathcal{Y} \]

Unlabeled instances

Labeling oracle
Pool-based Active Learning

All unlabeled instances are given in advance

Unlabeled instances

\[V = \{ x_i \}_{i=1,...,n} \subset \mathcal{X} \]

Labeling oracle

\[\phi : V \rightarrow \mathcal{Y} \]
Pool-based Active Learning

All unlabeled instances are given in advance

Unlabeled instances

\[V = \{ x_i \}_{i=1,\ldots,n} \subset X \]

Labeling oracle

\[\phi : V \rightarrow Y \]
Stream-based Active Learning

Unlabeled instances arrive sequentially
We consider the case of selecting k instances out of n

$(n, k$ known in advance)

Unlabeled instances
$V = \{x_i\}_{i=1,...,n} \subset \mathcal{X}$

Labeling oracle
$\phi: V \rightarrow \mathcal{Y}$
Stream-based Active Learning

Unlabeled instances arrive sequentially
We consider the case of selecting k instances out of n
(n, k known in advance)

Unlabeled instances
$V = \{x_i\}_{i=1,\ldots,n} \subseteq \mathcal{X}$

Labeling oracle
$\phi : V \rightarrow \mathcal{Y}$
Stream-based Active Learning

Unlabeled instances arrive sequentially
We consider the case of selecting k instances out of n (n, k known in advance)

Unlabeled instances
$V = \{x_i\}_{i=1,...,n} \subset \mathcal{X}$

Labeling oracle
$\phi: V \rightarrow \mathcal{Y}$
Stream-based Active Learning

Unlabeled instances arrive sequentially
We consider the case of selecting k instances out of n
(n, k known in advance)

Unlabeled instances
$V = \{x_i\}_{i=1, \ldots, n} \subset \mathcal{X}$

Labeling oracle
$\phi: V \rightarrow \mathcal{Y}$
Stream-based Active Learning

Unlabeled instances arrive sequentially
We consider the case of selecting k instances out of n
(n, k known in advance)

Unlabeled instances
$V = \{x_i\}_{i=1,...,n} \subset \mathcal{X}$

Labeling oracle
$\phi : V \rightarrow \mathcal{Y}$
Unlabeled instances arrive sequentially
We consider the case of selecting k instances out of n
(n, k known in advance)

Unlabeled instances
$V = \{x_i\}_{i=1,\ldots,n} \subset \mathcal{X}$

Labeling oracle
$\phi : V \rightarrow \mathcal{Y}$
Stream-based Active Learning

Unlabeled instances arrive sequentially
We consider the case of selecting \(k \) instances out of \(n \)
\((n, k \) known in advance)
Overview

A new framework for stream-based active learning

Pool-based active learning
- All unlabeled instances are given in advance

Stream-based active learning
- Unlabeled instances appear one by one

- **Adaptive submodular maximization**
 - [Golovin–Krause’11]

- **Proposed framework**

- **Submodular secretary problem**
 - [Bateni–Hajiaghayi–Zadimoghaddam’13]
Table of Contents

1. Application: Pool-/Stream-based Active Learning
2. Previous Work: Adaptive Submodular Maximization
3. Previous Work: Submodular Secretary Problem
4. Proposed Framework
5. Experiments
Submodular Maximization

Selection of a “good” subset of given finite set V

Maximize $f(S)$

subject to $|S| \leq k$

$f : 2^V \rightarrow \mathbb{R}$ submodular

Data Summarization [Badanidiyuru+’14]

Select a small summary for given large dataset V

$$f\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right) > f\left(\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}\right)$$
Adaptive Submodular Maximization

[Adaptive Submodularity]

An extension of submodularity to this adaptive setting

The learner can select the next instance to label according to the labels observed so far.
Table of Contents

1. Application: Pool-/Stream-based Active Learning
2. Previous Work: Adaptive Submodular Maximization
3. Previous Work: Submodular Secretary Problem
4. Proposed Framework
5. Experiments
Classical Secretary Problem [folklore’60s]

Problem

n candidates arrive **in random order** (n is given), and decide whether to hire at each arrival

Classical Secretary Algorithm

pass the first $\lfloor n/e \rfloor$ ones, and after that, if the coming one is the best so far, hire him

→ the best one can be hired with prob. $\geq 1/e$
Classical Secretary Problem [folklore’60s]

Problem

n candidates arrive in random order (n is given), and decide whether to hire at each arrival.

Classical Secretary Algorithm

pass the first $\lfloor n/e \rfloor$ ones, and after that, if the coming one is the best so far, hire him.

→ the best one can be hired with prob. $\geq 1/e$

$n = 10$

3
Classical Secretary Problem [folklore’60s]

Problem

n candidates arrive in random order (n is given), and decide whether to hire at each arrival.

Classical Secretary Algorithm

pass the first \(\lfloor n/e \rfloor \) ones, and after that, if the coming one is the best so far, hire him.

→ the best one can be hired with prob. \(\geq 1/e \)

\[n = 10 \]
Classical Secretary Problem [folklore’60s]

Problem

n candidates arrive in random order (n is given), and decide whether to hire at each arrival.

Classical Secretary Algorithm

pass the first $\left\lfloor \frac{n}{e} \right\rfloor$ ones, and after that, if the coming one is the best so far, hire him.

the best one can be hired with prob. $\geq \frac{1}{e}$

$n = 10$

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>7</th>
</tr>
</thead>
</table>

Classical Secretary Problem [folklore’60s]

Problem

n candidates arrive in random order (n is given), and decide whether to hire at each arrival.

Classical Secretary Algorithm

Pass the first $\lfloor n/e \rfloor$ ones, and after that, if the coming one is the best so far, hire him. The best one can be hired with prob. $\geq 1/e$.

$n = 10$

3 4 7 6
Classical Secretary Problem [folklore’60s]

Problem

n candidates arrive in random order (n is given), and decide whether to hire at each arrival.

Classical Secretary Algorithm

pass the first $\lceil n/e \rceil$ ones, and after that, if the coming one is the best so far, hire him.

→ the best one can be hired with prob. $\geq 1/e$

$n = 10$

3 4 7 6 9
Classical Secretary Problem [folklore'60s]

Problem

n candidates arrive in random order (n is given), and decide whether to hire at each arrival.

Classical Secretary Algorithm

pass the first $\lfloor n/e \rfloor$ ones, and after that, if the coming one is the best so far, hire him. The best one can be hired with prob. $\geq 1/e$

$n = 10$

3 4 7 6 9 4 5 8 0 2
A generalization of the classical secretary problem

1. multiple candidates can be selected
2. the objective function $f : 2^V \rightarrow \mathbb{R}_{\geq 0}$ is submodular

$n = 10, k = 3$
The competitive ratio of an algorithm is $\alpha \in [0, 1]$. For any problem instance, the output S satisfies:

$$\mathbb{E}[f(S)] \geq \alpha \max_{S^* \subseteq V} f(S^*)$$

the optimal achieved by the clairvoyant
Table of Contents

1 Application: Pool-/Stream-based Active Learning
2 Previous Work: Adaptive Submodular Maximization
3 Previous Work: Submodular Secretary Problem
4 Proposed Framework
5 Experiments
Proposed Framework

The proposed framework is a combination of previous frameworks, but it is not straightforward.

- Adaptive Submodular Maximization
- Submodular Secretary Problem

+ New property: Policy-Adaptive Submodularity
Policy-adaptive submodularity is also a natural extension of submodularity to the adaptive setting.
Policy-adaptive submodularity is also a natural extension of submodularity to the adaptive setting.

Submodularity

Diminishing return of each instance \[\rightarrow\] Diminishing return of each set

Adaptive Submodularity
Policy-adaptive submodularity is also a natural extension of submodularity to the adaptive setting.
Adaptive Stream Algorithm

Stream setting A limited memory can be used

Partition the whole stream into k segments, and select the “best” instance from each segment

\[
\frac{n}{k} \text{ instances} \quad \frac{n}{k} \text{ instances} \quad \frac{n}{k} \text{ instances} \quad \cdots
\]

Theorem [Fujii–Kashima’16]

The competitive ratio is \((2 - \sqrt{3})(1 - 1/e) \approx 0.16\)
Adaptive Secretary Algorithm

Secretary setting immediate decision at each arrival

Apply the classical secretary algo. to each segment, and select the “best” instance with probability $1/e$

\[
\begin{align*}
\max \Delta (v|\psi_0) & \text{ with prob. } \frac{1}{e} \\
\max \Delta (v|\psi_1) & \text{ with prob. } \frac{1}{e} \\
\max \Delta (v|\psi_2) & \text{ with prob. } \frac{1}{e}
\end{align*}
\]

Theorem [Fujii–Kashima’16]
The competitive ratio is $\frac{1 - 1/e}{2e \sqrt{1 + 2/e}} \approx 0.08$
Table of Contents

1 Application: Pool-/Stream-based Active Learning
2 Previous Work: Adaptive Submodular Maximization
3 Previous Work: Submodular Secretary Problem
4 Proposed Framework
5 Experiments
Experimental Settings

Datasets

- WDBC ($n = 596$, 32-d)
- MNIST ($n = 14780$, reduced to 10-d by PCA)

Benchmarks

- Uncertainty sampling
- Random

The proposed method is based on ALuMA [Gonen+13]
Experimental Results

The proposed method outperforms uncertainty sampling in each setting.
Overview

A new framework for stream-based active learning

Pool-based active learning
All unlabeled instances are given in advance

Adaptive submodular maximization [Golovin–Krause’11]

Stream-based active learning
Unlabeled instances appear one by one

Submodular secretary problem [Bateni–Hajiaghayi–Zadimoghaddam’13]

Proposed framework