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Machine Learning:
-- a view from outside
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Inside ML ...
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» Graphical °+ Nonparametric < Regularized - Deep Learning + Spectral/Matrix
Models Bayesian Models Bayesian Methods Large-Margin . Sparse Coding Methods ° Sparse Structured

WINDOWS\system32\cmd.exe b

/0 Regression /

at

Displays protocol statistics and current TCP/IP connections using NBT
(NetBIOS over TCP/IP)>.

[-a RemoteNamel [-A IP address] [-c] [-nl
*»1 [-R1 [-RR1 [-s1 [-81 [intervall

name table given
name tabhle given

(adapter status) Lis the remote machine’s
(Adapter status) L3 the remote machine’s
» .

(cache> i NBT’s cache of remote [machinel names
{(names> i local NetBIOS names.
(resolved) names resolved by bhroadcast and via WINS
(Reload> and reloads the remote cache name table

ions) ions table with the destination IP address
s ons) i essions table converting destination IP

a s to computer NETBIOS names.

(ReleaseRefresh) Sends Name Release packets to WINS and then, starts

RemoteName Remote host machine name.

IP address Dotted decimal representation of the IP address.

interval Redisplays selected statist » pausing interval seconds
between each display. Press r1+C to stop redisplaying
statistics.

Hardware and infrastructure

* Network switches + Network attached storage « Server machines « GPUs * Cloud compute - Virtual Machines
* Infiniband * Flash storage » Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines
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An ML Program

arg max =
0

Model

({X’L? yz}z—l :

Data

Solved by an iterative convergent algorithm

—

0) + Q(6)

Parameter

doThings()

for (t =1 to T) ¢

6"t = g(0", AsO(D))

doOtherThings() 7—
}

\_ This computation needs to be parallelized!
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Massive Data

1B+ USERS
30+ PETABYTES

The Free Encyclopedia
o
YoullT  twitterd
100+ hours video 645 million users
uploaded every minute 500 million tweets / day

N O
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Growing Model Complexity

Google Brain
Deep Learning

for images:

1~10 Billion
model parameters

A

LA
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=== | @he New ork Times : Topic Models

M No. 56,02 UESDAY, JAT

OBAMA OFFERS LIBERAL ‘}IS;ON: ‘Wfﬁ.r n ews a rtl c I e

¥R

= B _ analysis:
4.0 "-Up to 1 Trillion
model

parameters

| %Multi-task Regression
_J/g—svfor simplest whole-
> e 1 *HI1H

20TTA
<
-
B

I.l
S

Collaborative filtering

for Video recommendation:
1~10 Billion

model

N E T I: I. | x parameters
"
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LIONS OF DEVICES
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Challenge #1
— Massive Data Scale

THE INTERNET OF THINGS

AN EXPLOSION OF CONNECTED POSSIBILITY
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46%

54%

2012 2013

Index

T

@ imm osmin @)

Source: The Connectivist

YEAR

for (t =11toT) { ‘\\\
doThings()
parallelUpdate(x,0)
doOtherThings()

}

Cloud Data Center (35% CAGR)
Traditional Data Center (12% CAGR)

2014

Source: Cisco Global Cloud

T,
25% CAGR 2012-2017

2015 2016 2017

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine




K@@m NGRIFABY | for (t =1 to T) { \

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics d o
oThings()

Challenge #2 G

}
— Gigantic Model Size
Convolution Fully connected
Source: Universfty of 8 s
Bonn S '

Big Data needs Big Models to extract understanding
But ML models with >1 trillion params also won'’t fit! 0/
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Issues with Hadoop and
|-C ML Algorithms

Iteraiion 1 Iteration 2

Distributed File System

Distributed File System

< Distributed File SysteD

Image source: dzone.com
HDFS Bottleneck

Naive MapReduce not best for ML

e Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update A(D,)
o reduce() to combine updates A(D,)
o Iterative ML algo = repeat map()+reduce() again and again
e But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!
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Spark: Faster MapR on Data-Parallel

e Spark’s solution: Resilient Distributed Datasets (RDDs)
o Input data — load as RDD — apply transforms — output result
o RDD transforms strict superset of MapR
o RDDs cached in memory, avoid disk I/O

RDD(1
) ) "R - o
o ™
Memo
| " E 1 60 . —
Input Data Resident RDD(2 RDD( Output - T
:: : : : c _
HDFS Text/ | Map |teration 1 Memory Iteration N Memory Map ) HOFS Text/ 9 120 8 (,8 N
| e
Squence Resident Resident Squence © 80 4 = © (g
Files Files o .
RDD(1 = 40 - -
™
Not L/ L/ w O
Memo!
Resmex \ Can be il to disk Hadoop HadoopBM Spark
\ / \ or recreated on read Logistic Regression

e Spark ML library supports data-parallel ML algos, like Hadoop
o Spark and Hadoop: comparable first iter timings...

o But Spark’s later iters are much faster m
\ Source: ebaytechblog.com /
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parallelUpdate(x,0)
Parallelization Strategies b:

doOtherThings()
Usually, we worry ...

A sequential program A parallel program

b1

!
B

Unequal m B = W
4“ { A A
i @ e

. . performance < -t
e but assuming an ideal system, e.g., i
e zero-cost sync,
e zero-cost fault recovery Low bandwidth,
High delay

e uniform local progress
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Intrinsic Properties of ML Programs

[Xing et al., 2015]

e MLis
algori

e Err
errc

e Dyr
cha
criti

e Noi
can

e Wher
guare

* How do existing Big Data platform fit thee;t')ove?

2
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4 Principles of ML System Design

How to execute distributed-parallel ML programs?
ML program equations tell us “What to Compute”. But...

1. How to Distribute?
2. How to Bridge Computation and Communication?
3. How to Communicate?

4. What to Communicate?




Principles of
ML SyStem DeSign [Xing et al., to appear 2016]

1. How to Distribute:
Scheduling and Balancing workloads
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Example: Model Distribution

Lasso via coordinate descent:

min [y — X5, + A 15

J
A )
NH=- ’
v
< >
M

A huge number of parameters
(e.g.) M > 100 million

* How to correctly divide
computational workload

across workers?
v  What is the best order to
update parameters?

N s}
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Model Dependencies

e Concurrent updates of @ may induce errors

Sequential updates

b1
‘1’ R
b2

Concurrent updates

51 Ba

7

Decreases iteration progress

(t) — S(le —

— W= W= == Sync
51 62 Need to check x,x,
before updating

parameters

Xlszﬁét_l)

)

')
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Avoid Dependency Errors via
Structure-Aware Parallelization (SAP)

[Lee et al., 2014] [Kim et al, 2016]

—
data
partition
\_/

—

model
partition

E—

worker

—
data

partition

v

——

model
partition

—

worker

—
data

partition

\_/

S

model

partition
\/

worker

0 Smart model-parallel execution:
O Structure-aware scheduling
U Variable prioritization
U Load-balancing

schedule () {
// Select U vars x[j] to be sent
// to the workers for updating

ielgn (GR{Igal o

}

-, x[3_0])

push (worker = p, vars = (x[j_11,...,x[]J_U])) {
// Compute partial update z for U vars x[]]
// at worker p
return z

}

pull (workers = [p], vars = (x[j_1],...,x[3_U])
updates = [z]) {
// Use partial updates z from workers p to

// update U vars x[]j]. sync() is automatic.

0 Simple programming:
O Schedule()
Q Push()
Q Pull()

")
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A Structure-aware Dynamic Scheduler
(StradS) [Lee et al., 2014] [Kim et al, 2016]

/ Strads System \

—

(1) Partition Data + Model into Tasks  Priority Scheduling

(2) Schedule & Prioritize Tasks onto Workers =T SAP

{85} ~ <5/33(-t_1)>2 +

(3) Balance Task Load on each Worker

N\ J

{ Ié \ Load-balanced Tasks Block scheduling
| I ) / v | v
| |
Worker 1 JI ] ] > U
. (& \_ %_ 1
r | - s s
Worker 2 I l ] - Uy il
> I - | N
‘ %2
Worker 3 ] J : '::> Us &
| _ J
( ( h [Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
Worker 4 ! L ] | : learning, AISTATS 2014]
[ |

Round 1

Round 2

Round 3

Round 4

>

)
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Scheduling: Faster, Better

SAP
Convergence across algorithms

* SAP on Strads achieves better speed and objective

2.5M vocab, 5K topics

100M features 80 ranks
9 machines 9 machines -
) D B x10° 32 machines
—STRADS N —STRADS .
---Lasso—-RR ' ---GraphLab

o
(V)

—STRADS

(0]
=
80.15
o]
(@]

0.1+

.’ ---YahooLDA
0.05 . T 0.5 T T r -3.5+ T T T . 7
0 500 1000 0 50 100 150 0 1 2 3 4 5
Seconds Seconds Seconds % 10*
Lasso MF LDA

o




o

(o2

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

024z

N “

Objective
o
>

SAP gives Near-ldeal
Convergence Speed wngetazom  * ©

e Goal: solve sparse regression problem
e Via coordinate descent over “SAP blocks” XV, X(?), ..., X(B)
X®) are data columns (features) in block (b)
e P parallel workers, M-dimensional data
e p = Spectral Radius[BlockDiag[(X(V)TX(), ..., (XW)TX(®¥]]; this block-diagonal
matrix quantifies max level of correlation within all SAP blocks X(*), X(#), ..., X(®

e SAP converges according to

Gap between current SAP explicitly minimizes p, ensuring
parameter estimate and optimum as close to 1/P convergence as possible
( % A 4 /s N\
OM) 1 1
IE[ x®) x]< S0 =

where t is # of iterations

» Take-away: SAP minimizes p by searching for feature subsets X(%), X(?),
..., X(B) w/o cross-correlation => as close to P-fold speedup as possible @/
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‘Correctly Measuring Parallel
Pe I'fO rma n Ce [blinded, to appear]

YahoolL DA progress per iteration

E=RUF H Decreasing
x-1:2 :. progress per
130 iteration
g 141354
é3s  SAP-LDA, m=25

o '1-51.;' 7 sAPLDA m=50 o
16 ,H SAP-LDA, m=100 .. ¢...
O ¥ YahooLDAm=25 wweu
a-1.7 YahooLDA m=50
o 18 YahoolL DA, m= 100 seepess

o 10000 20000

lterations

80GB data, 2M words,
1K topics, 100 machines

Yahool. DA data throughput

25 machines

39.7 M/s (1x)

50 machines

78 M/s (1.96x)

100 machines

151 M/s (3.8x)

30000

* YahoolLDA attains near-ideal throughput (1—3.8x)...
e ... but progress per iteration gets worse with more machines

* YahooLDA only <2x speedup from 25 —100 machines
* 6.7x slower compared to SAP-LDA
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Correctly Measuring Parallel
Pe I'fO rma n Ce [blinded, to appear]

SAP-LDA progress per iterat

—~ -1t
o -1t .
Overlapping

5,‘1-2 : curves — perfect

0 -1.3H progress per

§ -1 _4? iteration

O -15 1‘ SAP-LDA, m=25 ....gu
> SAP-LDA, M=50 wuedeenss
©-1.6 SAP-LDA, m=100 @« -
) _

a-1.7

o

[o)

1
-
o

10000 20000
lterations

30000

80GB data, 2M words,
1K topics, 100 machines

SAP-LDA data throughput

25 machines

58.3 M/s (1x)

50 machines

114 M/s (1.96x)

100 machines

204 M/s (3.5%)

» Ideal rate: progress per iter preserved from 25 — 100 machines
* Thanks to dependency checking
* Near-ideal throughput: data rate 1x — 3.5x from 25—100 machines

* Thanks to load balancing

e Convergence Speed = rate x throughput

e Therefore near-ideal 3.5x speedup from 25—100 machines
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ML SyStem DeSign [Xing et al., to appear 2016]

2. How to Bridge Computation and Communication:
Bridging Models and Bounded Asynchrony
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The Bulk Synchronous Parallel

Brid g in g Model [Valiant & McColl]

7,
Thread 1 -» |
|
Thread 2 -» “
Thread 3 -‘
Thread 4 S: p Q r&

date loc
spli Input Up te

Data 2> copy o fALL aggregate
Input 7 params Update
Data ALL
params
Input Update local
ap 2 copy of ALL
7

params

» Perform barrier in order to communicate parameters
* Mimics sequential computation — “serializable” property
» Enjoys same theoretical guarantees as sequential execution @/

o
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The Bulk Synchronous Parallel
Brldglng Model [Valiant & McColl]

e d LN L. B

stz ) ) is

o L L e
~m [ [ = [ Soaik

The success of the von Neumann model of sequential computation
is attributable to the fact it is an efficient bridge between software
and hardware... an analogous bridge is required for parallel
computation if that is to become as widely used — Leslie G. Valiant

* Numerous implementations since 90s (list by Bill McColl):

» Oxford BSP Toolset (‘98), Paderborn University BSP Library (‘01), Bulk Synchronous Parallel
ML (‘03), BSPonMPI ('06), ScientificPython ('07), Apache Hama ('08), Apache Pregel (‘09),
MulticoreBSP ('11), BSPedupack (‘11), Apache Giraph ('11), GoldenOrb (‘11), Stanford GPS

Project (“11) ...
\ ©
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But There Is No Ideal Distributed
System!

» Two distributed challenges:
* Networks are slow
» “Identical” machines rarely perform equally

Result: BSP barriers can be slow

Unequal | ="\A b =
% B B "

performance Mﬂﬂ" -JMR‘/‘ el Compute vs Network
LDA 32 machines (256 cores)

8000 1

7000 -
Low bandwidth, 6000 -

High delay = 5000 - ® Compute time

B Network waiting time

© 4000 -
o
O 3000 -
w1
2000 -
1000 ~

Q
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Is there a better way to interleave
computation and communication?

» Safe/slow (BSP) vs. Fast/risky (Async)?

* Challenge 1: Need “Partial” synchronicity
» Spread network comms evenly (don’t sync unless needed)
e Threads usually shouldn’t wait — but mustn’t drift too far apart!

» Challenge 2: Need straggler tolerance
* Slow threads must somehow catch up

Async

::::::;"’ = _— e ——
Thread 3 - Thread 3 “#»“qq
27

N NN

Thread 4

A Is persistent memory really necessary for ML? @
N h“ SpQrK p ry really ry ),
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A Stale Synchronous Parallel
Bridging Model woea.zom s sathes op

Staleness Threshold s =3

Worker 1

Worker 3 H yyyyyyy Async

| A ) ) ) ) ) s
Worker 4 o - ) ) ) mm) )

: : . ) ) ) ) )

0 1 2 3 4 5 6 7 8 9 Iteration

Stale Synchronous Parallel (SSP)

» Fastest/slowest workers not allowed to drift >s iterations apart

Consequence

Fast like async, yet correct like BSP
Why? Workers’ local view of model parameters “not too stale” (<s iterations old)
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Data-Parallel
Proximal Gradient under SSP

 Model (e.g. SVM, Lasso ...):
min £(alD), where £(a. D)= f(a,D) + g(a)

a€R? 4ata D, model «
_ sub-update
e Algorithm: , - \
« Update a(t) := prox, (ap( ) =) 2 1) dRecor () A (@7 (1), Dp,))
, stale sub-updates A() received
proximal step wrt g by worker p at iteration ¢

sub-update  A(a’(t),D,) := Vf(al(t), D,)

gradienI[ step wrt f
o Data parallel:

» Data D too large to fit in a single worker, divide among P workers

Update local copy aggregate
of ALL params

Input Update
Data ALL
params

Update local copy
of ALL params
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-9.50E+08

-1.00E+09
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Log-Likelihood

-1.20E+09

o
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SSP Data-Parallel
Async Speed, BSP Guarantee

LDA

LDA on NYtimes Dataset

LDA 32 machines (256 cores), 10% docs per iter

T

T T T
400 600 800 1000 1200 1400 1600 18

Lasso

Objective function versus time

2000 4.80E-01

/."//‘__

I

4.70E-01

-1.05E+09 7

-1.10E+09 7

P
"

4.60E-01

-1.25E+09 7

-1.30E+09 —

“#stale 32

i async

~*=BSP (stale 0)

paRr-ase
/.

Ob]ective

4.40E-01

4.30E-01

4.20E-01

1 T
Seconds

e Massive Data Parallelism

Lasso 16 machines (128 threads)

4.50E-01

—*=BSP (stale 0)
“#stale 10
“*stale 20
—““stale 40

“*stale 80

\.‘

1500 2000 2500

Seconds

» Effective across different algorithms

3000 3500 4000

1.40E+09 1
1.20E+09
1.00E+09

S

£ 8.00E+08

Q
2°6.00E+08
(@]

4.00E+08
2.00E+08
0.00E+00

Matrix Fact.

Objective function versus time
MF 32 machines (256 threads)

~*=BSP (stale 0)

“stale 7

1500 2000
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SSP Data Parallel Convergence Theorem

[Ho et al., 2013, Dai et al., 2015]

Let observed staleness be 7Vt
Let staleness mean, variance be ., = E[y], o, = var(y:)

Theorem: Given L-Lipschitz objective f, and step size h,

RIX O(F? |2 _T72
p[BIX] O A )ZTISGXD{ - }

~—

T \/T O(‘I_]TO'W + LQSPT)
where s A
RIX] = YL fild) — fa) g = QI o)

Explanation: the distance between true optima and
current estimate decreases exponentially with more
SSP iterations. Lower staleness mean, variance [t ,0
improve the convergence rate.
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Model-Parallel
Proximal Gradient under SSP

 Model (e.g. SVM, Lasso ...):
min £(alD), where £(a. D)= f(a,D) + g(a)

a€Rd data D, model a

* Model parallel
* Model dimension d too large to fit in a single worker

« Divide model among P workers a = (a1, a2.....ap)
* Algorthm: [, ] a,, (¢ + 1) = a,(t) + ’yp(t) Fy(a(t))
on worker p workers can skip updates
= )+ Z Yp(k p(a(t))
staleness
(local) a(t) = (a1 (7} (t)) .., ap(Tp(t))

(global) a(t) = (ai(t), ..., ap(t)).

gradient step wrt f
|

al(t+1) := F,(al(t)) = proxy (ap(t) — 'II}fo(ap(t)\)) — ay(t)

proximal step wrt g

» worker p keeps local copy of the full model (can be avoided for linear models) @
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SSP Model-Parallel
Async Speed, BSP Guarantee

Lasso: 1M samples, 100M features, 100 machines

X 10* Objective vs Seconds x 10° Objective vs Iteration
T T T l l ' T 14 T T T T T T
W\ s=0
10
12 s=1
9l S=3
<] [«
= = 10 _
= 8 = s=5
= >
o @ s=7
s 7 > 8
[ O
(5] <5
g ¢ =
o -7:: 61
5 Curves overlap — no
4t compromise to quality
4
-_— —
3 i i i i i i i 1 1 2 1 1 1 1 | L
100 200 300 400 500 600 700 800 900 100 0 5 10 15 20 25 30
seconds number of iterations

» Massive Model Parallelism
» Effective across different algorithms

35
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SSP Model Parallel Convergence Theorem

[Zhou et al., 2016]

Theorem: Given that the SSP delay is bounded, with
appropriate step size and under mild technical conditions,

then » Finite length

Y la+1) —a@)| <oo > |fa"(t+1) —a(t)]| < oo
t=0 t=0

In particular, the global and local sequences converge to the
same critical point, with rate O(t):

L (% 227:1 é(/ﬁ)) —1inf £ SO (1‘_1)

Explanation: Finite length guarantees that the algorithm
stops (the updates must eventually go to zero).
Furthermore, the algorithm converges at rate O(+') to the
optimal value; same as BSP model parallel.
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ML SyStem DeSign [Xing et al., to appear 2016]

3. How to Communicate:
Managed Communication and Topologies
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Managed Communication weieta. 2

e SSP only

 Communicates only at iteration boundary
e Ensures bounded staleness consistency

e SSP + Managed Communication
* Continuous communication/synchronization
» Update prioritization

* Same consistency guarantees as SSP

N O




/@ [SRMlINGYIRBY

MatrixFact:
Managed Communication Speedup

...................................................................

- S
o SSP —
5 SSP + Managed Comms —»%—

Lower . -

Is better | G ~ Already enjoying |
o e LT T T — —
£ TF E E E . Further 1.8x speedup
5 At multiplier over SSP

! R S s il

N~
20 200 400 600 800 1000 1200 1400 1600
3 time (seconds)

 Matrix Factorization, Netflix data, rank = 400
e 8 machines * 16 cores, 1GbE ethernet

o
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LDA:

Managed Communication Speedup
Already enjoying
3000 R SSPSGdup SSP .........................
X SSP + MC (no prio.) =

2500 L . VTR SSP + Managed Comms s

2000 R X

3x additional speed up from
1500 ST commsumanagement .......

1000

X

ZRRLRKS

500 F

Q

o

KX

time to convergence (seconds)

@

« Latent Dirichlet Allocation, NYTimes, # topics = 1000,
* 16 machines * 16 cores, 1GbE ethernet

. O
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Topology: Master-Slave

worker 1 worker 2

~

/
-: Client lib Client lib
Data partition Data partition
\_ % \_ %

Used with centralized storage paradigm
Topology = bipartite graph: Servers (masters) to Workers (slaves)
Disadvantage: need to code/manage clients and servers separately

Advantage: bipartite topology far smaller than full N> P2P connections @/

/
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Topology: Peer-to-Peer (P2P)

worker 1 worker 2

BED S

BED W

worker 3 worker 4

» Used with decentralized storage paradigm
* Workers update local parameter view by broadcasting/receiving

» Disadvantage: expensive unless updates AW are lightweight;
expensive for large # of workers

e Advantage: only need worker code (no central server code); if AW is

k low rank, comms reduction possible

)
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Halton Sequence Topology wieta. 2

» Used with decentralized storage paradigm
» Like P2P topology, but route messages through many workers
e e.g.to send message from 1 to 6, use 1->2->3->6
e Disadvantage: incur higher SSP staleness due to routing, e.g. 1->2-
>3->6 = staleness 3
e Advantage: support bigger messages; support more machines than
\ P2P topology @/
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Random Partial Broadcasting
and Diverse Mini-Batch Selection

 Random Partial Broadcasting

» Each machine randomly selects Q<<P machines to send messages
(instead of full broadcast)

t=1
» Diverse Mini-batch Selection
» Choose training data samples that maximize diversity score

K K
s = m D k=1 Zj;ﬁi(_xl—crxj)
» Pick few diverse samples instead of many random samples
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Principles of
ML SyStem DeSign [Xing et al., to appear 2016]

4. What to Communicate:
Exploiting Structure in ML Updates
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Matrix-Parameterized Models (MPMs)

Matrix parameter W

1N/

m1n — Y f.(Wa.;b)+h(W)

VA

Loss function

a

Regularizer

Distance Metric Learning, Sparse Coding, Distance Metric
Learning, Group Lasso, Neural Network, etc.
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Big MPMs

Multiclass Logistic
Regression on Wikipedia

Feature dim. = 20K
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Sparse Coding on

ImageNet

Feature dim. = 172K
\
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} Dic. Size=50K

} #classes=325K

Billions of params = 10-100 GBs, costly
network synchronization

What do we actually need to communicate?

Distance Metric Learning
on ImageNet

Feature dim. = 172K
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} Latent dim. = 50K

Neural Network of

Google Brain
#neurons in layer 0 = 40K
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#neurons in
layer 1 = 33K
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Full Updates

* Let matrix parameters be W. Need to send parallel worker

updates AW to other machines...
» Primal stochastic gradient descent (SGD)

R
min NZ f.(Wa;b.)+h(W)

of Wa;,b,)

AW =
ow

e Stochastic dual coordinate ascent (SDCA)
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AW = (Az)a,
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Suffibient Factor (SF) Updates

[Xie et al., 2015]

e Full parameter matrix update AW can be computed as
outer product of two vectors uyv! (called sufficient factors)

» Primal stochastic gradient descent (SGD)

R
min NZ f.(Wa;b.)+h(W)

of Wapb)
d(Wa,) i

e Stochastic dual coordinate ascent (SDCA)

AW =uv' u=

1 & . « 1
min — (=z)+h (—ZA"
N L fi (=z;) (N )

AW =uwv' u=Az, v=a,

e Send the lightweight SF updates (u,v), instead of the expensive
full-matrix AW updates!
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P2P Topology + SF Updates
= Sufficient Factor Broadcasting
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SFB Convergence Theorem

[Xie et al., 2015]

Theorem 1. Let {Wi}, p=1,..., P, and {W*} be the local sequences and the auxiliary sequence
generated by SFB for problem (P) (with h = 0), respectively. Under Assumption 1 and set the
learning rate n; ' = %L + 2sL + /¢, then we have

o liminf E||VF(W?€)|| = 0, hence there exists a subsequence of VF(WF¢) that almost surely
c—>00
vanishes;

e lim max, ||[W*—WZ|| =0, ie. the maximal disagreement between all local sequences and the

Cc—> 00

auxiliary sequence converges to 0 (almost surely);
e There exists a common subsequence of {W} and {W*} that converges almost surely to a sta-

( 2 o /
tionary point of F, with the rate HE?‘ E| Z;::l VE,(Ws)[3<0 ((L+L"')U e 10°C).
c<C

JC

Explanation: Parameter copies W, on different workers p
converge to the same optima, i.e. all workers reach the
same (correct) answer.

v’ Does not need central parameter server or key-value store
v'Works with SSP bridging model (staleness = s)
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Why is S f ?
y iIs SFB faster"
o Faster than PS and Spark (Because SFB has fas)ter iterations
less communication
& Spark SGopal 7ZPS W 7PS W
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* Near-linear scalability
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Summary

1. How to Distribute?
e  Structure-Aware Parallelization
e  Work Prioritization

2. How to Bridge Computation and Communication?
e BSP Bridging Model
SSP Bridging Model for Data and Model Parallel

3. How to Communicate?
e Managed comms — interleave comms/compute, prioritized comms

» Parameter Storage: Centralized vs Decentralized
e Communication Topologies: Master-Slave, P2P, Halton Sequence

4. What to Communicate?
e  Full Matrix updates

o Sufficient Factor updates
e Hybrid FM+SF updates (as in a DL model)




