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Machine Learning:  
-- a view from outside 
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Inside ML … 

•  Nonparametric 
Bayesian Models 

•  Graphical 
Models 

•  Deep Learning 
•  Sparse Coding 

•  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods •  Sparse Structured 

I/O Regression 
•  Large-Margin 

•  Network switches 
•  Infiniband 

•  Network attached storage 
•  Flash storage 

•  Server machines 
•  Desktops/Laptops 
•  NUMA machines 

•  GPUs •  Cloud compute 
(e.g. Amazon EC2) 

•  Virtual Machines 

Hardware and infrastructure 
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for	  (t	  =	  1	  to	  T)	  {	  
	  	  doThings()	  

	  	  	  	  	  
	  	  doOtherThings()	  
}	  

An ML Program 

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data 

This computation needs to be parallelized!  

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm 
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1B+ USERS 
30+ PETABYTES 

645 million users 
500 million tweets / day 
 

100+ hours video 
uploaded every minute 
 

32 million 
pages 
 

Massive Data 
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Google Brain  
Deep Learning  

for images: 
1~10 Billion 

model parameters 

Topic Models  
for news article 

analysis: 
Up to 1 Trillion 

model  
parameters 

      Collaborative filtering  
for Video recommendation: 

1~10 Billion 
                model  

parameters 

Multi-task Regression  
       for simplest whole-

genome analysis: 
100 million ~ 1 Billion 

model  
parameters 

Growing Model Complexity 
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Challenge #1  
– Massive Data Scale 

Familiar problem: data from 50B devices, data 
centers won’t fit into memory of single machine 

Source: Cisco Global Cloud 
Index 

Source: The Connectivist 

Δf θ(D) 
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for	  (t	  =	  1	  to	  T)	  {	  
	  	  doThings()	  
	  	  parallelUpdate(x,θ)	  
	  	  doOtherThings()	  
}	  



  

Challenge #2  
– Gigantic Model Size 

Big Data needs Big Models to extract understanding 
But ML models with >1 trillion params also won’t fit! 

Source: University of 
Bonn 

Δf θ(D) 
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for	  (t	  =	  1	  to	  T)	  {	  
	  	  doThings()	  
	  	  parallelUpdate(x,θ)	  
	  	  doOtherThings()	  
}	  



  

Issues with Hadoop and 
I-C ML Algorithms 

Naïve MapReduce not best for ML 
 
●  Hadoop can execute iterative-convergent, data-parallel ML... 

o  map() to distribute data samples i, compute update Δ(Di) 
o  reduce() to combine updates Δ(Di) 
o  Iterative ML algo = repeat map()+reduce() again and again 

●  But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations! 

HDFS Bottleneck 
Image source: dzone.com 

Iteration 1 Iteration 2 
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Spark: Faster MapR on Data-Parallel 
●  Spark’s solution: Resilient Distributed Datasets (RDDs) 

o  Input data → load as RDD → apply transforms → output result 
o  RDD transforms strict superset of MapR 
o  RDDs cached in memory, avoid disk I/O 

●  Spark ML library supports data-parallel ML algos, like Hadoop 
o  Spark and Hadoop: comparable first iter timings… 
o  But Spark’s later iters are much faster 

Source: ebaytechblog.com 
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Parallelization Strategies 

�1

�2

�1 �2

�1 �2

Sync 

A sequential program A parallel program 

⌘

�  but assuming an ideal system, e.g.,  
�  zero-cost sync, 
�  zero-cost fault recovery 
�  uniform local progress 
�  … 

Low bandwidth, 
High delay 

Unequal 
performance 

11 

for	  (t	  =	  1	  to	  T)	  {	  
	  	  doThings()	  
	  	  parallelUpdate(x,θ)	  
	  	  doOtherThings()	  
}	  

? 

Usually, we worry …  
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Compute vs Network 
LDA 32 machines (256 cores) 

Network waiting time 

Compute time 



Intrinsic Properties of ML Programs  
[Xing et al., 2015] 
�  ML is optimization-centric, and admits an iterative convergent 

algorithmic solution rather than a one-step closed form solution 

�  Error tolerance: often robust against limited 
 errors in intermediate calculations 

�  Dynamic structural dependency: 
 changing correlations between model parameters  
 critical to efficient parallelization  

�  Non-uniform convergence: parameters 
 can converge in very different number of steps 

 

�  Whereas traditional programs are transaction-centric, thus only 
guaranteed by atomic correctness at every step  

�  How do existing Big Data platforms fit the above? 12 



4 Principles of ML System Design 
How to execute distributed-parallel ML programs? 
ML program equations tell us “What to Compute”. But… 

1.  How to Distribute? 

2.  How to Bridge Computation and Communication? 

3.  How to Communicate? 

4.  What to Communicate? 
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Principles of 
ML system Design [Xing et al., to appear 2016]  
 
1. How to Distribute: 
Scheduling and Balancing workloads 
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Example: Model Distribution 

min
�

ky �X�k22 + �
X

j

|�j |

�

A huge number of parameters  
(e.g.) M > 100 million 

XyN

M

M

Model 

= 

b0 b1 b2 b3 

b4 b5 

b6 b8 b7 b9 

b10 b11 

G0 

G1 

•  How to correctly divide 
computational workload 
across workers? 

•  What is the best order to 
update parameters? 

Lasso via coordinate descent: 
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� Concurrent updates of     may induce errors �

�1

�2

�1 �2

�1 �2

Sync 

Sequential updates Concurrent updates 

�(t)
1  S(xT

1 y � x

T
1 x2�

(t�1)
2 ,�)

Decreases iteration progress 

Need to check x1
Tx2 

before updating 
parameters 

Model Dependencies 
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Avoid Dependency Errors via 
Structure-Aware Parallelization (SAP)                   
[Lee et al., 2014] [Kim et al, 2016] 

schedulerkey-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

schedulerkey-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

q Smart model-parallel execution: 
q  Structure-aware scheduling 
q  Variable prioritization 
q  Load-balancing 

schedulerkey-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

q Simple programming: 
q  Schedule() 
q  Push() 
q  Pull() 17 



A Structure-aware Dynamic Scheduler 
(Strads) [Lee et al., 2014] [Kim et al, 2016] 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Round 1 Round 2 Round 3 Round 4 

Load-balanced Tasks 

Sync. 
barrier 

Strads System 

S. Lee, J.-K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing. On Model Parallelization and 
Scheduling Strategies for Distributed Machine Learning. NIPS 2014. 

•  Priority Scheduling 

 

•  Block scheduling   

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue: 
Slow-worker agnostic distributed 
learning, AISTATS 2014] 

(1) Partition Data + Model into Tasks 

(2) Schedule & Prioritize Tasks onto Workers 

(3) Balance Task Load on each Worker 

SAP 
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SAP Scheduling: Faster, Better 
Convergence across algorithms  
�  SAP on Strads achieves better speed and objective 
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SAP gives Near-Ideal 
Convergence Speed [Xing et al., 2015]  
�  Goal: solve sparse regression problem 

�  Via coordinate descent over “SAP blocks” X(1),	  X(2),	  …,	  X(B)	  
�  X(b) are data columns (features) in block (b)	  

�  P parallel workers, M-dimensional data 
�  ρ = Spectral	  Radius[BlockDiag[(X(1))TX(1),	  …,	  (X(t))TX(t)]]; this block-diagonal 

matrix quantifies max level of correlation within all SAP blocks X(1),	  X(2),	  …,	  X(t)	  

�  SAP converges according to 

 
where t is # of iterations 

�  Take-away: SAP minimizes ρ by searching for feature subsets X(1),	  X(2),	  
…,	  X(B) w/o cross-correlation => as close to P-fold speedup as possible	  

Gap between current 
parameter estimate and optimum 

SAP explicitly minimizes ρ, ensuring 
as close to 1/P convergence as possible 
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YahooLDA progress per iteration 
80GB data, 2M words, 
1K topics, 100 machines 

YahooLDA data throughput 

25 machines 39.7 M/s (1x) 

50 machines 78 M/s (1.96x) 

100 machines 151 M/s (3.8x) 

�  YahooLDA attains near-ideal throughput (1→3.8x)… 
�  … but progress per iteration gets worse with more machines 

�  YahooLDA only <2x speedup from 25 →100 machines 
�  6.7x slower compared to SAP-LDA 

Decreasing 
progress per 

iteration 

Iterations 
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SAP-LDA, m=25 
SAP-LDA, m=50 

SAP-LDA, m=100 

  

Correctly Measuring Parallel 
Performance [blinded, to appear] 



�  Ideal rate: progress per iter preserved from 25 → 100 machines 
�  Thanks to dependency checking 

�  Near-ideal throughput: data rate 1x → 3.5x from 25→100 machines 
�  Thanks to load balancing 

�  Convergence Speed = rate x throughput 
�  Therefore near-ideal 3.5x speedup from 25→100 machines 

80GB data, 2M words, 
1K topics, 100 machines 

SAP-LDA data throughput 

25 machines 58.3 M/s (1x) 

50 machines 114 M/s (1.96x) 

100 machines 204 M/s (3.5x) 

SAP-LDA progress per iteration 

Iterations 

Overlapping 
curves – perfect 

progress per 
iteration 
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SAP-LDA, m=25 
SAP-LDA, m=50 

SAP-LDA, m=100 

  

Correctly Measuring Parallel 
Performance [blinded, to appear] 



Principles of 
ML system Design [Xing et al., to appear 2016]  
 
2. How to Bridge Computation and Communication: 
Bridging Models and Bounded Asynchrony 
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The Bulk Synchronous Parallel 
Bridging Model [Valiant & McColl] 

�  Perform barrier in order to communicate parameters 
�  Mimics sequential computation – “serializable” property 
�  Enjoys same theoretical guarantees as sequential execution 

1 

1 

1 

1 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

2 

2 

2 

2 

3 

3 

3 

3 

Input 
Data 

Input 
Data 

Input 
Data split 

Update local 
copy of ALL 

params 

Update local 
copy of ALL 

params 

aggregate 

Update 
ALL 

params 

Input 
Data 

Input 
Data 

Input  
Data 
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The Bulk Synchronous Parallel 
Bridging Model [Valiant & McColl] 

1 

1 

1 

1 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

2 

2 

2 

2 

3 

3 

3 

3 

�  Numerous implementations since 90s (list by Bill McColl): 
�  Oxford BSP Toolset (‘98), Paderborn University BSP Library (‘01), Bulk Synchronous Parallel 

ML (‘03), BSPonMPI (’06), ScientificPython (’07), Apache Hama (’08), Apache Pregel (‘09), 
MulticoreBSP (’11), BSPedupack (‘11), Apache Giraph (’11), GoldenOrb (‘11), Stanford GPS 
Project (‘11) … 

The success of the von Neumann model of sequential computation 
is attributable to the fact it is an efficient bridge between software 
and hardware… an analogous bridge is required for parallel 
computation if that is to become as widely used – Leslie G. Valiant 
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But There Is No Ideal Distributed 
System! 

�  Two distributed challenges: 
�  Networks are slow 
�  “Identical” machines rarely perform equally 

    Result: BSP barriers can be slow 

Low bandwidth, 
High delay 

Unequal 
performance 
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Compute vs Network 
LDA 32 machines (256 cores) 

Network waiting time 

Compute time 
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Is there a better way to interleave 
computation and communication? 
�  Safe/slow (BSP) vs. Fast/risky (Async)? 

�  Challenge 1: Need “Partial” synchronicity 
�  Spread network comms evenly (don’t sync unless needed) 
�  Threads usually shouldn’t wait – but mustn’t drift too far apart! 

�  Challenge 2: Need straggler tolerance 
�  Slow threads must somehow catch up 

1 

1

1 

1

Thread 1 

Thread 2 

Thread 3 

Thread 4 

2 

2 

2 

2 

3 

3 

3 

3 

1 

1 

1 

1 

Thread 1 

Thread 2 

Thread 3 
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2 

2 

2 

3 

3 

3 

4 

4 

4 

5 

5 

5 6 

6 

6 

??? 

BSP Async 

Is persistent memory really necessary for ML? 27 



  
 

A Stale Synchronous Parallel 
Bridging Model [Ho et al., 2013] 

Stale Synchronous Parallel (SSP) 
 

•  Fastest/slowest workers not allowed to drift >s iterations apart 

Iteration 0 1 2 3 4 5 6 7 8 9 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Staleness Threshold s = 3	


Consequence 
 

•  Fast like async, yet correct like BSP 
•  Why? Workers’ local view of model parameters “not too stale” (≤s iterations old) 

1 

1 

1 

1 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

2 

2 
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3 

3 

3 

3 
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1 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

2 

2 

2 

3 

3 

3 

4 

4 

4 

5 

5 

5 6 

6 

6 

BSP 

Async 

Force stop worker 1 until 
worker 2 catches up 

28 



  

Data-Parallel 
Proximal Gradient under SSP 

Input 
Data 

Input 
Data 

Input 
Data 

split Update local copy 
of ALL params 

Update local copy 
of ALL params 

aggregate 

Update 
ALL 

params 

Input 
Data 

Input 
Data 

Input  
Data 

�  Model (e.g. SVM, Lasso …): 

 
�  Algorithm:  

�  Update 

 

�  sub-update 

�  Data parallel: 
�  Data D too large to fit in a single worker, divide among P workers 

data D, model a	


stale sub-updates Δ() received 
by worker p at iteration t proximal step wrt g 

sub-update 

gradient step wrt f 
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SSP Data-Parallel 
Async Speed, BSP Guarantee 

 
�  Massive Data Parallelism 
�  Effective across different algorithms 

Lasso Matrix Fact. LDA 
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 Theorem: Given L-Lipschitz objective ft and step size ht, 
 
 
 

 where 
	


SSP Data Parallel Convergence Theorem 
[Ho et al., 2013, Dai et al., 2015] 
Let observed staleness be 
Let staleness mean, variance be                    ,  

Explanation: the distance between true optima and 
current estimate decreases exponentially with more 
SSP iterations. Lower staleness mean, variance      ,      
improve the convergence rate. 
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Model-Parallel 
Proximal Gradient under SSP 
�  Model (e.g. SVM, Lasso …): 

�  Model parallel  
�  Model dimension d too large to fit in a single worker 
�  Divide model among P workers 

�  Algorithm: 

�  worker p keeps local copy of the full model (can be avoided for linear models) 

data D, model a	


staleness 

workers can skip updates on worker p 

gradient step wrt f 

proximal step wrt g 

32 



  

SSP Model-Parallel 
Async Speed, BSP Guarantee 

�  Massive Model Parallelism 
�  Effective across different algorithms 

2x speedup 

Curves overlap – no 
compromise to quality 

Lasso: 1M samples, 100M features, 100 machines 
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SSP Model Parallel Convergence Theorem 
[Zhou et al., 2016] 

Theorem: Given that the SSP delay is bounded, with 
appropriate step size and under mild technical conditions, 
then  
 
 
In particular, the global and local sequences converge to the 
same critical point, with rate O(t-1): 

1X

t=0

kx(t+ 1)� x(t)k < 1
1X

t=0

kxi(t+ 1)� x

i(t)k < 1

Finite length 

Explanation: Finite length guarantees that the algorithm 
stops (the updates must eventually go to zero). 
Furthermore, the algorithm converges at rate O(t-1) to the 
optimal value; same as BSP model parallel. 
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Principles of 
ML system Design [Xing et al., to appear 2016]  
 
3. How to Communicate: 
Managed Communication and Topologies 
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Managed Communication [Wei et al., 2015] 
�  SSP only 

�  Communicates only at iteration boundary 
�  Ensures bounded staleness consistency 

compute compute compute 

compute compute compute 

�  SSP + Managed Communication 
�  Continuous communication/synchronization 
�  Update prioritization 
�  Same consistency guarantees as SSP 
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MatrixFact: 
Managed Communication Speedup 

Stopping Criteria 

1.8x 
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Managed Communication, 200Mbps

•  Matrix Factorization, Netflix data, rank = 400 
•  8 machines * 16 cores, 1GbE ethernet 

Lower 
is better Already enjoying 

SSP speedup 
Further 1.8x speedup 
multiplier over SSP 
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SSP 
SSP + Managed Comms 



•  Latent Dirichlet Allocation, NYTimes, # topics = 1000,  
•  16 machines * 16 cores, 1GbE ethernet 

  
 

LDA: 
Managed Communication Speedup 
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execution mode

3x additional speed up from 
comms management 

25% additional speedup 
from comms prioritization 

Already enjoying 
SSP speedup 
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SSP 
SSP + MC (no prio.) 

SSP + Managed Comms 



Topology: Master-Slave 

�  Used with centralized storage paradigm 
�  Topology = bipartite graph: Servers (masters) to Workers (slaves) 
�  Disadvantage: need to code/manage clients and servers separately 
�  Advantage: bipartite topology far smaller than full N2 P2P connections 

ML App Client lib ML App Client lib 

 
 

server 1 

Model partition   
 

server 2 

Model partition  

 
 

 
 

Data partition Data partition 

worker 1 worker 2 
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Topology: Peer-to-Peer (P2P) 

�  Used with decentralized storage paradigm 
�  Workers update local parameter view by broadcasting/receiving 
�  Disadvantage: expensive unless updates ΔW are lightweight; 

expensive for large # of workers  
�  Advantage: only need worker code (no central server code); if ΔW is 

low rank, comms reduction possible 

 
 Model copy ML App 

worker 1 
 
 Model copy ML App 

worker 2 

 
 Model copy ML App 

worker 3 

 
 Model copy ML App 

worker 4 

40 



Halton Sequence Topology [Li et al., 2015] 

�  Used with decentralized storage paradigm 
�  Like P2P topology, but route messages through many workers 

�  e.g. to send message from 1 to 6, use 1->2->3->6 

�  Disadvantage: incur higher SSP staleness due to routing, e.g. 1->2-
>3->6 = staleness 3 

�  Advantage: support bigger messages; support more machines than 
P2P topology 41 



  

Random Partial Broadcasting 
and Diverse Mini-Batch Selection 
�  Random Partial Broadcasting 

�  Each machine randomly selects Q<<P machines to send messages 
(instead of full broadcast) 

�  Message cost reduced: from O(P2) to O(PQ), scales linearly with 
machine count P! 

�  Diverse Mini-batch Selection 
�  Choose training data samples that maximize diversity score  

�  Pick few diverse samples instead of many random samples 
�  Using few but diverse samples further reduces comms costs without 

hurting output quality! 42 



Principles of 
ML system Design [Xing et al., to appear 2016]  
 
4. What to Communicate: 
Exploiting Structure in ML Updates 
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Matrix-Parameterized Models (MPMs) 

)();(1min
1

WhbWaf
N

N

i
iiiW
+∑

=

Loss function Regularizer 

Distance Metric Learning, Sparse Coding, Distance Metric 
Learning, Group Lasso, Neural Network, etc. 

Matrix parameter W 
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Big MPMs 

Multiclass Logistic  
Regression on Wikipedia 

#classes=325K 

Feature dim. = 20K 

Distance Metric Learning 
on ImageNet 

Latent dim. = 50K 

Feature dim. = 172K 

Sparse Coding on 
ImageNet 

Dic. Size=50K 

Feature dim. = 172K 

Neural Network of 
Google Brain 

#neurons in layer 0 = 40K 

#neurons in 
 layer 1 = 33K 

6.5B 8.6B 

8.6B 1.3B 

Billions of params = 10-100 GBs, costly 
network synchronization 

 
What do we actually need to communicate? 
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Full Updates 
�  Let matrix parameters be W. Need to send parallel worker 

updates ΔW to other machines… 
�  Primal stochastic gradient descent (SGD) 

 
�  Stochastic dual coordinate ascent (SDCA) 

)();(1min
1

WhbWaf
N

N

i
iiiW
+∑

=

* * T

1

1 1min ( ) ( )
N

i iZ i
f z h ZA

N N=

− +∑

W
bWafW ii

∂

∂
=Δ

),(

ii azW )(Δ=Δ
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Sufficient Factor (SF) Updates  
[Xie et al., 2015] 
�  Full parameter matrix update ΔW can be computed as 

outer product of two vectors uvT (called sufficient factors) 
�  Primal stochastic gradient descent (SGD) 

 
�  Stochastic dual coordinate ascent (SDCA) 

 
 

�  Send the lightweight SF updates (u,v), instead of the expensive 
full-matrix ΔW updates! 

)();(1min
1

WhbWaf
N

N

i
iiiW
+∑

=

T ( , )
( )

i i
i

i

f Wa bW uv u v a
Wa

∂
Δ = = =

∂

* * T

1

1 1min ( ) ( )
N

i iZ i
f z h ZA

N N=

− +∑

T
i iW uv u z v aΔ = = Δ =
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P2P Topology + SF Updates 
= Sufficient Factor Broadcasting 

48 



SFB Convergence Theorem 
[Xie et al., 2015] 
 
 
 
 
 
 
 
Explanation: Parameter copies Wp on different workers p 
converge to the same optima, i.e. all workers reach the 
same (correct) answer. 
ü Does not need central parameter server or key-value store 
ü Works with SSP bridging model (staleness = s) 
 49 



Why is SFB faster? 

�  Faster than PS and Spark 

�  Near-linear scalability 

Because SFB has faster iterations  
(less communication) 

… while keeping the same iteration quality as PS 

SFB communication up to 100x smaller  
than PS and Spark 
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Summary 
1.  How to Distribute? 

�  Structure-Aware Parallelization 
�  Work Prioritization 

2.  How to Bridge Computation and Communication? 
�  BSP Bridging Model 
�  SSP Bridging Model for Data and Model Parallel 

3.  How to Communicate? 
�  Managed comms – interleave comms/compute, prioritized comms 
�  Parameter Storage: Centralized vs Decentralized 
�  Communication Topologies: Master-Slave, P2P, Halton Sequence 

4.  What to Communicate? 
�  Full Matrix updates 
�  Sufficient Factor updates 
�  Hybrid FM+SF updates (as in a DL model)  
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