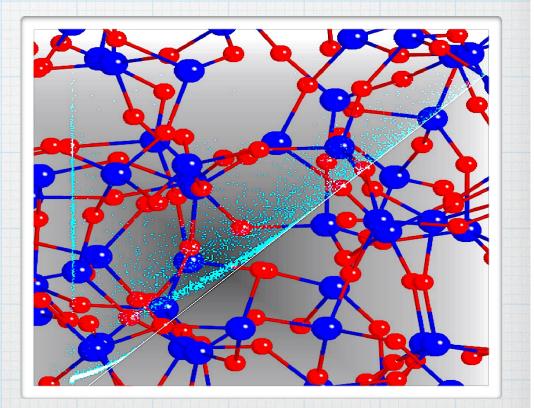
### パーシステントホモロジーと機械学習

平岡 裕章 Yasuaki Hiraoka

東北大学 原子分子材料科学高等研究機構 WPI-AIMR

JST CREST SIP革新的構造材料 JST イノベーションハブMI^2I



# 位相的データ解析

位相的データ解析 (Topological Data Analysis, TDA) 今世紀に数学者が開発したデータ解析手法

Data Has Shape, Shape Has Meaning, Meaning Drives Value

Gunnar Carlsson's Gr. (math. Stanford, AYASDI) - (ビッグ)データ解析, ソーシャルネットワーク, 医療, 金融 etc

Robert Ghrist's Gr. (math. UPenn)

- 情報ネットワーク, センサーネットワーク

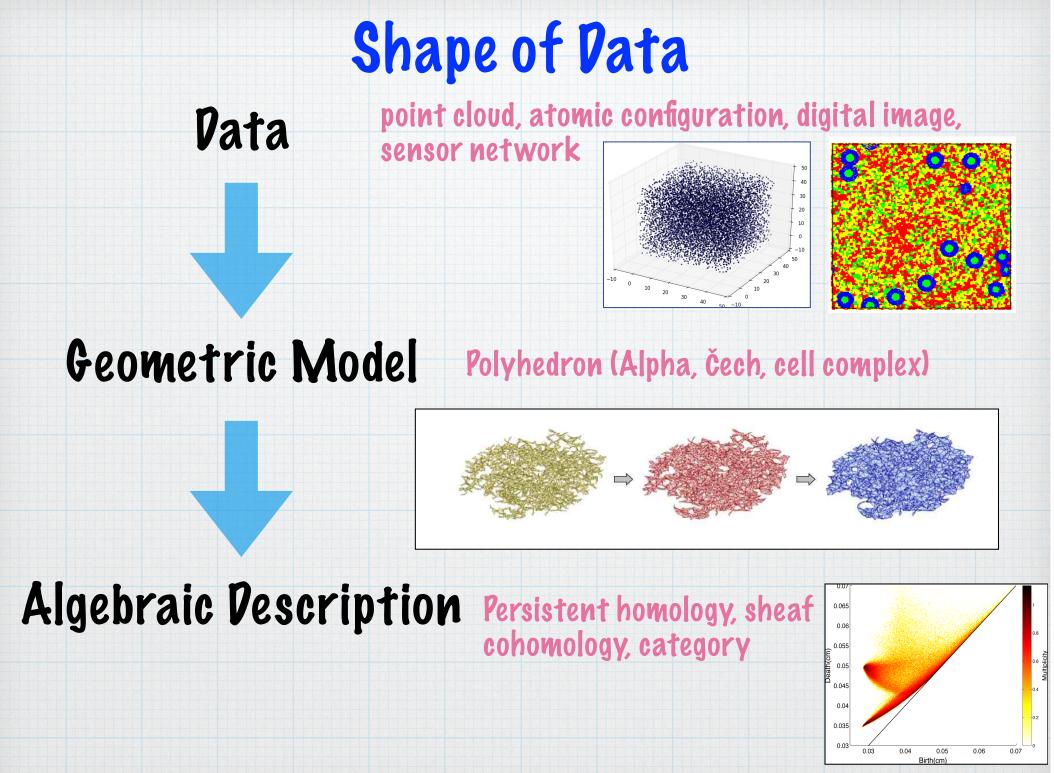
Konstantin Mischaikow's Gr. (math. Rutgers)

- 流体解析, データ時系列解析

東北大AIMR, CREST, SIP, MI^2I - 材料科学(ガラス, 粉体, 高分子, 金属, 蓄電池 etc)

## 位相的データ解析の材料科学への応用





#### Edelsbrunner & Mücke '94

**X**4

**X**5

Хз

**X**2

 $X_1$ 

### Alpha shape

• 
$$X = \{x_i \in \mathbf{R}^m \mid i = 1, \dots, n\}$$
: point cloud

•  $\mathbf{R}^m = \cup_i V_i$  : Voronoi decomp.

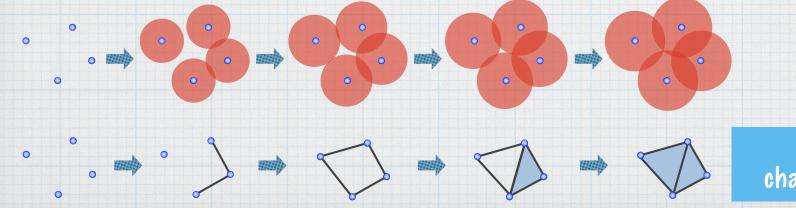
• 
$$\cup_i B_i(r) = \cup_i (B_i(r) \cap V_i)$$

• Alpha shape  $\mathcal{A}(X, r)$ : dual of  $\{B_i(r) \cap V_i \mid i = 1, ..., n\}$ (simplicial complex)

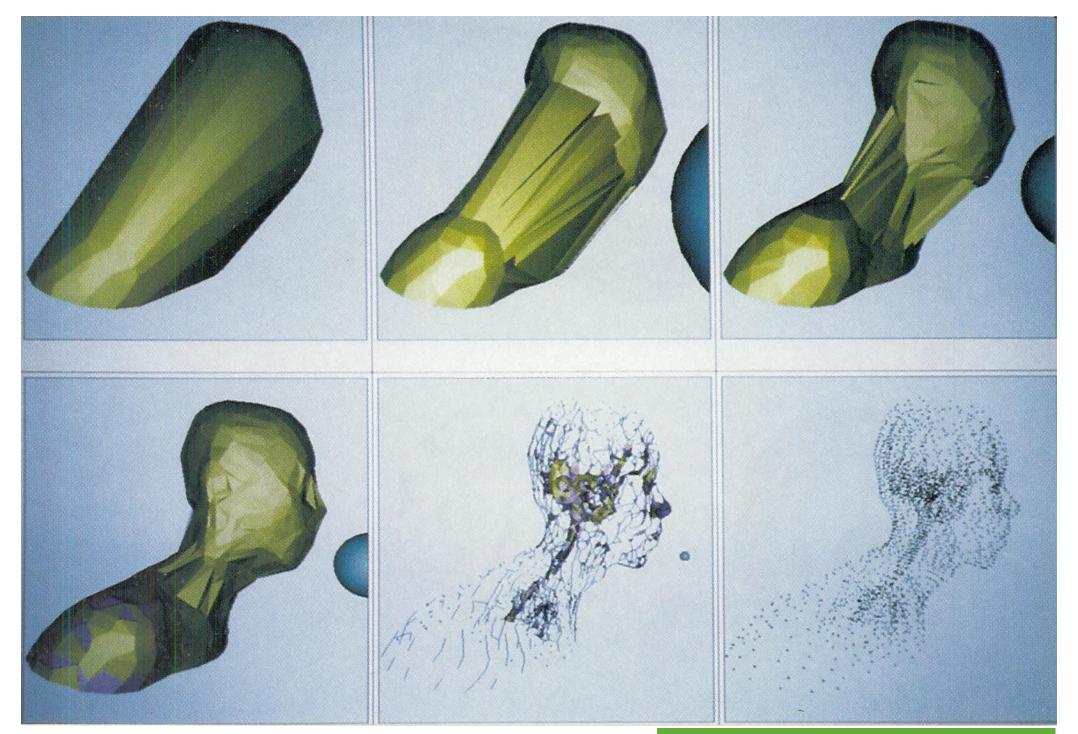
• Nerve theorem:  $\cup_i B_i(r) \simeq \mathcal{A}(X, r)$ 

easier to analyze by computers

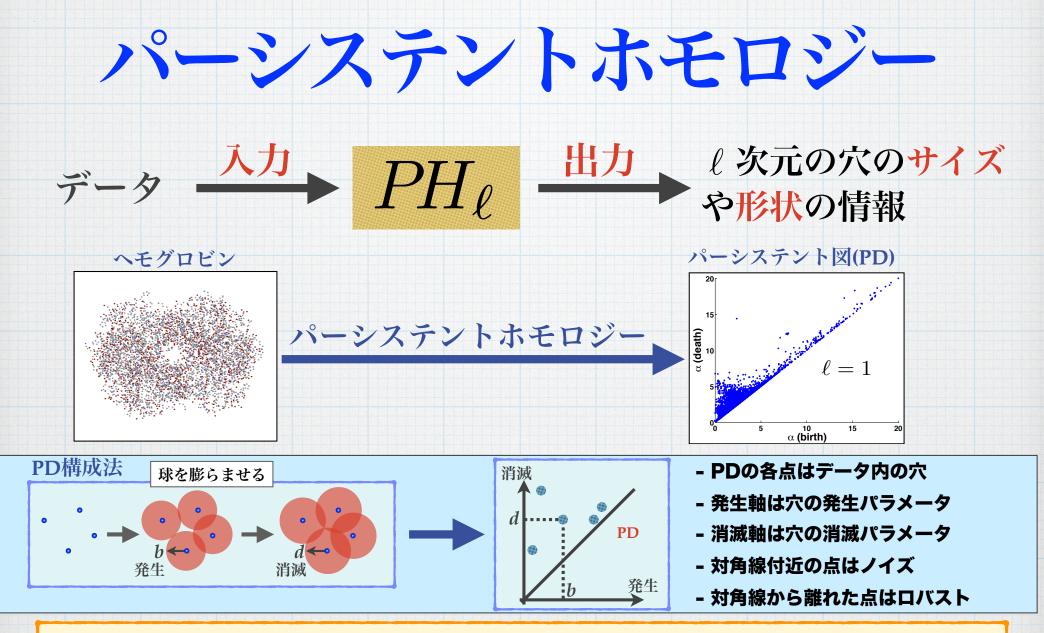
•  $\mathcal{A}(X,r) \subset \mathcal{A}(X,s)$  for r < s



filtration: changing resolution



### (ref. Edelsbrunner, Mucke)



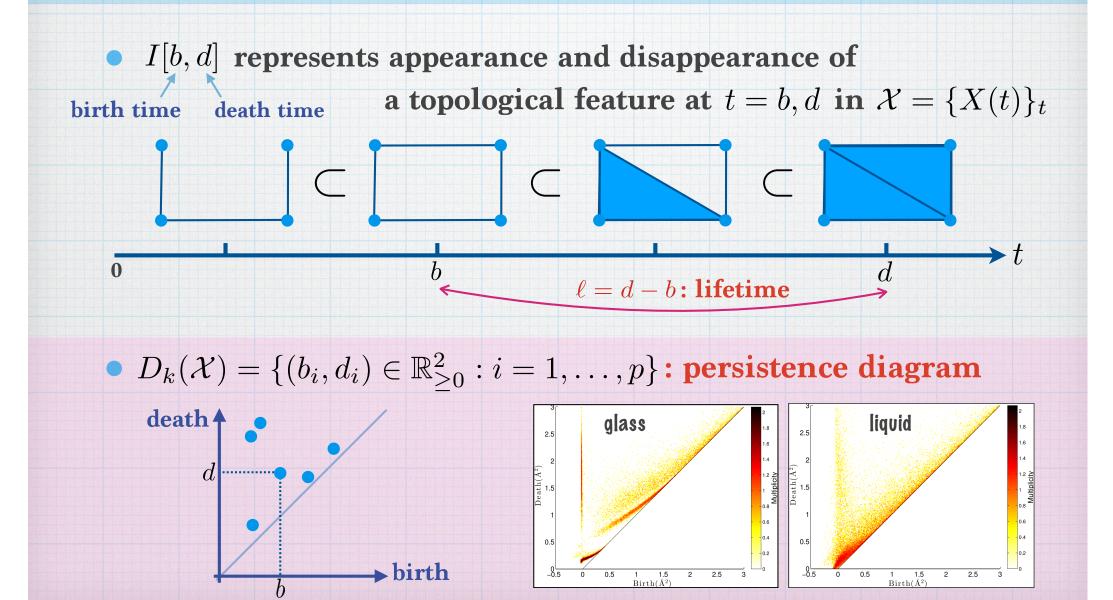
- 数学者Edelsbrunner, Carlsson等によって開発 (2003, 2005年)

- 穴のサイズ, 形状, 階層構造などを扱える - 数学的進化と同時に, 現在急速に諸科学への応用が進められている

#### Edelsbrunner, Letscher, Zomorodian, Carlsson, de Silva Persistent Homology $PH_1(\mathcal{X}) \simeq I[3,4]$ 0 0 $X_3$ $X_4$ $X_1$ $X_2$ $X_5$ • filtration $\mathcal{X}: X_1 \subset X_2 \subset \cdots \subset X_n$ representations on $A_n$ persistent homology $H_{\ell}(\mathcal{X}): H_{\ell}(X_1) \to H_{\ell}(X_2) \to \cdots \to H_{\ell}(X_n)$ 1 2 n interval decomposition (Gabriel's Theorem) $H_{\ell}(\mathcal{X}) \simeq \bigoplus I[b_i, d_i]$ i=1 **generator** $I[b,d]: 0 \to \cdots \to 0 \to K \to \cdots \to K \to 0 \to \cdots \to 0$ at $X_h$ at $X_d$

### Persistence Diagram

**Interval decomp:**  $H_k(\mathcal{X}) \simeq \bigoplus_{i=1}^p I[b_i, d_i]$ 



## What is glass?

supercooled liauid

crystal

temperature

glass

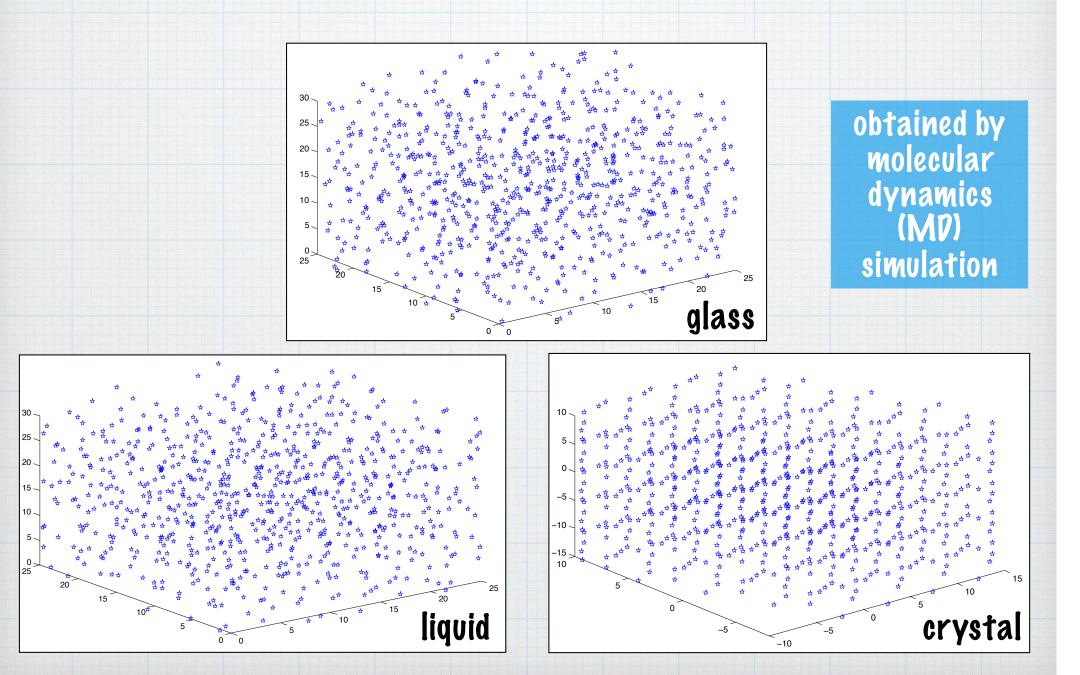
liquid

- \* Not yet fully answered to "what is glass?"
- \* Not liquid, not solid, but something in-between
- \* Atomic configuration looks random, but
  - sufficient cohesion to maintain rigidity
- \* Further geometric understandings of atomic
- configurations are
   Solar Energy Glass, DVD, BD, etc.





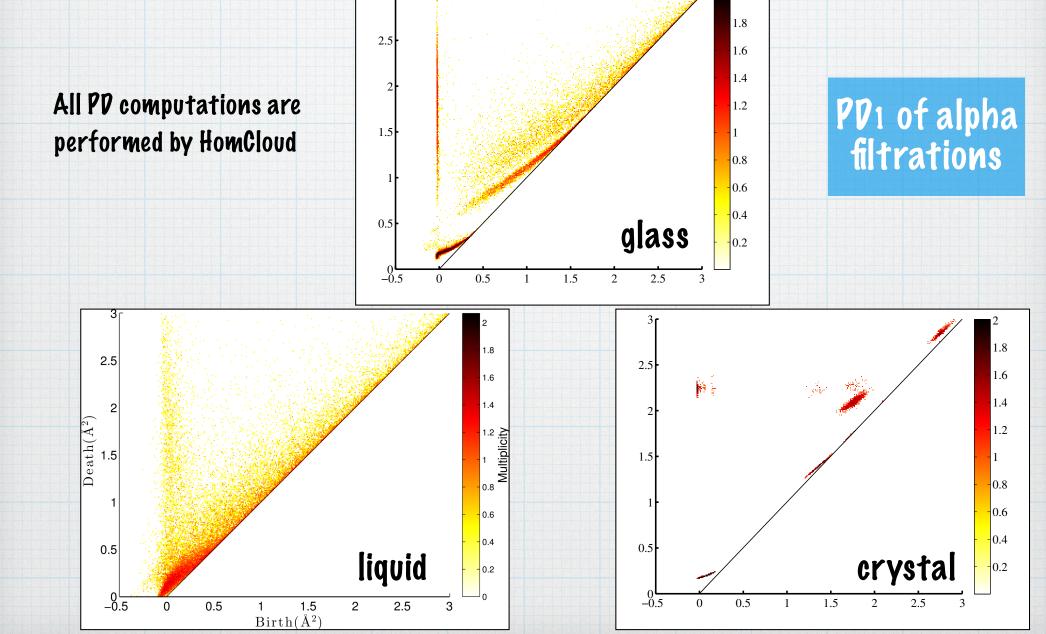
### Atomic configurations of silica (SiO2)



#### Y.H., et al. PNAS (2016)

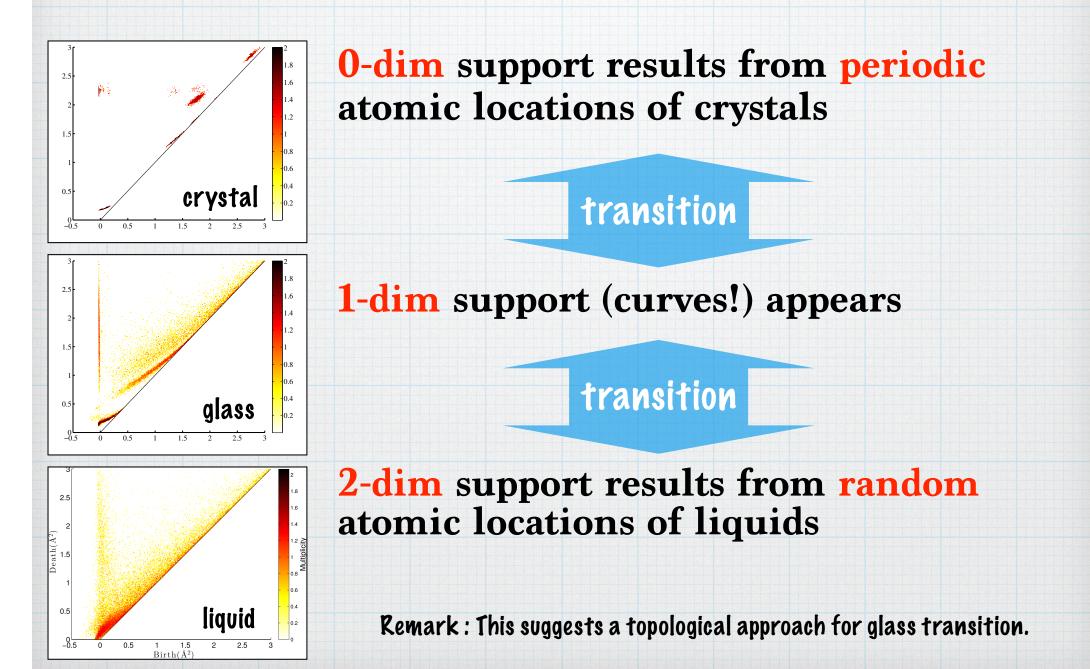
#### TDA on Materials Science





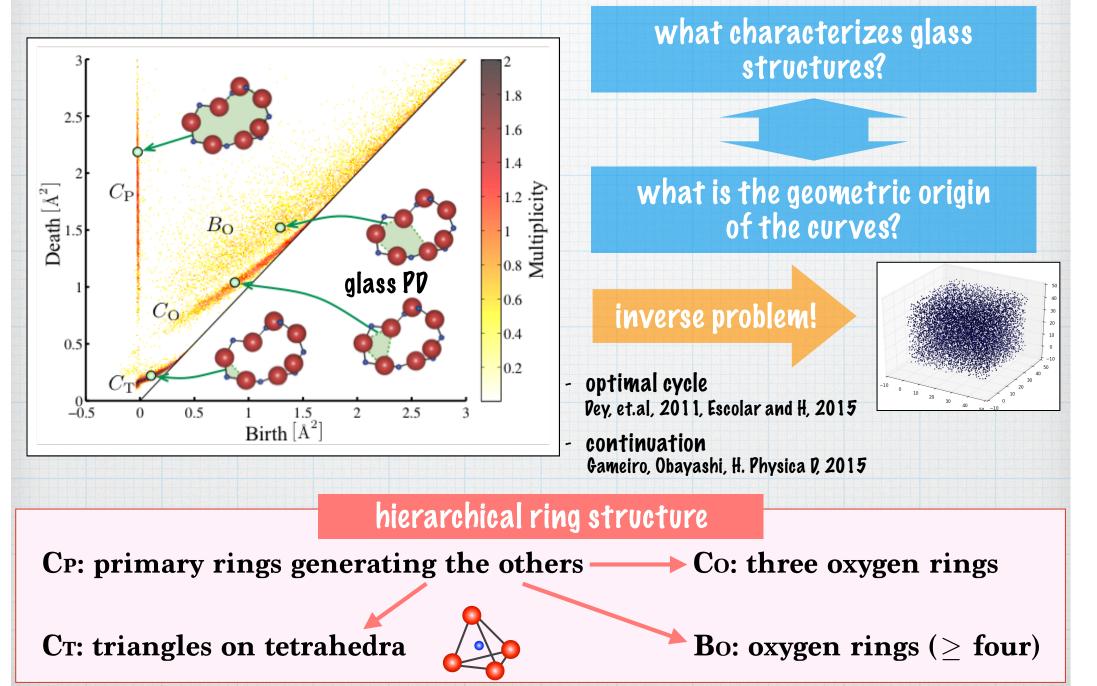
Y.H., et al. PNAS (2016)

### Support dim and order parameter



Y.H., et al. PNAS (2016)

### Geometric origins of curves: inverse problem



Kusano, Fukumizu, Y.H. ICML (2016)

 $\forall x \in \Omega, \forall f \in \mathcal{H}_k$ 

## PD and kernel method

- \* vectorization of PDs for statistics (persistence landscape, etc)
- Reininghaus et al. proposes the persistence scale-space kernel (PSSK) on PDs based on a heat diffusion
- Our method: persistence weighted Gaussian kernel (PWGK)
- **\*** PWGK can explicitly control the effect of persistence

Let  $\Omega$  be a LCH and  $k: \Omega \times \Omega \to \mathbf{R}$  be a positive def. kernel

 $\mathcal{H}_k$ : reproducing kernel Hilbert space (RKHS) s.t.  $f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}_k}$ 

 $M_b(\Omega)$  : space of all finite signed Radon measures on  $\Omega$ 

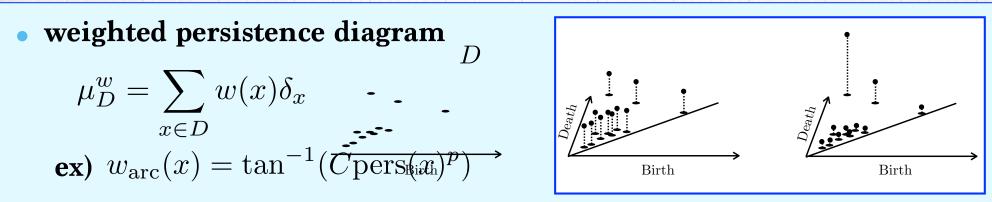
- k is called  $C_0$ -universal if
  - k(x,x) is a  $C_0$ -function (cont. & vanishing at  $\infty$  )
  - $\mathcal{H}_k$  is dense in  $C_0(\Omega)$

Thm: Kernel embedding of distributions (Fukumizu et al, 2011)

- $\Phi_k: M_b(\Omega) \to \mathcal{H}_k, \ \mu \mapsto \int k(\cdot, x) d\mu(x)$  is injective.
- $d_k(\mu,\nu) = \|\Phi_k(\mu) \Phi_k(\nu)\|_{\mathcal{H}_k}$  defines a distance on  $M_b(\Omega)$ .

#### Kusano, Fukumizu, Y.H. ICML (2016)

### Persistence weighted Gaussian kernel (PWGK)



 ${\it C}$  and  ${\it p}$  explicitly control the effect of persistence in statistics.

#### • PWGK

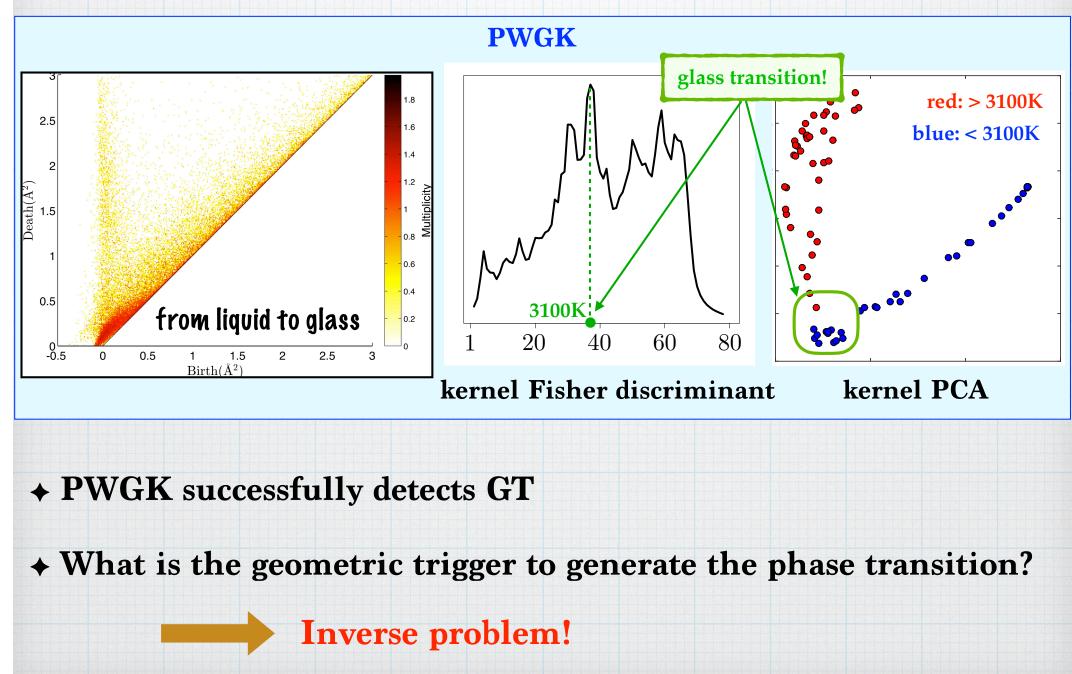
The Gaussian kernel 
$$k_G(x, y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$
 is Co-universal  
 $\Phi_{k_G}: M_b(\Delta) \to \mathcal{H}_{k_G}, \ \mu_D^w \mapsto \int k_G(\cdot, x) d\mu_D^w(x)$  becomes injective  
 $d_{k_G}^w(D, E) = \|\Phi_{k_G}(\mu_D^w) - \Phi_{k_G}(\mu_E^w)\|_{\mathcal{H}_{k_G}}$  defines a distance

Stability Theorem

Let  $X, Y \subset \mathbf{R}^d$  be finite subsets and p > d + 1. Then,  $d_{k_G}^{w_{\operatorname{arc}}}(D(X), D(Y)) \leq Ld_H(X, Y)$ 

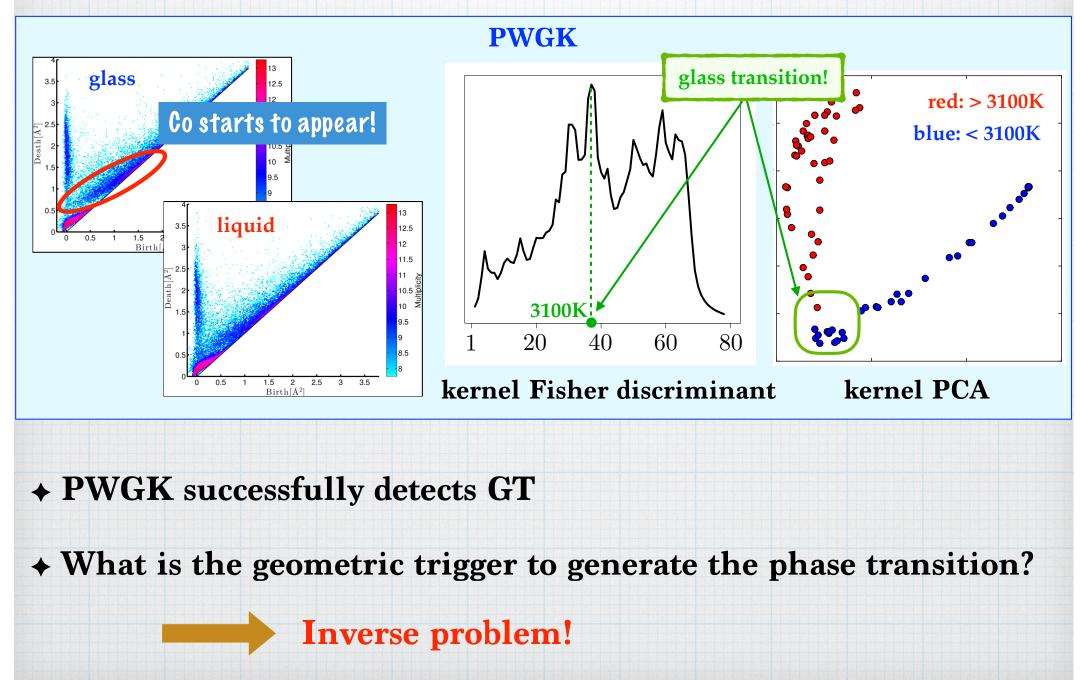
Kusano, Fukumizu, Y.H. ICML (2016)

### PD detects glass transition and its geometry



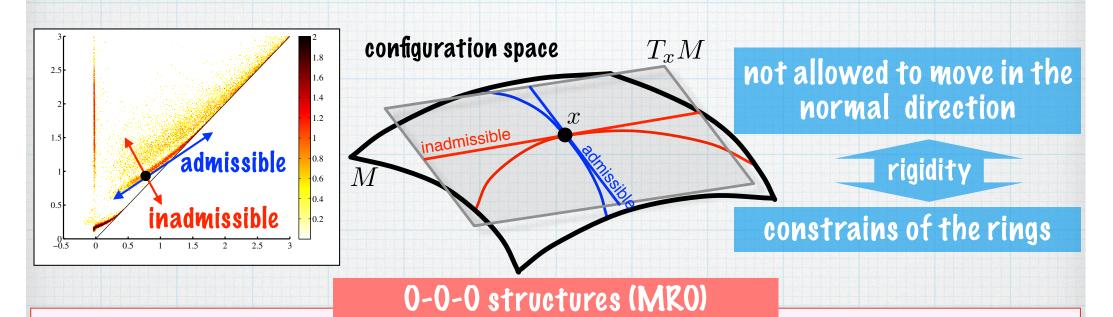
Kusano, Fukumizu, Y.H. ICML (2016)

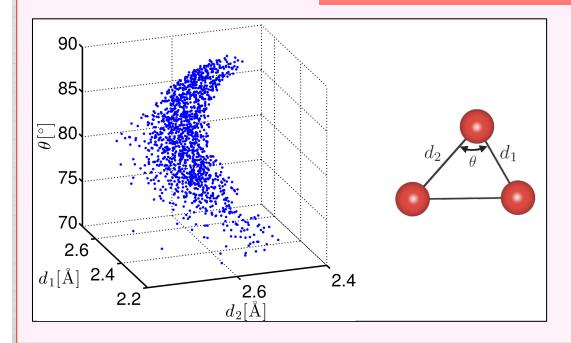
### PD detects glass transition and its geometry



Y.H., et al. PNAS (2016)

### Curves and constrains





- \* O-O-O ring constrains are discovered
- necessary to study both distance and angle distributions simultaneously (conventional methods cannot detect)