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本日のトーク： 地味にやってる話

• Multiple	comparisons	of	log-likelihoods	with	applications	to	
phylogenetic	inference.	H	Shimodaira,	M	Hasegawa.	Molecular	
biology	and	evolution 16,	1114-1116,	1999

• An	approximately	unbiased	test	of	phylogenetic	tree	selection.	H	
Shimodaira. Systematic	biology 51	(3),	492-508,	2002

• Approximately	unbiased	tests	of	regions	using	multistep-multiscale	
bootstrap	resampling.	H	Shimodaira.	The	Annals	of	Statistics	32,	
2004

• Testing	regions	with	nonsmooth boundaries	via	multiscale	
bootstrap.	H	Shimodaira.	Journal	of	Statistical	Planning	and	
Inference 138,	1227-1241,	2008

• Higher-order	accuracy	of	multiscale-double	bootstrap	for	testing	
regions.	H	Shimodaira.	Journal	of	Multivariate	Analysis 130,	208-
223,	2014
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マルチスケール・ブートストラップ法による信頼度計算の研究



領域の検定と信頼度

4

𝐻

confidence 𝜇 ∈ 𝐻 𝑦
信頼度が小さい時，仮説を棄却する

𝜇

𝑦

𝑌|𝜇 データの分布



多変量正規モデルで考える
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𝐻

𝑌|𝜇~𝑁 𝜇, 𝐼

𝜇

𝑌

density ∝ exp(− y − µ 2 / 2)



ベイズ事後確率は容易に計算

µ

yH

density ∝ exp(− y − µ 2 / 2)

µ | y ~ N(y, I )

µ ~ uniform
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confidence23456 𝜇 ∈ 𝐻 𝑦 = 𝑃 𝜇 ∈ 𝐻|𝑦
Hの事後確率 ＝ ブートストラップ確率

muの事後分布 ＝ ブートストラップ分布

𝑌|𝜇~𝑁 𝜇, 𝐼



頻度論のp-値が満たすべき性質
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𝐻

P confidence:;5< 𝜇 ∈ 𝐻 𝑌 < 0.05 ≤ 0.05 under	𝜇 ∈ 𝐻

𝑌

Type-I	errorを有意水準(=0.05)で抑えたい．しかし検出力を上げるには等号に近い方が良い．

P confidence:;5< 𝜇 ∈ 𝐻 𝑌 < 0.05 = 0.05 under	𝜇 ∈ 𝜕𝐻

𝜕𝐻

不偏検定では，仮説境界上でType-I	errorを有意水準と同じにしたい

Confidence	=	0.05
𝜇



符号付き距離を使う

µ̂ yH

d(y) 符号付き距離
(signed	distance)

Y | y ~ N(µ̂, I )
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confidence:;5< 𝜇 ∈ 𝐻 𝑦 = 𝑃 𝑑 𝑌 > 𝑑 𝑦 |�̂� + 𝑂H(𝑛
KLM)



もしパラメータにアクセスすれば簡単

0q

0q

q̂

q̂

*q̂

*q̂

ブートストラップ分布をひっくり返す

データからブートストラップ分布

p-value
帰無仮説からシミュレーション

BP(1)
0:H q q£
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ベイズ事後確率はp-値を近似する

10

confidence:;5< 𝜇 ∈ 𝐻 𝑌 = confidence23456 𝜇 ∈ 𝐻 𝑌 + 𝑂H(𝑛
KOM)

たしかに近似してるけど，誤差が大きい．誤差の主な原因は，仮説境界の「平均曲率」．

頻度論の意味でp-値を追求してみる．

ブートストラップ法で計算したい．カウント値だけをつかう．

多重比較との関連．

多変量正規モデル，平坦な事前分布，仮説領域の境界が滑らかであることを仮定すると



たとえば、モデル選択

• 多項式回帰モデルの次数選択

• 適切なモデルをAIC最小化法で選ぶ

  y = β0 + β1x + β2x2 + ε
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各領域がモデルに相当
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多項式回帰の次数選択： 次数＝０，１，２から選ぶ

Efron and	Tibshirani (1998) “The	problem	of	regions”

  y = β0 + β1x + β2x2 + ε

  y = β0 + β1x + ε

  y = β0 + ε

 (β̂1,β̂2 )



たとえば、進化系統樹の推定

• DNA配列データ
• 系統樹上のマルコフ過程

• 最尤法でモデル選択する
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各領域が系統樹に相当

1 2 3 4 5

1 2 3 4 5

1 23 4 5

1 2 3 4 5

nD D¥
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Pvclust:	Suzuki	and	Shimodaira	(2006)

Function seplot provides a graphical interface for examining
standard errors, while print gives more detailed information
about p-values in text-based format. See online instruction on
our website for the usage of these facilities.
In the multiscale bootstrap resampling, we intentionally alter the

data size of bootstrap samples to several values. Let N be the
original data size, and N0 be that for bootstrap samples. In the
example of Figure 1, N ¼ 916, and N0 ¼ 458, 549, 641, 732,
824, 916, 1007, 1099, 1190 and 1282. For each cluster, an observed
BP value is obtained for each value of N0, and we look at change in
z¼"F"1 (BP) values, whereF"1 (·) is the inverse function ofF (·),
the standard normal distribution function. For the cluster labeled 62
in Figure 1, the observed BP values are 0.8554, 0.8896, 0.9132,
0.9335, 0.9498, 0.9636, 0.9656, 0.9756, 0.9795 and 0.9859 (Fig. 2).
Then, a theoretical curve zðN0Þ ¼ v

ffiffiffiffiffiffiffiffiffiffiffi
N0=N

p
+ c

ffiffiffiffiffiffiffiffiffiffiffi
N=N0

p
is fitted to

the observed values, and the coefficients v, c are estimated for each
cluster. The AU p-value is computed by AU ¼ F("v + c). For the
cluster labeled 62, v ¼ "2.01, c ¼ 0.26, and thus AU ¼ F(2.01 +
0.26) ¼ F(2.27) ¼ 0.988, where BP ¼ 0.964 for N0 ¼ N. An
asymptotic theory proves that the AU p-value is less biased than
the BP value.
Currently only the simplest form of the bootstrapping, i.e. the

non-parametric bootstrap resampling, is implemented in pvclust.
More elaborate models designed for specific applications, such
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Fig. 1. Hierarchical clustering of 73 lung tumors. The data are expression pattern of 916 genes of Garber et al. (2001). Values at branches are AU p-values (left),
BP values (right), and cluster labels (bottom).ClusterswithAU% 95 are indicated by the rectangles. The fourth rectangle from the right is a cluster labeled 62with

AU ¼ 0.99 and BP ¼ 0.96.

Fig. 2. Diagnostic plot of the multiscale bootstrap for the cluster labeled 62.
The observed z-values are plotted for

ffiffiffiffiffiffiffiffiffiffiffi
N0=N

p
, and the theoretical curve is

obtained by the weighted least squares fitting. This plot is obtained by

command: msplot(result, edges¼62). When the curve fitting is

poor, a breakdown of the asymptotic theory may be suspected.

Pvclust
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Extended Data Figure 6 | Characterization of ES-like cells converted from
Fgf4-induced stem cells and comparison of STAP cells with early embryos.
a, Immunohistochemistry of ES-like cells for trophoblast and pluripotency
markers. ES-like cells converted from Fgf4-induced stem cells no longer
expressed the trophoblast marker (integrin alpha 7), but they did express the
pluripotency markers (Oct4, Nanog and SSEA-1). Scale bar, 100mm.
b, Pluripotency of ES-like cells converted from Fgf4-induced stem cells as
shown by teratoma formation. Those cells successfully formed teratomas
containing tissues from all three germ layers: neuroepithelium (left, arrow
indicates), muscle tissue (middle, arrow indicates) and bronchial-like
epithelium (right). Scale bar, 100mm. c, MEK inhibitor treatment assay for

Oct4-gfp Fgf4-induced stem cells in trophoblast stem-cell medium containing
Fgf4. No substantial formation of Oct4-GFP1 colonies was observed from
dissociated Fgf4-induced stem cells in MEK-inhibitor-containing medium.
Scale bar, 100mm. d, Cluster tree diagram from hierarchical clustering of global
expression profiles. Red, AU P values. As this analysis included morula and
blastocyst embryos from which only small amounts of RNA could be obtained,
we used pre-amplification with the SMARTer Ultra Low RNA kit for Illumina
Sequencing (Clontech Laboratories). e, f, Volcano plot of the expression
profile of STAP cells compared to the morula (e) and blastocyst (f). Genes
showing greater than 10-fold change and P value 1.0 3 1026 are highlighted in
red and are considered up- (or down-) regulated in the STAP cells.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014
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passages) and in their vulnerability to dissociation1. However, when
cultured in the presence of ACTH and LIF for 7 days, STAP cells, at a
moderate frequency, further convert into pluripotent ‘stem’ cells that
robustly proliferate (STAP stem cells).

Here we have investigated the unique nature of STAP cells, focusing
on their differentiation potential into the two major categories (embry-
onic and placental lineages) of cells in the blastocyst5–8. We became
particularly interested in this question after a blastocyst injection assay
revealed an unexpected finding. In general, progeny of injected ES cells
are found in the embryonic portion of the chimaera, but rarely in the
placental portion5,7 (Fig. 1a; shown with Rosa26-GFP). Surprisingly,
injected STAP cells contributed not only to the embryo but also to the
placenta and fetal membranes (Fig. 1b and Extended Data Fig. 1a–c) in
60% of the chimaeric embryos (Fig. 1c).

In quantitative polymerase chain reaction (qPCR) analysis, STAP cells
(sorted for strong Oct4-GFP signals) expressed not only pluripotency
marker genes but also trophoblast marker genes such as Cdx2 (Fig. 1d
and Supplementary Table 1 for primers), unlike ES cells. Therefore,
the blastocyst injection result is not easily explained by the idea that
STAP cells are composed of a simple mixture of pluripotent cells
(Oct41Cdx22) and trophoblast-stem-like cells (Oct42Cdx21).

In contrast to STAP cells, STAP stem cells did not show the ability to
contribute to placental tissues (Fig. 1e, lanes 2–4), indicating that the

derivation of STAP stem cells from STAP cells involves the loss of
competence to differentiate into placental lineages. Consistent with
this idea, STAP stem cells show little expression of trophoblast marker
genes (Fig. 1f).

We next examined whether an alteration in culture conditions could
induce in vitro conversion of STAP cells into cells similar to tropho-
blast stem cells8,9, which can be derived from blastocysts during pro-
longed adhesion culture in the presence of Fgf4. When we cultured
STAP cell clusters under similar conditions (Fig. 2a; one cluster per well
in a 96-well plate), flat cell colonies grew out by days 7–10 (Fig. 2b, left;
typically in ,30% of wells). The Fgf4-induced cells strongly expressed
the trophoblast marker proteins9–12 integrin a7 (Itga7) and eomesoder-
min (Eomes) (Fig. 2c, d) and marker genes (for example, Cdx2; Fig. 2e).

These Fgf4-induced cells with trophoblast marker expression could
be expanded efficiently in the presence of Fgf4 by passaging for more
than 30 passages with trypsin digestion every third day. Hereafter,
these proliferative cells induced from STAP cells by Fgf4 treatment
are referred to as Fgf4-induced stem cells. This type of derivation into
trophoblast-stem-like cells is not common with ES cells (unless genet-
ically manipulated)13 or STAP stem cells.

In the blastocyst injection assay, unlike STAP stem cells, the pla-
cental contribution of Fgf4-induced stem cells (cag-GFP-labelled) was
observed with 53% of embryos (Fig. 2f, g; n 5 60). In the chimaeric
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Figure 2 | Fgf4 treatment induces some
trophoblast-lineage character in STAP cells.
a, Schematic of Fgf4 treatment to induce
Fgf4-induced stem cells from STAP cells. b, Fgf4
treatment promoted the generation of flat cell
clusters that expressed Oct4-GFP at moderate
levels (right). Top and middle: days 1 and 7 of
culture with Fgf4, respectively. Bottom: culture
after the first passage. Scale bar, 50mm.
c, d, Immunostaining of Fgf4-induced cells with
the trophoblast stem cell markers integrin a7
(c) and eomesodermin (d). Scale bar, 50mm.
e, qPCR analysis of marker expression.
f, g, Placental contribution of Fgf4-induced stem
cells (FI-SCs) (genetically labelled with constitutive
GFP expression). Scale bars: 5.0 mm (f (left panel)
and g); 50mm (f, right panel). In addition to
placental contribution, Fgf4-induced stem cells
contributed to the embryonic portion at a
moderate level (g). h, Quantification of placental
contribution by FACS analysis. Unlike Fgf4-
induced cells, ES cells did not contribute to
placental tissues at a detectable level. i, Cluster tree
diagram from hierarchical clustering of global
expression profiles. Red, approximately unbiased
P values. j, qPCR analysis of Fgf4-induced cells
(cultured under feeder-free conditions) with or
without JAK inhibitor (JAKi) treatment for
pluripotent marker genes. k, qPCR analysis of
FI-SCs with or without JAK inhibitor (JAKi)
treatment for trophoblast marker genes. Values are
shown as ratio to the expression level in ES cells
(j) or trophoblast stem cells (k). ***P , 0.001;
NS, not significant; t-test for each gene between
groups with and without JAK inhibitor treatment.
n 5 3. Statistical significance was all the same with
three pluripotency markers. None of the
trophoblast marker genes showed statistical
significance. Error bars represent s.d.
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passages) and in their vulnerability to dissociation1. However, when
cultured in the presence of ACTH and LIF for 7 days, STAP cells, at a
moderate frequency, further convert into pluripotent ‘stem’ cells that
robustly proliferate (STAP stem cells).

Here we have investigated the unique nature of STAP cells, focusing
on their differentiation potential into the two major categories (embry-
onic and placental lineages) of cells in the blastocyst5–8. We became
particularly interested in this question after a blastocyst injection assay
revealed an unexpected finding. In general, progeny of injected ES cells
are found in the embryonic portion of the chimaera, but rarely in the
placental portion5,7 (Fig. 1a; shown with Rosa26-GFP). Surprisingly,
injected STAP cells contributed not only to the embryo but also to the
placenta and fetal membranes (Fig. 1b and Extended Data Fig. 1a–c) in
60% of the chimaeric embryos (Fig. 1c).

In quantitative polymerase chain reaction (qPCR) analysis, STAP cells
(sorted for strong Oct4-GFP signals) expressed not only pluripotency
marker genes but also trophoblast marker genes such as Cdx2 (Fig. 1d
and Supplementary Table 1 for primers), unlike ES cells. Therefore,
the blastocyst injection result is not easily explained by the idea that
STAP cells are composed of a simple mixture of pluripotent cells
(Oct41Cdx22) and trophoblast-stem-like cells (Oct42Cdx21).

In contrast to STAP cells, STAP stem cells did not show the ability to
contribute to placental tissues (Fig. 1e, lanes 2–4), indicating that the

derivation of STAP stem cells from STAP cells involves the loss of
competence to differentiate into placental lineages. Consistent with
this idea, STAP stem cells show little expression of trophoblast marker
genes (Fig. 1f).

We next examined whether an alteration in culture conditions could
induce in vitro conversion of STAP cells into cells similar to tropho-
blast stem cells8,9, which can be derived from blastocysts during pro-
longed adhesion culture in the presence of Fgf4. When we cultured
STAP cell clusters under similar conditions (Fig. 2a; one cluster per well
in a 96-well plate), flat cell colonies grew out by days 7–10 (Fig. 2b, left;
typically in ,30% of wells). The Fgf4-induced cells strongly expressed
the trophoblast marker proteins9–12 integrin a7 (Itga7) and eomesoder-
min (Eomes) (Fig. 2c, d) and marker genes (for example, Cdx2; Fig. 2e).

These Fgf4-induced cells with trophoblast marker expression could
be expanded efficiently in the presence of Fgf4 by passaging for more
than 30 passages with trypsin digestion every third day. Hereafter,
these proliferative cells induced from STAP cells by Fgf4 treatment
are referred to as Fgf4-induced stem cells. This type of derivation into
trophoblast-stem-like cells is not common with ES cells (unless genet-
ically manipulated)13 or STAP stem cells.

In the blastocyst injection assay, unlike STAP stem cells, the pla-
cental contribution of Fgf4-induced stem cells (cag-GFP-labelled) was
observed with 53% of embryos (Fig. 2f, g; n 5 60). In the chimaeric
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Figure 2 | Fgf4 treatment induces some
trophoblast-lineage character in STAP cells.
a, Schematic of Fgf4 treatment to induce
Fgf4-induced stem cells from STAP cells. b, Fgf4
treatment promoted the generation of flat cell
clusters that expressed Oct4-GFP at moderate
levels (right). Top and middle: days 1 and 7 of
culture with Fgf4, respectively. Bottom: culture
after the first passage. Scale bar, 50mm.
c, d, Immunostaining of Fgf4-induced cells with
the trophoblast stem cell markers integrin a7
(c) and eomesodermin (d). Scale bar, 50mm.
e, qPCR analysis of marker expression.
f, g, Placental contribution of Fgf4-induced stem
cells (FI-SCs) (genetically labelled with constitutive
GFP expression). Scale bars: 5.0 mm (f (left panel)
and g); 50mm (f, right panel). In addition to
placental contribution, Fgf4-induced stem cells
contributed to the embryonic portion at a
moderate level (g). h, Quantification of placental
contribution by FACS analysis. Unlike Fgf4-
induced cells, ES cells did not contribute to
placental tissues at a detectable level. i, Cluster tree
diagram from hierarchical clustering of global
expression profiles. Red, approximately unbiased
P values. j, qPCR analysis of Fgf4-induced cells
(cultured under feeder-free conditions) with or
without JAK inhibitor (JAKi) treatment for
pluripotent marker genes. k, qPCR analysis of
FI-SCs with or without JAK inhibitor (JAKi)
treatment for trophoblast marker genes. Values are
shown as ratio to the expression level in ES cells
(j) or trophoblast stem cells (k). ***P , 0.001;
NS, not significant; t-test for each gene between
groups with and without JAK inhibitor treatment.
n 5 3. Statistical significance was all the same with
three pluripotency markers. None of the
trophoblast marker genes showed statistical
significance. Error bars represent s.d.
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passages) and in their vulnerability to dissociation1. However, when
cultured in the presence of ACTH and LIF for 7 days, STAP cells, at a
moderate frequency, further convert into pluripotent ‘stem’ cells that
robustly proliferate (STAP stem cells).

Here we have investigated the unique nature of STAP cells, focusing
on their differentiation potential into the two major categories (embry-
onic and placental lineages) of cells in the blastocyst5–8. We became
particularly interested in this question after a blastocyst injection assay
revealed an unexpected finding. In general, progeny of injected ES cells
are found in the embryonic portion of the chimaera, but rarely in the
placental portion5,7 (Fig. 1a; shown with Rosa26-GFP). Surprisingly,
injected STAP cells contributed not only to the embryo but also to the
placenta and fetal membranes (Fig. 1b and Extended Data Fig. 1a–c) in
60% of the chimaeric embryos (Fig. 1c).

In quantitative polymerase chain reaction (qPCR) analysis, STAP cells
(sorted for strong Oct4-GFP signals) expressed not only pluripotency
marker genes but also trophoblast marker genes such as Cdx2 (Fig. 1d
and Supplementary Table 1 for primers), unlike ES cells. Therefore,
the blastocyst injection result is not easily explained by the idea that
STAP cells are composed of a simple mixture of pluripotent cells
(Oct41Cdx22) and trophoblast-stem-like cells (Oct42Cdx21).

In contrast to STAP cells, STAP stem cells did not show the ability to
contribute to placental tissues (Fig. 1e, lanes 2–4), indicating that the

derivation of STAP stem cells from STAP cells involves the loss of
competence to differentiate into placental lineages. Consistent with
this idea, STAP stem cells show little expression of trophoblast marker
genes (Fig. 1f).

We next examined whether an alteration in culture conditions could
induce in vitro conversion of STAP cells into cells similar to tropho-
blast stem cells8,9, which can be derived from blastocysts during pro-
longed adhesion culture in the presence of Fgf4. When we cultured
STAP cell clusters under similar conditions (Fig. 2a; one cluster per well
in a 96-well plate), flat cell colonies grew out by days 7–10 (Fig. 2b, left;
typically in ,30% of wells). The Fgf4-induced cells strongly expressed
the trophoblast marker proteins9–12 integrin a7 (Itga7) and eomesoder-
min (Eomes) (Fig. 2c, d) and marker genes (for example, Cdx2; Fig. 2e).

These Fgf4-induced cells with trophoblast marker expression could
be expanded efficiently in the presence of Fgf4 by passaging for more
than 30 passages with trypsin digestion every third day. Hereafter,
these proliferative cells induced from STAP cells by Fgf4 treatment
are referred to as Fgf4-induced stem cells. This type of derivation into
trophoblast-stem-like cells is not common with ES cells (unless genet-
ically manipulated)13 or STAP stem cells.

In the blastocyst injection assay, unlike STAP stem cells, the pla-
cental contribution of Fgf4-induced stem cells (cag-GFP-labelled) was
observed with 53% of embryos (Fig. 2f, g; n 5 60). In the chimaeric
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Figure 2 | Fgf4 treatment induces some
trophoblast-lineage character in STAP cells.
a, Schematic of Fgf4 treatment to induce
Fgf4-induced stem cells from STAP cells. b, Fgf4
treatment promoted the generation of flat cell
clusters that expressed Oct4-GFP at moderate
levels (right). Top and middle: days 1 and 7 of
culture with Fgf4, respectively. Bottom: culture
after the first passage. Scale bar, 50mm.
c, d, Immunostaining of Fgf4-induced cells with
the trophoblast stem cell markers integrin a7
(c) and eomesodermin (d). Scale bar, 50mm.
e, qPCR analysis of marker expression.
f, g, Placental contribution of Fgf4-induced stem
cells (FI-SCs) (genetically labelled with constitutive
GFP expression). Scale bars: 5.0 mm (f (left panel)
and g); 50mm (f, right panel). In addition to
placental contribution, Fgf4-induced stem cells
contributed to the embryonic portion at a
moderate level (g). h, Quantification of placental
contribution by FACS analysis. Unlike Fgf4-
induced cells, ES cells did not contribute to
placental tissues at a detectable level. i, Cluster tree
diagram from hierarchical clustering of global
expression profiles. Red, approximately unbiased
P values. j, qPCR analysis of Fgf4-induced cells
(cultured under feeder-free conditions) with or
without JAK inhibitor (JAKi) treatment for
pluripotent marker genes. k, qPCR analysis of
FI-SCs with or without JAK inhibitor (JAKi)
treatment for trophoblast marker genes. Values are
shown as ratio to the expression level in ES cells
(j) or trophoblast stem cells (k). ***P , 0.001;
NS, not significant; t-test for each gene between
groups with and without JAK inhibitor treatment.
n 5 3. Statistical significance was all the same with
three pluripotency markers. None of the
trophoblast marker genes showed statistical
significance. Error bars represent s.d.
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Bidirectional developmental potential in
reprogrammed cells with acquired pluripotency
Haruko Obokata1,2,3, Yoshiki Sasai4, Hitoshi Niwa5, Mitsutaka Kadota6, Munazah Andrabi6, Nozomu Takata4, Mikiko Tokoro2,
Yukari Terashita1,2, Shigenobu Yonemura7, Charles A. Vacanti3 & Teruhiko Wakayama2,8

We recently discovered an unexpected phenomenon of somatic cell
reprogramming into pluripotent cells by exposure to sublethal stim-
uli, which we call stimulus-triggered acquisition of pluripotency
(STAP)1. This reprogramming does not require nuclear transfer2,3

or genetic manipulation4. Here we report that reprogrammed STAP
cells, unlike embryonic stem (ES) cells, can contribute to both embry-
onic and placental tissues, as seen in a blastocyst injection assay.
Mouse STAP cells lose the ability to contribute to the placenta as
well as trophoblast marker expression on converting into ES-like
stem cells by treatment with adrenocorticotropic hormone (ACTH)
and leukaemia inhibitory factor (LIF). In contrast, when cultured
with Fgf4, STAP cells give rise to proliferative stem cells with enhanced
trophoblastic characteristics. Notably, unlike conventional tropho-
blast stem cells, the Fgf4-induced stem cells from STAP cells con-
tribute to both embryonic and placental tissues in vivo and transform
into ES-like cells when cultured with LIF-containing medium. Taken

together, the developmental potential of STAP cells, shown by chi-
maera formation and in vitro cell conversion, indicates that they
represent a unique state of pluripotency.

We recently discovered an intriguing phenomenon of cellular fate
conversion: somatic cells regain pluripotency after experiencing sub-
lethal stimuli such as a low-pH exposure1. When splenic CD451 lym-
phocytes are exposed to pH 5.7 for 30 min and subsequently cultured
in the presence of LIF, a substantial portion of surviving cells start to
express the pluripotent cell marker Oct4 (also called Pou5f1) at day 2.
By day 7, pluripotent cell clusters form with a bona fide pluripotency
marker profile and acquire the competence for three-germ-layer differ-
entiation as shown by teratoma formation. These STAP cells can also
efficiently contribute to chimaeric mice and undergo germline trans-
mission using a blastocyst injection assay1. Although these charac-
teristics resemble those of ES cells, STAP cells seem to differ from ES
cells in their limited capacity for self-renewal (typically, for only a few

1Laboratory for Cellular Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. 2Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-
0047, Japan. 3Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. 4Laboratory for Organogenesis
and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. 5Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
6Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. 7Electron Microscopy Laboratory, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
8Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
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Figure 1 | STAP cells contribute to both embryonic and placental tissues
in vivo. a, b, E12.5 embryos from blastocysts injected with ES cells (a) and
STAP cells (b). Both cells are genetically labelled with GFP driven by a
constitutive promoter. Progeny of STAP cells also contributed to placental
tissues and fetal membranes (b), whereas ES-cell-derived cells were not found
in these tissues (a). Scale bar, 5.0 mm. c, Percentages of fetuses in which injected
cells contributed only to the embryonic portion (red) or also to placental
and yolk sac tissues (blue). ***P , 0.001 with Fisher’s exact test. d, qPCR

analysis of FACS-sorted Oct4-GFP-strong STAP cells for pluripotent marker
genes (left) and trophoblast marker genes (right). Values are shown as ratio to
the expression level in ES cells. Error bars represent s.d. e, Contribution to
placental tissues. Unlike parental STAP cells and trophoblast stem (TS) cells,
STAP stem cells (STAP-SCs) did not retain the ability for placental
contributions. Three independent lines were tested and all showed substantial
contributions to the embryonic portions. f, qPCR analysis of trophoblast
marker gene expression in STAP stem cells. Error bars represent s.d.
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passages) and in their vulnerability to dissociation1. However, when
cultured in the presence of ACTH and LIF for 7 days, STAP cells, at a
moderate frequency, further convert into pluripotent ‘stem’ cells that
robustly proliferate (STAP stem cells).

Here we have investigated the unique nature of STAP cells, focusing
on their differentiation potential into the two major categories (embry-
onic and placental lineages) of cells in the blastocyst5–8. We became
particularly interested in this question after a blastocyst injection assay
revealed an unexpected finding. In general, progeny of injected ES cells
are found in the embryonic portion of the chimaera, but rarely in the
placental portion5,7 (Fig. 1a; shown with Rosa26-GFP). Surprisingly,
injected STAP cells contributed not only to the embryo but also to the
placenta and fetal membranes (Fig. 1b and Extended Data Fig. 1a–c) in
60% of the chimaeric embryos (Fig. 1c).

In quantitative polymerase chain reaction (qPCR) analysis, STAP cells
(sorted for strong Oct4-GFP signals) expressed not only pluripotency
marker genes but also trophoblast marker genes such as Cdx2 (Fig. 1d
and Supplementary Table 1 for primers), unlike ES cells. Therefore,
the blastocyst injection result is not easily explained by the idea that
STAP cells are composed of a simple mixture of pluripotent cells
(Oct41Cdx22) and trophoblast-stem-like cells (Oct42Cdx21).

In contrast to STAP cells, STAP stem cells did not show the ability to
contribute to placental tissues (Fig. 1e, lanes 2–4), indicating that the

derivation of STAP stem cells from STAP cells involves the loss of
competence to differentiate into placental lineages. Consistent with
this idea, STAP stem cells show little expression of trophoblast marker
genes (Fig. 1f).

We next examined whether an alteration in culture conditions could
induce in vitro conversion of STAP cells into cells similar to tropho-
blast stem cells8,9, which can be derived from blastocysts during pro-
longed adhesion culture in the presence of Fgf4. When we cultured
STAP cell clusters under similar conditions (Fig. 2a; one cluster per well
in a 96-well plate), flat cell colonies grew out by days 7–10 (Fig. 2b, left;
typically in ,30% of wells). The Fgf4-induced cells strongly expressed
the trophoblast marker proteins9–12 integrin a7 (Itga7) and eomesoder-
min (Eomes) (Fig. 2c, d) and marker genes (for example, Cdx2; Fig. 2e).

These Fgf4-induced cells with trophoblast marker expression could
be expanded efficiently in the presence of Fgf4 by passaging for more
than 30 passages with trypsin digestion every third day. Hereafter,
these proliferative cells induced from STAP cells by Fgf4 treatment
are referred to as Fgf4-induced stem cells. This type of derivation into
trophoblast-stem-like cells is not common with ES cells (unless genet-
ically manipulated)13 or STAP stem cells.

In the blastocyst injection assay, unlike STAP stem cells, the pla-
cental contribution of Fgf4-induced stem cells (cag-GFP-labelled) was
observed with 53% of embryos (Fig. 2f, g; n 5 60). In the chimaeric

STAP clusters

Passage

Outgrowth of 
trophoblast-like cells

Fgf4 medium
7–10 days

a

b c

e

Integrin α7 Eomes

f

DAPI

cag-GFP

 Placenta

d

h

P
er

ce
nt

ag
e 

of
 G

FP
+  

ce
lls

Placental contribution

cag-GFP

Bright-field

Cross-section g  Chimaeric fetus

1 32 4

FI
-S

C 1
FI

-S
C 2

FI
-S

C 3
GFP

-E
S 1

GFP
-E

S 2
GFP

-E
S 3

5 6

0

20

10

18
16
14
12

2
4
6
8

Day 1

Day 7 

Passage 1
(on feeder)

Passage 1
(enlarged

 view)

i j

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

ls
(T

S
=1

.0
)

cag-GFP

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

ls
(E

S
=1

.0
)

Fgf4 medium

Oct4-GFPBright-field

***

NS

NS

k

ES TS
FG

F-
ind

uc
ed

STA
P

CD45
+

Oct4 Nanog Rex1

JAKi– JAKi+ JAKi– JAKi+
ES FI-SC

0
0.2
0.4

0.6
0.8

1.2

1.0

0
0.2
0.4
0.6
0.8

1.2

1.0

Cdx2 Eomes Elf5 Itga7

JAKi–JAKi+

FI-SC

TS

0

5

10

15

20

25

30

Oct4

Cdx2

Eomes

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

ls
(E

S
=1

.0
)

ES STAP-SC

CD45

FI-SC
TS

STAP

H
ei

gh
t

0.
00

0.
10

0.
15

0.
05

au

100

100
100

100

Figure 2 | Fgf4 treatment induces some
trophoblast-lineage character in STAP cells.
a, Schematic of Fgf4 treatment to induce
Fgf4-induced stem cells from STAP cells. b, Fgf4
treatment promoted the generation of flat cell
clusters that expressed Oct4-GFP at moderate
levels (right). Top and middle: days 1 and 7 of
culture with Fgf4, respectively. Bottom: culture
after the first passage. Scale bar, 50mm.
c, d, Immunostaining of Fgf4-induced cells with
the trophoblast stem cell markers integrin a7
(c) and eomesodermin (d). Scale bar, 50mm.
e, qPCR analysis of marker expression.
f, g, Placental contribution of Fgf4-induced stem
cells (FI-SCs) (genetically labelled with constitutive
GFP expression). Scale bars: 5.0 mm (f (left panel)
and g); 50mm (f, right panel). In addition to
placental contribution, Fgf4-induced stem cells
contributed to the embryonic portion at a
moderate level (g). h, Quantification of placental
contribution by FACS analysis. Unlike Fgf4-
induced cells, ES cells did not contribute to
placental tissues at a detectable level. i, Cluster tree
diagram from hierarchical clustering of global
expression profiles. Red, approximately unbiased
P values. j, qPCR analysis of Fgf4-induced cells
(cultured under feeder-free conditions) with or
without JAK inhibitor (JAKi) treatment for
pluripotent marker genes. k, qPCR analysis of
FI-SCs with or without JAK inhibitor (JAKi)
treatment for trophoblast marker genes. Values are
shown as ratio to the expression level in ES cells
(j) or trophoblast stem cells (k). ***P , 0.001;
NS, not significant; t-test for each gene between
groups with and without JAK inhibitor treatment.
n 5 3. Statistical significance was all the same with
three pluripotency markers. None of the
trophoblast marker genes showed statistical
significance. Error bars represent s.d.
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passages) and in their vulnerability to dissociation1. However, when
cultured in the presence of ACTH and LIF for 7 days, STAP cells, at a
moderate frequency, further convert into pluripotent ‘stem’ cells that
robustly proliferate (STAP stem cells).

Here we have investigated the unique nature of STAP cells, focusing
on their differentiation potential into the two major categories (embry-
onic and placental lineages) of cells in the blastocyst5–8. We became
particularly interested in this question after a blastocyst injection assay
revealed an unexpected finding. In general, progeny of injected ES cells
are found in the embryonic portion of the chimaera, but rarely in the
placental portion5,7 (Fig. 1a; shown with Rosa26-GFP). Surprisingly,
injected STAP cells contributed not only to the embryo but also to the
placenta and fetal membranes (Fig. 1b and Extended Data Fig. 1a–c) in
60% of the chimaeric embryos (Fig. 1c).

In quantitative polymerase chain reaction (qPCR) analysis, STAP cells
(sorted for strong Oct4-GFP signals) expressed not only pluripotency
marker genes but also trophoblast marker genes such as Cdx2 (Fig. 1d
and Supplementary Table 1 for primers), unlike ES cells. Therefore,
the blastocyst injection result is not easily explained by the idea that
STAP cells are composed of a simple mixture of pluripotent cells
(Oct41Cdx22) and trophoblast-stem-like cells (Oct42Cdx21).

In contrast to STAP cells, STAP stem cells did not show the ability to
contribute to placental tissues (Fig. 1e, lanes 2–4), indicating that the

derivation of STAP stem cells from STAP cells involves the loss of
competence to differentiate into placental lineages. Consistent with
this idea, STAP stem cells show little expression of trophoblast marker
genes (Fig. 1f).

We next examined whether an alteration in culture conditions could
induce in vitro conversion of STAP cells into cells similar to tropho-
blast stem cells8,9, which can be derived from blastocysts during pro-
longed adhesion culture in the presence of Fgf4. When we cultured
STAP cell clusters under similar conditions (Fig. 2a; one cluster per well
in a 96-well plate), flat cell colonies grew out by days 7–10 (Fig. 2b, left;
typically in ,30% of wells). The Fgf4-induced cells strongly expressed
the trophoblast marker proteins9–12 integrin a7 (Itga7) and eomesoder-
min (Eomes) (Fig. 2c, d) and marker genes (for example, Cdx2; Fig. 2e).

These Fgf4-induced cells with trophoblast marker expression could
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than 30 passages with trypsin digestion every third day. Hereafter,
these proliferative cells induced from STAP cells by Fgf4 treatment
are referred to as Fgf4-induced stem cells. This type of derivation into
trophoblast-stem-like cells is not common with ES cells (unless genet-
ically manipulated)13 or STAP stem cells.

In the blastocyst injection assay, unlike STAP stem cells, the pla-
cental contribution of Fgf4-induced stem cells (cag-GFP-labelled) was
observed with 53% of embryos (Fig. 2f, g; n 5 60). In the chimaeric
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Figure 2 | Fgf4 treatment induces some
trophoblast-lineage character in STAP cells.
a, Schematic of Fgf4 treatment to induce
Fgf4-induced stem cells from STAP cells. b, Fgf4
treatment promoted the generation of flat cell
clusters that expressed Oct4-GFP at moderate
levels (right). Top and middle: days 1 and 7 of
culture with Fgf4, respectively. Bottom: culture
after the first passage. Scale bar, 50mm.
c, d, Immunostaining of Fgf4-induced cells with
the trophoblast stem cell markers integrin a7
(c) and eomesodermin (d). Scale bar, 50mm.
e, qPCR analysis of marker expression.
f, g, Placental contribution of Fgf4-induced stem
cells (FI-SCs) (genetically labelled with constitutive
GFP expression). Scale bars: 5.0 mm (f (left panel)
and g); 50mm (f, right panel). In addition to
placental contribution, Fgf4-induced stem cells
contributed to the embryonic portion at a
moderate level (g). h, Quantification of placental
contribution by FACS analysis. Unlike Fgf4-
induced cells, ES cells did not contribute to
placental tissues at a detectable level. i, Cluster tree
diagram from hierarchical clustering of global
expression profiles. Red, approximately unbiased
P values. j, qPCR analysis of Fgf4-induced cells
(cultured under feeder-free conditions) with or
without JAK inhibitor (JAKi) treatment for
pluripotent marker genes. k, qPCR analysis of
FI-SCs with or without JAK inhibitor (JAKi)
treatment for trophoblast marker genes. Values are
shown as ratio to the expression level in ES cells
(j) or trophoblast stem cells (k). ***P , 0.001;
NS, not significant; t-test for each gene between
groups with and without JAK inhibitor treatment.
n 5 3. Statistical significance was all the same with
three pluripotency markers. None of the
trophoblast marker genes showed statistical
significance. Error bars represent s.d.
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(ES,	STAP-SC)がクラスタになる全てのデンドログラムに相当する領域

(FI-SC,	ES,	STAP-SC) (TS,	ES,	STAP-SC)
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系統樹の信頼度は？

human
cow

rabbit
mouse

opposum

nD 計算結果

サンプルサイズ n

D¥
計算 ？

計算
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「計算」はブラックボックスとみなす

human
cow

rabbit
mouse

opposum

  ℓ1(θ̂1)

  ℓ2(θ̂2 )

  ℓ15(θ̂15)

max

nD

計算

計算結果
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反復計算してカウントだけ使う

nD 計算 Yes

Bootstrap	Probability

ブートストラップ確率

*1
nD

*2
nD

*10000
nD

計算 Yes

計算 No

計算 Yes

20

  
BP = #{Yes}

10000
≈ P(Yes | Data)



1 2 3 n

1 2 3  m

ランダムに要素をコピーする

ブートストラップ・リサンプリング
Efron	(1979)
Felsenstein	(1985)

nD

  Dm
*1

  Dm
*2

  Dm
*10000
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Bootstrap:	n=10,242	columns
human

cow
rabbit
mouse

opposum

22

 Dn

Assume	i.i.d.	for	columns

  Dm
*1,..., Dm

*100

   0 < m nIn	the	“m-out-of-n bootstrap”

  m = O(n)We	assume	 ,	typically	m=10242,	5000,	20000,	say	

,	typically	m=30,	say	



BPはベイズ事後確率

1 2 3 4 5

1 2 3 4 5

1 23 4 5

1 2 3 4 5

nD

D¥
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*1 *2 *3, , ,...n n nD D D
  
BP = P(Tree | data) ≈ #{Tree}

100

Efron	and	Tibshirani	(1998)

mを変化させたBPから，各仮説領域までの符号付き距離や，仮説境界の平均曲率がわかる！

𝐷Q∗のバラツキ（分散）はmに反比例するShimodiara (2002)のマルチスケール・ブートストラップ：



たとえば，多重比較

24

𝑿~𝑁(𝜼, OUΣ)

𝐻O: 	𝜂O ≥ 𝜂M,…, 𝜂O ≥ 𝜂H

𝜂O ≥ 𝜂M 𝜂O ≥ 𝜂L
𝐻O

𝜼 =
3.5
3.0
0.5

𝑿 =
3.5
4.0
0.5

𝑿

𝜼

凸多面錐



多重比較の場合

25

𝒀~𝑁 𝝁, 𝐼

𝑦

𝑿~𝑁(𝜼, OUΣ)
𝒀 = 𝑛� ΣKO/M𝑿
𝝁 = 𝑛� ΣKO/M𝜼

𝐻O

𝐻L𝐻M
Least	favorable	configuration

𝜂O = 𝜂M = ⋯ = 𝜂H

confidenceQb 𝜇 ∈ 𝐻O 𝑦 = 𝑃(𝑑O 𝑌 > 𝑑O(𝑦)|0)

𝑑O(𝑦)

𝑑O(𝑌) = max	 𝑐M 𝑋M − 𝑋O ,… , 𝑐H 𝑋H − 𝑋O

仮説領域（凸錘）の頂点



多重比較は保守的

26

𝑃 confidenceQb 𝜇 ∈ 𝐻j 𝑦 < 0.05 ≤ 0.05 under	𝐻j

仮説境界上で等号なら嬉しいが，等号になるのはl.f.c.のみ

各領域のType-I	error

仮説の信頼集合

𝑆 𝑦 = 𝐻j: confidenceQb 𝜇 ∈ 𝐻j 𝑦 ≥ 0.05

𝑃 𝐻j ∉ 𝑆 𝑦 ≤ 0.05 under	𝐻j



Region	and	a	data-point

u

v
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AU = PV +O(n−3/2)

v = −
√

1

64
+

u2

3

∂H =
{
(u, v) : v = −

√
1

64
+

u2

3

}

H =
{
(u, v) : v ≤ −

√
1

64
+

u2

3

}

σ2 = τ 2 = 1

Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

O(1) O(n−1/2) O(n−1) O(n−3/2) O(n−2)

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

8



Multivariate	Normal	Model
identity matrix Iq+1,

Y ∼ Nq+1(µ, Iq+1). (1)

Let H ⊂ Rq+1 be an arbitrary-shaped region of positive volume. Giving an observed

value y, we are interested in testing the null hypothesis µ ∈ H against the alternative

hypothesis µ ̸∈ H. The boundary surface ∂H of H is assumed to be smooth in this

paper.

Bootstrap procedures are utilized for computing approximate p-values. We as-

sume that we can generate bootstrap replicate Y ∗ of Y by

Y ∗ ∼ Nq+1(y, σ
2Iq+1) (2)

for any σ2 > 0. The bootstrap probability of H for a given y is defined as

BPσ2(H|y) = P (Y ∗ ∈ H|y), (3)

where P (·|y) indicates the probability with respect to (2). In practice, we may

generate B bootstrap replicates

Y ∗1, . . . , Y ∗B,

and compute the frequency

B̂Pσ2(H|y) = #{Y ∗b ∈ H, b = 1, . . . , B}
B

for estimating BPσ2(H|y). We ignore the sampling error of O(B−1/2) and use only

(3) in the theoretical argument throughout. For approximating the distribution of

Y in (1), the scale should be σ2 = 1 in (2). The ordinary bootstrap probability

BP1(H|y) is often used as an approximate p-value. However, it is biased in the

sense explained in Section 2.5, and there are several attempts to adjust the bias.

5

at least approximately. We consider the local alternatives for the asymptotic the-

ory. The transformed statistic is scaled by the factor
√
n so that the variance of

y remains constant in (1). For example, we use y =
√
n x̄ instead of the average

x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region

H =
{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface

∂H =
{
(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq

are orthgonal coordinates of the tangent space and v is the coordinate of the direction

normal to the tangent space. The smooth function h(u) is then represented in the

Taylor series as

h(u) =
q∑

i=1

q∑

j=1

hijuiuj +
q∑

i=1

q∑

j=1

q∑

k=1

hijkuiujuk + · · · , (9)

where the derivatives are denoted as

hij =
1

2

∂2h(u)

∂ui∂uj

∣∣∣
0
, hijk =

1

6

∂3h(u)

∂ui∂uj∂uk

∣∣∣
0
.
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Null	hypothesis:	 v.s.			Alternative	hypothesis:

at least approximately. We consider the local alternatives for the asymptotic the-

ory. The transformed statistic is scaled by the factor
√
n so that the variance of

y remains constant in (1). For example, we use y =
√
n x̄ instead of the average

x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region
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{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface
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(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).
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∂H = B(h)

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq
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hijkuiujuk + · · · , (9)

10

at least approximately. We consider the local alternatives for the asymptotic the-

ory. The transformed statistic is scaled by the factor
√
n so that the variance of

y remains constant in (1). For example, we use y =
√
n x̄ instead of the average

x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region

H =
{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface

∂H =
{
(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).

H = R(h)

∂H = B(h)

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq

are orthgonal coordinates of the tangent space and v is the coordinate of the direction

normal to the tangent space. The smooth function h(u) is then represented in the

Taylor series as

h(u) =
q∑

i=1

q∑

j=1

hijuiuj +
q∑

i=1

q∑

j=1

q∑

k=1

hijkuiujuk + · · · , (9)

10

region: boundary	surface:
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θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

y = (u, v) q = dim u

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) ≃ DBP1,−1(H|y).
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Chi-square	test	(very	conservative)

1.836

1.778

p=0.185

distance2 ~		chi-square	distribution	with	df=2

p=0.206

29

過大

過大



Multiple	Comparison	(conservative)

30

p=0.073

p=0.068

η1 ≥η2,η1 ≥η3

u = n / 2(η3 −η2 )

v = n / 6(η2 +η3 − 2η1)

X ~ N3(η, I3 / n)

v ≤ − | u | / 3⇔

Y ~ N2 (µ, I2 )⇔

妥当

過大



Singed	LR	test	(rejecting	too	much)

1.836

1.778

p=0.033

distance	~	N(0,1)

p=0.038

31

妥当

過小



Bootstrap	probability	(=Bayesian	PP)

identity matrix Iq+1,

Y ∼ Nq+1(µ, Iq+1). (1)

Let H ⊂ Rq+1 be an arbitrary-shaped region of positive volume. Giving an observed

value y, we are interested in testing the null hypothesis µ ∈ H against the alternative

hypothesis µ ̸∈ H. The boundary surface ∂H of H is assumed to be smooth in this

paper.

Bootstrap procedures are utilized for computing approximate p-values. We as-

sume that we can generate bootstrap replicate Y ∗ of Y by

Y ∗ ∼ Nq+1(y, σ
2Iq+1) (2)

for any σ2 > 0. The bootstrap probability of H for a given y is defined as

BPσ2(H|y) = P (Y ∗ ∈ H|y), (3)

where P (·|y) indicates the probability with respect to (2). In practice, we may

generate B bootstrap replicates

Y ∗1, . . . , Y ∗B,

and compute the frequency

B̂Pσ2(H|y) = #{Y ∗b ∈ H, b = 1, . . . , B}
B

for estimating BPσ2(H|y). We ignore the sampling error of O(B−1/2) and use only

(3) in the theoretical argument throughout. For approximating the distribution of

Y in (1), the scale should be σ2 = 1 in (2). The ordinary bootstrap probability

BP1(H|y) is often used as an approximate p-value. However, it is biased in the

sense explained in Section 2.5, and there are several attempts to adjust the bias.
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BP	is	interpreted	as	the	Bayesian	posterior	probability	of	H	
if	the	prior	distribution	of	mu	is	uniform.

Efron and	Tibshirani (1998)
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BP	is	even	worse

p=0.033 (signed	LR	test)

p=0.038	(signed	LR	test)

BP=0.019

BP=0.037
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Double	bootstrap	probability
2.2 Double bootstrap

For calibrating BPσ2(H|y), we first consider the projection of y onto the boundary

surface ∂H. The projection is the point on ∂H that is closest to y;

µ̂(H|y) = arg min
µ∈∂H

∥y − µ∥,

where ∥y − µ∥2 =
∑q+1

i=1 (yi − µi)2. We generate bootstrap replicate Y + by

Y + ∼ Nq+1(µ̂(H|y), τ 2Iq+1) (4)

for some τ 2 > 0. For each observed value y+, we generate a second-level bootstrap

replicate

Y ∗∗ ∼ Nq+1(y
+, σ2Iq+1)

for computing

BPσ2(H|y+) = P (Y ∗∗ ∈ H|y+).

We calibrate BPσ2(H|y) by the distribution of BPσ2(H|Y +). The double bootstrap

probability of H for a given y is defined as

DBPσ2,τ2(H|y) = P
[
BPσ2(H|Y +) ≤ BPσ2(H|y) | µ̂(H|y)

]
, (5)

where the probability is calculated by (4). When σ2 = τ 2 = 1, this is the ordinary

double bootstrap probability DBP1,1(H|y).

2.3 Multiscale bootstrap

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)
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Projection	of	y	onto	the	boundary	surface:

Adjusting	BP	using	resampling	from	the	projection

Hall	(1992),	Efron and	Tibshirani (1998)
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probability of H for a given y is defined as

DBPτ2,σ2(H|y) = Pτ2

[
BPσ2(H|Y +) ≤ BPσ2(H|y) | µ̂(H|y)

]
. (20)

The variances are usually σ2 = τ2 = 1 and we simply denote DBP or DBP(H|y) for
DBP1,1(H|y). Efron and Tibshirani (1998) called DBP as a calibrated confidence level and
mentioned that DBP is third-order accurate.

We will show later in Section 5.3 that the double bootstrap probability for σ2 > 0, τ2 = 1
is expressed asymptotically as

DBP1,σ2(H|y) ≃ Φ̄
[
β0 − β1 − β2 − β3σ

2
]
, (21)

and it is extrapolated to σ2 ≤ 0 by the right-hand side. Comparing (21) with (14), we find
that DBP1,σ2(H|y) = PV(H|y) + O(n−3/2). In particular for σ2 = 1, we confirm that DBP
is third-order accurate.

The remaining bias of order O(n−3/2) in DBP comes from the difference

Φ̄−1(DBP1,σ2) − Φ̄−1(PV) ≃ −(1 + σ2)β3,

which vanishes when σ2 = −1. The bias-corrected DBP is defined formally by

DAU(H|y) = DBP1,−1(H|y)

so that DAU is forth order accurate. Another advantage of DAU over DBP is robustness
against computational error of µ̂(H|y) as mentioned in Section 5.3. The name of DAU may
be understood in the interpretation

DAU(H|y) ≃ P
[
AU(H|Y +) ≤ AU(H|y) | µ̂(H|y)

]
,

which immediately follows from (20) by considering the equivalence of contour surfaces of
BPσ2(H|y) and NBPσ2(H|y) as mentioned just before Lemma 5 in Section 5.1.

Similarly to the computation of AU, we estimate the coefficients β0 − β1 − β2 and β3 by
fitting a linear model to observed values of Φ̄−1(DBP1,σ2). The procedure is illustrated in
Fig 2. We plotted Φ̄−1(DBP1,σ2) in a solid curve for 0.1 < σ2 < 1.9 and extrapolation to
σ2 = −1 is made by Taylor expansion at σ2 = 1. DAU = Φ̄(1.48) = 0.069 is slightly larger
than DBP = Φ̄(1.54) = 0.061 in this example.

3.5. Simulation study

Rejection probabilities (3), (4), and those for other approximate p-values are shown in Ta-
ble 2. The region H is the cone-shaped region mentioned in Section 2, where h is specified
by (5) with h0 = 0. Rejection probabilities are computed for several µ = (u,−h(u)) on ∂H.
These values are computed accurately by numerical integration instead of Monte-Carlo sim-
ulation for avoiding sampling error. Looking at the table, we verify that MCB is unbiased
at u = 0. However, the rejection probability of MCB is much smaller than α for larger u.

All the bootstrap methods behave similarly in the sense that the bias is large at u = 0 and
the bias decreases as u becomes larger. BP has the largest bias, and all the bias-corrected
bootstrap probabilities have smaller bias. In particular, AU3, DBP, and DAU have very
small bias. The difference between DBP and DAU is small, but DAU performs better than
DBP at all u values. Interestingly, the bias correction methods work fine, even though h(u)
is not smooth at u = 0. Looking at Table 1 again, we confirm that AU3, DBP, DAU values
are close to MCB for y = (0.71, 1.63), agreeing with the simulation at u = 0.



contour	surface	of	BP=0.019

BP(H|y)=0.019
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AU = PV +O(n−3/2)

v = −
√

1

64
+

u2

3

∂H =
{
(u, v) : v = −

√
1

64
+

u2

3

}

H =
{
(u, v) : v ≤ −

√
1

64
+

u2

3

}

σ2 = τ 2 = 1

Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The

normalized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

with parameters (β0, β1, β2) to the observed values of NBPσ2
i
(H|y), i = 1, . . . , S, and

compute NBP−1(H|y) using the estimated parameters.
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DBP=0.049

Computing	DBP:



DBP	adjusts	the	bias	of	BP

BP=0.019

BP=0.037

DBP=0.049

DBP=0.039
DBP=0.05

BP=0.05

P(BP<0.05)

P(DBP<0.05)

36

Lemma 5 (Additivity of the contour surfaces). For h, s ∈ S, we say h and s are

equivalent, denoted as h
.
= s, if h0 = s0, hij = sij, hijk = sijk, and hijkl = sijkl by

ignoring hi and si. We formally extend the operator Lσ2(h,λ0) for σ2 ≤ 0 via (24).

Then, for λ0, ξ0, σ2, τ 2 ∈ R,

Lτ2(Lσ2(h,λ0), ξ0)
.
= Lσ2+τ2(h,λ0 + ξ0). (26)

The identity operator is L0(h, 0)
.
= h, and the inverse operator is L−σ2(s,−λ0)

.
= h

for Lσ2(h,λ0)
.
= s.

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) ≃ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) ≃ 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
≃ (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

µ = (θ,−h(θ)) ∈ ∂H

20

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) ≃ DBP1,−1(H|y).
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Approximately	unbiased	p-values	via	
Multiscale	bootstrap

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

7

play important roles for the asymptotic theory. For proving the fourth-order accu-

racy, expressions of the asymptotic expansion tend to be very complicated yet the

computations are often straightforward. I devised a way of the proof by combining

techniques of Shimodaira (2004) and Shimodaira (2008) so that the proof becomes

simpler.

1 Introduction

bootstrap
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Y
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∗
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Y ∗

X+ = {x+
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n }
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X ∗∗ = {x∗∗
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Y ∗∗

σ2 = n/m

B̂Pσ2

ÂUσ2 = Φ(σΦ−1(B̂Pσ2))

k-th order accurate

bias reduces as O(n−k/2) as n goes larger

B̂P1
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m	out	of	n	bootstrap	:				Politis and	Romano	(1994),	Bickel	et	al.	(1997)

We	compute	BP	for	

2.3 Multiscale bootstrap
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7

(equivalently																								)	

The	BP	with	m	=	-n	is	denoted	as	AU	(	=	Approximately	Unbiased)

The	idea	of	multiscale bootstrap	:		Shimodaira	(2002,	2004,	2008)	
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Extrapolation	to	sigma2=-1

2.3 Multiscale bootstrap
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(H|y), i = 1, . . . , S, and

compute NBP−1(H|y) using the estimated parameters.

2.4 Multiscale-double bootstrap
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DBPσ2,1(H|y) = 1− Φ(β′
0 + β′

1σ
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7

We	apply	the	multiscale	bootstrap	to	DBP	for	getting	DAU
Equivalently,	we	could	say	applying	double	bootstrap	to	AU	for	getting	DAU 39

double	bootstrap

multiscale	bootstrap

ブートストラップ確率

ダブルブートストラップ

マルチスケールブートストラップ

マルチスケール・ダブルブートストラップ

σ 2 = −1 σ 2 =1

m=-n への外挿



contour	curves	of	p=0.05
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BP,	AU, DBP, DAU



Rejection	probabilities		P(p<0.05)

BP

DBP

DAU

AU

Error:		DAU <		{DBP,	AU}		<		BP
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Lemma 5 (Additivity of the contour surfaces). For h, s ∈ S, we say h and s are

equivalent, denoted as h
.
= s, if h0 = s0, hij = sij, hijk = sijk, and hijkl = sijkl by

ignoring hi and si. We formally extend the operator Lσ2(h,λ0) for σ2 ≤ 0 via (24).

Then, for λ0, ξ0, σ2, τ 2 ∈ R,

Lτ2(Lσ2(h,λ0), ξ0)
.
= Lσ2+τ2(h,λ0 + ξ0). (26)

The identity operator is L0(h, 0)
.
= h, and the inverse operator is L−σ2(s,−λ0)

.
= h

for Lσ2(h,λ0)
.
= s.

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) ≃ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) ≃ 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
≃ (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

µ = (θ,−h(θ)) ∈ ∂H

20

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) ≃ DBP1,−1(H|y).

21

ＤＡＵの棄却確率は誤差が小さい



棄却確率 (0.05に近いほど良い）

H. SHIMODAIRA/multiscale-double bootstrap 11

Table 2
Rejection probabilities (in percent) at significance level α = 5%.

u 0.0 0.5 1.0 1.5 2.0 2.5 3.0
BP 13.39 8.894 6.678 5.676 5.253 5.086 5.027
AU2 7.655 5.171 4.459 4.447 4.628 4.801 4.912
AU3 6.609 4.718 4.493 4.746 4.982 5.080 5.081
DBP 6.619 4.590 4.202 4.364 4.610 4.795 4.905
DAU 6.476 4.660 4.481 4.746 4.981 5.084 5.092
MCB 5.000 3.340 2.880 2.783 2.768 2.766 2.766

4. Geometry of smooth surfaces

In this section, we discuss only geometry of smooth surfaces via simple but tedious calcu-
lation without any probability argument. The results will be used in Section 5 for deriving
asymptotic accuracy of the bootstrap methods. We work on the region H = R(h) and
boundary surface ∂H = B(h) for h ∈ S expressed in the (u, v) coordinates.

4.1. Representing surfaces in local coordinates

We consider local coordinates (∆u,∆v) with ∆u = (∆u1, . . . , ∆uq) ∈ Rq and ∆v ∈ R by
taking the origin at (u,−h(u)). A point (∆u,∆v) is expressed in the (u, v) coordinates as

(u,−h(u)) + ∆ui bi + ∆v ∥f∥−1f (22)

using basis {b1, . . . , bq, f} in Rq+1 defined as follows.
Here ∥f∥ =

√
f · f is the norm of f ∈ Rq+1 with the inner product a · b =

∑q+1
i=1 aibi for

two vectors a, b ∈ Rq+1. We denote δi = (δi1, . . . , δiq) ∈ Rq with the Kronecker delta δij ,
and ∇ = (∂/∂u1, . . . , ∂/∂uq). Then

bi =
(
δi,−

∂h

∂ui

)
, i = 1, . . . , q,

are tangent to ∂H at (u,−h(u)), and the normal vector

f = (∇h, 1)

satisfies f · bi = 0, meaning that f is orthogonal to ∂H at (u,−h(u)). The vectors bi and f

should be denoted as bi(u) and f(u), but the dependence on u is suppressed in the notation.

Lemma 1. For h ∈ S, the region H = R(h) is expressed in the (∆u,∆v) coordinates at
(u,−h(u)) as

H = {(∆u,∆v) | ∆v ≤ −h̃(∆u),∆u ∈ Rq}

with h̃ ∈ S. The coefficients are h̃0 = h̃i = 0, h̃ij = hij+3hijkuk+(6hijkl−2hijhmkhml)ukul,
h̃ijk = hijk + 4hijklul − 4

3 (hijhkmhml + hikhjmhml + hjkhimhml)ul, h̃ijkl = hijkl.

4.2. Expressions of the four geometric quantities

We consider an orthonormal basis {c1, . . . , cq, ∥f∥−1f} for the local coordinates at
(u,−h(u)), where {c1, . . . , cq} is an arbitrary orthonormal basis of the tangent space;
ci · cj = δij and ci · f = 0. The dependence of these vectors on u is suppressed in the
notation again. A point (x,∆v) with x = (x1, . . . , xq) ∈ Rq and ∆v ∈ R corresponds to

(u,−h(u)) + ∆ui ci + ∆v ∥f∥−1f
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New	Discovery?

58% 2%
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ベイズの事後確率

44

1=human 3=rabbit 4=mouse 1=human 3=rabbit 4=mouse

0.05p ³

ブートストラップ法（m=n)で計算



Shimodaira-Hasegawa	testは安全すぎる

SH 0.05³

45

対数尤度に多重比較法を適用してモデル選択の多重性を調整



頻度論のp-値 (近似的に不偏 AU)

46

1=human 3=rabbit 4=mouse

マルチスケール・ブートストラップ法（m=-n)で計算



=

曲率を反転するとベイズは頻度論

q q̂

頻度論のp-値

  AU = Φ β0 − β1( ) +O(n−3/2 )

0b

1b

H
q̂

ベイズの事後確率

  BP = Φ β0 + β1( ) +O(n−3/2 )

0b

1b

1b-

47

Jerzy Neyman
(1894-1981)

頻度論

Thomas	Bayes	
(1702-1761)

ベイズ統計学



Rescaling	the	whole	picture

2 3/20
1( ) ( )BP O nbs b s

s
-é ù=F + +ê úë û

  BP = Φ β0 + β1( ) +O(n−3/2 )

2 1s =

Shimodaira	(2002)

48

2 1s =

1
s

´

  
NBP(σ 2 ) = Φ σ Φ−1 BP(σ 2 )( ){ } = Φ β0 + β1σ

2( ) +O(n−3/2 )



ベイズと頻度論のギャップを埋める

   
NBP(σ 2 ) ! Φ σ Φ−1 BP(σ 2 )( ){ }
正規化したブートストラップ確率(NBP)

  
σ 2 = n

m
2 1s =2 1s = - 0

  NBP(σ 2 )

  AU = NBP(−1)

  BP = NBP(+1)

 m = n m = −n  m = ∞
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Thomas	Bayes	
(1702-1761)

Jerzy Neyman
(1894-1981)

頻度論 ベイズ統計学

スケーリング則

AUの計算手順： いくつかのm>0でBPを計算して，NBPに変換してからm=-nへ外挿



We	can’t	compute	nBP(-1)	for	cones

smooth	surface

cone

2 0
1( )BP bs b s

s
é ù» F +ê úë û

( )2 2
0 1( )nBP s b b s» F +

2 0
1( )BP bs b

s
é ù» F +ê úë û

( )2
0 1( )nBP s b b s» F +
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Taylor	expansion	of	nBP using	k terms

Taylor	expansion（k=1,2,3,4）

2
0 1( )y s b b s= +

2
0

2 2 21
2 0

2
0

( ) ( )( )
! ( )

j jk

k j
j

nBP
j s

s s y ss
s

-

=

é ù- ¶
=F ê ú

¶ê úë û
å

Shimodaira	(2008)
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AU ( 1)k knBP= -



Scaling-law	and	geometry

   
NBP(σ 2 ) = Φ β0 + β1σ

2 + β2σ
4 + β3σ

6 +( ) +O(h2 )

Using	a	new	asymptotic	theory	with	“nearly	flat	surface		h”		instead	of		large	n.

Shimodaira	(2008)

52

   
β j (u) = 1

2 j j!
j!

j1! jp−1!
∂2 j h(u)

∂u1
2 j1∂up−1

2 jp−1
j1++ jp−1= j
∑

distance mean	curvature

v

u=(u1,..., up-1)
( )v h u= -

   p-value = Φ β0 − β1 + β2 − β3 +( ) +O(h2 )



k=3:	AU=0.052
p=0.05

BP=0.0078
k=2:	AU=0.057

2s
-1 1
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Extrapolating	NBP	to	m=-n

  
σ Φ−1 BP(σ 2 )( )

   ψ (σ 2 ) = β0 + β1σ
2 + β2σ

4 ++ βk−1σ
2(k−1)Fitting	a	model	:

Plotting	:	
   
NBP(σ 2 ) ! Φ σ Φ−1 BP(σ 2 )( ){ }



What	NBP	is	calculating	?	

2 1s = 2 1s = -

Shimodaira	(2008)
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  NBP(−1) = p-value +O(n−3/2 )

  
NBP(σ 2 ) = Φ β0 + β1σ

2( ) +O(n−3/2 )

curvature



What	is	an	unbiased	test?

q̂ q q{ }ˆ( ) | , , 0 1P p Hq a q a q a"< = Î¶ < <
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q

q̂

q̂

*q̂

(“similar”	on	the	boundary)



Matching	priors
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Tibshirani	(1989)	assumes	orthogonality

 θ ↔ (ϕ ,λ)    ϕ ∈,λ ∈ p−1

  
π (θ ) = g(λ)Iϕϕ

1/2 (ϕ ,λ) | J (ϕ ,λ) |−1

  H = θ :ϕ ≤ϕ0{ }
  
Iϕλ (ϕ ,λ) = 0

  

d logπ (θ )
dϕ

= −2β1
(curvature	of	the	boundary	surface	of	H)

 ϕ =ϕ0

ϕ

  β1 ∝1/ radius
Reweighting	the	bootstrap	by	this	matching	prior	makes	BP=p-value



Correcting	a	deviation	from	normality

2 2 2 2 1
0 1 0( ) ( ) (2 ) ( )nBP a O ns b b s b s -é ù=F - - + +ë û

2 1
0 1 0-value (1 ) ( )p a O nb b b -é ù=F - + - +ë û

1 1 2 1
0( -value) (AU( 1)) ( )p a O nb- - -F -F - = +

3

2 3/2

ˆ1 (( ) )
ˆ6 (( ) )

Ea
E

q q
q q

-
=

-
acceleration	constant

Efron	(1987),	Efron	and	Tibshirani	(1998),	Shimodaira	(2004)
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Two-step	multiscale	bootstrap

nD
1

*1
mD

1

*2
mD

1

*10000
mD

2

*1
mD

2

*2
mD

2

*10000
mD

Yes

No

Yes

2 2
1 2

#{ }BP( , )
10000
Yess s =

2 2 2
1 2s s s= +

1 2 2 1 2 1/2 2 2 4 2 1
1 2 1 2 0(BP( , )) (BP( )) ( ) ( )pn a O ns s s s s s s s b s- - - - -F = F + - +

2 1/2BP( ) ( )pO ns -= +

with

Shimodaira	(2004)

c.f.	Three-step	multiscale	bootstrap	estimates	six	geometrical	parameters	and	
gives	third-order	accuracy
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Many	hypotheses:	FDR,	visualization
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q̂
1H

2H

3H

4H

1 2 3 4, , , ,...p p p p



Asymptotic	theory	of	
4th order	accuracy

x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region

H =
{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface

∂H =
{
(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq

are orthgonal coordinates of the tangent space and v is the coordinate of the direction

normal to the tangent space. The smooth function h(u) is then represented in the

Taylor series as

h(u) =
q∑

i=1

q∑

j=1

hijuiuj +
q∑

i=1

q∑

j=1

q∑

k=1

hijkuiujuk + · · · , (9)

where the derivatives are denoted as

hij =
1

2

∂2h(u)

∂ui∂uj

∣∣∣
0
, hijk =

1

6

∂3h(u)

∂ui∂uj∂uk

∣∣∣
0
.

As n becomes larger, the coefficients approach zero asymptoticlly as hij = O(n−1/2)

and hijk = O(n−1). The k-th order derivatives are O(n−(k−1)/2) for k ≥ 1, because

the coordinates u1, . . . , uq as well as h(u) are scaled by the factor
√
n.
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More generally, we allow h belongs to class S defined below so that the origin

may not be on ∂H, and the axes u1, . . . , uq are slightly rotated from the tangent

space.

Definition 2 (Class S). Let h(u) be a smooth function of u ∈ Rq. The function h

is said to be class S if it is expressed asymptotically as

h(u) ≃ h0 + hiui + hijuiuj + hijkuiujuk + hijkluiujukul, (10)

where the coefficients are h0 = O(1), hi = O(n−1), hij = O(n−1/2), hijk = O(n−1),

hijkl = O(n−3/2). Here ≃ denotes the equality correct up to O(n−3/2) erring O(n−2).

The summation convention such as hijuiuj =
∑q

i=1

∑q
j=1 hijuiuj are used, where the

free indeces i, j, k, l run through 1, . . . , q if appeared twice in a formula.

We take care of terms up to O(n−3/2) ignoring O(n−2)

3.2 Asymptotic expansion of the bootstrap probability

Efron and Tibshirani (1998) showed the asymptotic expansion of BP1(H|y) up to

O(n−1) terms for h specified in (9). We generalize their eq. (2.19) to include O(n−3/2)

terms for h specified in (10).

Theorem 1 (Bootstrap probability for scale 1). Consider the region H = R(h) for

h ∈ S. Define four quantities γ1 = hii = O(n−1/2), γ2 = hijhij = O(n−1), γ3 =

hijhjkhki = O(n−3/2), γ4 = hiijj = O(n−3/2). Observing y in the (u, v) coordinates

as y = (0,λ0 − h0) with λ0 ∈ R, the bootstrap probability for σ = 1 is expressed

11
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Thm:	Asymptotic	expansion	of	BP1
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asymptotically as

BP1(H|y) ≃ 1− Φ
[
λ0 + γ1 − λ0γ2 + 3γ4 − γ1γ2 − 4

3(1− λ2
0)γ3

]
(11)

= 1− Φ(β0 + β1 + β2), (12)

where β0 = λ0 = O(1), β1 = γ1 − λ0γ2 +
4
3λ

2
0γ3 = O(n−1/2), β2 = 3γ4 − γ1γ2 − 4

3γ3 =

O(n−3/2). We also define β3 = 6γ4 − 2γ1γ2 − 4γ3 = O(n−3/2) to be used later.

BP1(H|y) ≃ 1− Φ(β0 + β1 + β2)

γ1 = hii = O(n−1/2)

γ2 = hijhij = O(n−1)

γ3 = hijhjkhki = O(n−3/2)

γ4 = hiijj = O(n−3/2)

β0 = λ0 = O(1)

β1 = γ1 − λ0γ2 +
4
3λ

2
0γ3 = O(n−1/2)

β2 = 3γ4 − γ1γ2 − 4
3γ3 = O(n−3/2)

β3 = 6γ4 − 2γ1γ2 − 4γ3 = O(n−3/2)

Note that the first derivatives hi = O(n−1) do not appear in (11), implying that

we can ignore the slight rotation of u1, . . . , uq axes from the tangent space. The four

quantities γ1, . . . , γ4 represent geometric properties of ∂H at (0, 0) as mentioned

later in Section 4.2.

3.3 Rescaling the bootstrap probability

Shimodaira (2002, 2004) showed the asymptotic expansion of BPσ2(H|y) up to

12
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O(n−3/2). We also define β3 = 6γ4 − 2γ1γ2 − 4γ3 = O(n−3/2) to be used later.

BP1(H|y) ≃ 1− Φ(β0 + β1 + β2)

γ1 = hii = O(n−1/2)

γ2 = hijhij = O(n−1)

γ3 = hijhjkhki = O(n−3/2)

γ4 = hiijj = O(n−3/2)

β0 = λ0 = O(1)

β1 = γ1 − λ0γ2 +
4
3λ

2
0γ3 = O(n−1/2)

β2 = 3γ4 − γ1γ2 − 4
3γ3 = O(n−3/2)

β3 = 6γ4 − 2γ1γ2 − 4γ3 = O(n−3/2)

Note that the first derivatives hi = O(n−1) do not appear in (11), implying that

we can ignore the slight rotation of u1, . . . , uq axes from the tangent space. The four

quantities γ1, . . . , γ4 represent geometric properties of ∂H at (0, 0) as mentioned

later in Section 4.2.

3.3 Rescaling the bootstrap probability

Shimodaira (2002, 2004) showed the asymptotic expansion of BPσ2(H|y) up to

12

O(n−1) terms. Here we include O(n−3/2) terms to it.

Theorem 2 (Bootstrap probability for scale σ). For the H and y = (0,λ0 − h0)

given in Theorem 1, the bootstrap probability for σ2 > 0 is expressed asymptotically

as

BPσ2(H|y) ≃ 1− Φ
[
β0σ

−1 + β1σ + β2σ
3
]
. (13)

Corollary 1 (Asymptotic expansion of multiscale bootstrap). Using β0, β1, β2

defined in Theorem 1, the normalized bootstrap probability is expressed as

NBPσ2(H|y) ≃ 1− Φ
[
β0 + β1σ

2 + β2σ
4
]
. (14)

In particular, the extrapolation to σ2 = −1 gives

NBP−1(H|y) ≃ 1− Φ
[
β0 − β1 + β2

]
.

4 Geometry of smooth surfaces

In this section, we discuss only geometry of smooth surfaces without any probability

argument. The results will be used in later sections for deriving asymptotic accuracy

of the bootstrap methods. We work on the region H = R(h) and boundary surface

∂H = B(h) for h ∈ S expressed in the (u, v) coordiantes. We will consider local

coordinates at a point (u,−h(u)) on ∂H. In section 4.1, ∂H is expressed in the local

coordinates. In section 4.2, the four quantities γi, i = 1, . . . , 4, which are defined in

Theorem 1 for representing geometric properties of ∂H at (0, 0), will be redefined

at (u,−h(u)). In section 4.3, the signed distance between two surfaces is discussed.
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signed	distance

curvature	+	...

fourth-order	terms

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
≃ Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion

γ1 =
1

2

∂2h(u)

∂ui∂ui
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0

β3 =
1

2

∂2γ1(h, u)

∂ui∂ui

∣∣∣
0

A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution

(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are

E(UiUj) = δij, E(UiUjUkUl) = δijδkl + δikδjl + δilδjk,

E(UiUjUkUlUmUn) = δijδklδmn + δikδjlδmn + · · ·+ δinδjkδlm︸ ︷︷ ︸
15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.

For k = 1, 2, . . ., the expectation of the product of 2k variables E(Ui1 · · ·Ui2k) is the

sum of (2k)!/(2kk!) terms of partitioning {i1, . . . , i2k} into k pairs, where each term

is the product of k Kronecker deltas corresponding to the k pairs. On the other hand,
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data	point

Proved	by	a	simple	argument	of	Taylor	expansion	and	integration.

仮説曲面の平均曲率 平均曲率の平均曲率



Thm:	scaling	law	of	BP

O(n−1) terms. Here we include O(n−3/2) terms to it.
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Proved	by	a	simple	rescaling	argument.		

Proof of Theorem 2. We rescale Y ∗ and H by multiplying σ−1. Y ∗ is replaced by

Y ∗/σ, and H is replaced by H/σ = {y/σ : y ∈ H}. Then (2) becomes Y ∗/σ ∼

Nq+1(y/σ, Iq+1). Since Y ∗ ∈ H is equivalent to Y ∗/σ ∈ H/σ, we have

BPσ2(H|y) = BP1(H/σ|y/σ).

In the (u, v) coordinates, replacement y → y/σ is expressed as λ0 → λ0/σ. H →

H/σ is expressed as h0 → h0/σ, hi → hi, hij → σhij, hijk → σ2hijk, hijkl → σ3hijkl,

and then γ1 → σγ1, γ2 → σ2γ2, γ3 → σ3γ3, γ4 → σ3γ4. By applying these repace-

ments to (11), we get (13).

Proof of Lemma 1. A point on ∂H is expressed as (u+∆ũ,−h(u+∆ũ)) in the (u, v)

coordinates for some ∆ũ = (∆ũ1, . . .∆ũq) ∈ Rq. For representing this point in the

(∆u,∆v) coordinates, we substitute ∆v = −h̃(∆u) in (15) to get

(u+∆ũ,−h(u+∆ũ)) = (u,−h(u)) +∆uibi − h̃(∆u)∥f∥−1f.

By looking at each element of the vector, we have

∆ũi = ∆ui − h̃(∆u)∥f∥−1 ∂h

∂ui
, i = 1, . . . , q, (37)

h(u+∆ũ) = h(u) +∆ui
∂h

∂ui
+ h̃(∆u)∥f∥−1. (38)

We are going to solve these equations by eliminating ∆ũ from (37) and (38). First

note that h̃(∆u) = O(n−1/2), ∥f∥ = O(1), ∂h/∂ui = O(n−1/2). It follows from (37)

that ∆ũi−∆ui = O(n−1), and the Taylor expansion of h(u+∆ũ) around u+∆u is

h(u+∆ũ) ≃ h(u+∆u)− ∂h

∂ui

∣∣∣
u+∆u

h̃(∆u)∥f∥−1 ∂h

∂ui
.
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coordinates for some ∆ũ = (∆ũ1, . . .∆ũq) ∈ Rq. For representing this point in the

(∆u,∆v) coordinates, we substitute ∆v = −h̃(∆u) in (15) to get
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that ∆ũi−∆ui = O(n−1), and the Taylor expansion of h(u+∆ũ) around u+∆u is
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AU = PV +O(n−3/2)

v = −
√

1

64
+

u2

3

∂H =
{
(u, v) : v = −

√
1

64
+

u2

3

}

H =
{
(u, v) : v ≤ −

√
1

64
+

u2

3

}

zα = Φ−1(α)

β0 → β0σ
−1, β1 → β1σ, β2 → β2σ

3

σ2 = τ 2 = 1

Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

O(1) O(n−1/2) O(n−1) O(n−3/2) O(n−2)

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

8

ブートストラップ確率のスケーリング則

H. SHIMODAIRA/multiscale-double bootstrap 8

different from BP = 0.038; BP does not need bias correction and all the bootstrap methods
are very close to the signed LR in Table 1.

Efron (1985) and Efron and Tibshirani (1998) computed PV up to O(n−1/2) terms in
the same way as above but using only bootstrap probabilities. Their bias-corrected (BC)
bootstrap method estimates the mean curvature by

γ1 = Φ̄−1
(
BP(H|µ̂(H|y))

)
+ O(n−3/2),

which is verified by letting λ0 = 0 in (11) and (13). In the next sections, we attempt
computing PV up to higher-order terms using only bootstrap probabilities.

3.3. Multiscale bootstrap

For adjusting the bias of BP, we would like to express BPσ2 as a function of σ2. Shimodaira
(2002, 2004) showed the asymptotic expansion of BPσ2(H|y) up to O(n−1) terms. Here we
include O(n−3/2) terms to it. This is an immediate consequence of Theorem 1 via a rescaling
argument.

Theorem 2 (Scaling-law of the bootstrap probability). For the H and y given in Theorem 1,
the bootstrap probability for σ2 > 0 is expressed as

BPσ2(H|y) = BP(σ−1H|σ−1y), (15)

where σ−1H = {σ−1y : y ∈ H}. By replacing

β0 → σ−1β0, β1 → σβ1, β2 → σ3β2 (16)

in (13), the right hand side of (15) is expressed asymptotically as

BPσ2(H|y) ≃ Φ̄
[
β0σ

−1 + β1σ + β2σ
3
]
. (17)

Shimodaira (2008) introduced the normalized bootstrap probability defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]

for σ2 > 0, and considered an “approximately unbiased” p-value defined formally by

AU(H|y) = NBP−1(H|y).

For extrapolating NBPσ2 to σ2 ≤ 0, we use the scaling-law of BP. It follows from Theorem 2
that the normalized bootstrap probability is expressed asymptotically as

NBPσ2(H|y) ≃ Φ̄
[
β0 + β1σ

2 + β2σ
4
]

(18)

for σ2 > 0, and it is extrapolated to σ2 ≤ 0 by the right-hand side of (18). In particular for
σ2 = −1, we obtain the asymptotic expansion of AU as

AU(H|y) ≃ Φ̄(β0 − β1 + β2). (19)

Comparing (19) with (14), we find that AU(H|y) = PV(H|y) + O(n−3/2), indicating AU
is third-order accurate in general. The remaining bias of order O(n−3/2) comes from the
difference Φ̄−1(AU) − Φ̄−1(PV) ≃ 4

3γ3.
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AU(H|y) = NBP−1(H|y).

For extrapolating NBPσ2 to σ2 ≤ 0, we use the scaling-law of BP. It follows from Theorem 2
that the normalized bootstrap probability is expressed asymptotically as

NBPσ2(H|y) ≃ Φ̄
[
β0 + β1σ

2 + β2σ
4
]

(18)

for σ2 > 0, and it is extrapolated to σ2 ≤ 0 by the right-hand side of (18). In particular for
σ2 = −1, we obtain the asymptotic expansion of AU as

AU(H|y) ≃ Φ̄(β0 − β1 + β2). (19)

Comparing (19) with (14), we find that AU(H|y) = PV(H|y) + O(n−3/2), indicating AU
is third-order accurate in general. The remaining bias of order O(n−3/2) comes from the
difference Φ̄−1(AU) − Φ̄−1(PV) ≃ 4

3γ3.



Thm:	unbiased	p-value	

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) ≃ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) ≃ 1− Φ
[
β0 − β1 − β2 + β3

]

5.3 Higher order terms of double bootstrap probabilities

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),
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2.5 Approximately unbiased tests

For evaluating the approximate p-values defined in the previous sections, we look at

the bias of testing. Let PV(H|y) denote an approximate p-value for testing H given

y. We may reject H if PV(H|y) < α with a significance level 0 < α < 1. If µ is

on the boundary surface of H, the rejection probability of an unbiased test should

be equal to α. An approximately unbiased test as well as its approximate p-value is

said to be k-th order accurate asymptotically if it is correct up to O(n−(k−1)/2) with

bias of order O(n−k/2). That is,

P
[
PV(H|Y ) < α | µ

]
= α +O(n−k/2), µ ∈ ∂H, (7)

where the probability is calculated by (1). It has been known in the literature

that BP1(H|y) is first order accurate, and DBP1,1(H|y) and NBP−1(H|y) are third-

order accurate. Our new multiscale-double bootstrap has higher-order accuracy

than these existing methods, and in fact DBP−1,1(H|y) is fourth order accurate. In

later sections, we will derive the asymptotic accuracy of all these methods.

3 Higer-order terms of bootstrap probability

3.1 Asymptotic theory

Although we have a single observation y, we work on the asymptotic theory with

respect to the sample size n. We assume that there is a non-parametric transfor-

mation from the i.i.d. observation {x1, . . . , xn} to y. For example, y may be the

maximum likelihood estimate of parameters of interest so that the normality holds

9

Thm:	fourth-order	accuracy	(k=4)	is	achieved	by

Def:	k-th order	accurate	p-values	should	satisfy

Corollary:	BP	is	first-order	accurate	(k=1),		AU	is	third-order	accurate	(k=3)

2.3 Multiscale bootstrap
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+
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Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

O(1) O(n−1/2) O(n−1) O(n−3/2) O(n−2)

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)
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different from BP = 0.038; BP does not need bias correction and all the bootstrap methods
are very close to the signed LR in Table 1.

Efron (1985) and Efron and Tibshirani (1998) computed PV up to O(n−1/2) terms in
the same way as above but using only bootstrap probabilities. Their bias-corrected (BC)
bootstrap method estimates the mean curvature by

γ1 = Φ̄−1
(
BP(H|µ̂(H|y))

)
+ O(n−3/2),

which is verified by letting λ0 = 0 in (11) and (13). In the next sections, we attempt
computing PV up to higher-order terms using only bootstrap probabilities.

3.3. Multiscale bootstrap

For adjusting the bias of BP, we would like to express BPσ2 as a function of σ2. Shimodaira
(2002, 2004) showed the asymptotic expansion of BPσ2(H|y) up to O(n−1) terms. Here we
include O(n−3/2) terms to it. This is an immediate consequence of Theorem 1 via a rescaling
argument.

Theorem 2 (Scaling-law of the bootstrap probability). For the H and y given in Theorem 1,
the bootstrap probability for σ2 > 0 is expressed as

BPσ2(H|y) = BP(σ−1H|σ−1y), (15)

where σ−1H = {σ−1y : y ∈ H}. By replacing

β0 → σ−1β0, β1 → σβ1, β2 → σ3β2 (16)

in (13), the right hand side of (15) is expressed asymptotically as

BPσ2(H|y) ≃ Φ̄
[
β0σ

−1 + β1σ + β2σ
3
]
. (17)

Shimodaira (2008) introduced the normalized bootstrap probability defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]

for σ2 > 0, and considered an “approximately unbiased” p-value defined formally by

AU(H|y) = NBP−1(H|y).

For extrapolating NBPσ2 to σ2 ≤ 0, we use the scaling-law of BP. It follows from Theorem 2
that the normalized bootstrap probability is expressed asymptotically as

NBPσ2(H|y) ≃ Φ̄
[
β0 + β1σ

2 + β2σ
4
]

(18)

for σ2 > 0, and it is extrapolated to σ2 ≤ 0 by the right-hand side of (18). In particular for
σ2 = −1, we obtain the asymptotic expansion of AU as

AU(H|y) ≃ Φ̄(β0 − β1 + β2). (19)

Comparing (19) with (14), we find that AU(H|y) = PV(H|y) + O(n−3/2), indicating AU
is third-order accurate in general. The remaining bias of order O(n−3/2) comes from the
difference Φ̄−1(AU) − Φ̄−1(PV) ≃ 4

3γ3.



Rejection	probabilities	of	BP	and	AU

D̃BP1,−1(H|y) ≃ DBP1,−1(H|y).

5.4 Asymptotic accuracy of bootstrap methods

The probability is calculated by (1), and zα = Φ−1(α), 0 < α < 1.

Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in

Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of NBPσ2(H|Y ) is

P
(
NBPσ2(H|Y ) < α

)
≃ Φ

[
zα + (1 + σ2)

{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)

In particular, σ2 = ±1 gives

P
(
BP1(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
NBP−1(H|Y ) < α

)
≃ Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)

P
(
AU(H|Y ) < α

)
≃ Φ(zα + 4

3γ3) = α +O(n−3/2).

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
≃ Φ

[
zα − (1 + σ2)β3

]
. (32)
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P
(
DBP1,σ2(H|Y ) < α

)
≃ Φ

[
zα − (1 + σ2)β3

]
. (32)
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AU	is	third-order	accurate	(k=3)

BP	is	first-order	accurate	(k=1)
P
(
DAU(H|Y ) < α

)
≃ Φ(zα) = α

P
(
DBP(H|Y ) < α

)
≃ Φ(zα − 2β3) = α +O(n−3/2)

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
≃ Φ

[
zα − (1 + σ2)β3

]
. (32)
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A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution
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Using	q	x	q	hessian	matrix
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AU = PV +O(n−3/2)
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Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

8

mean	curvature	of	the	surface

仮説曲面の平均曲率

棄却確率



曲面の移動
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in the (u, v) coordinates.
In the (x, ∆v) coordinates, ∂H is expressed as ∆v = −d(x) with

d(x) ≃ dijxixj + dijkxixjxk + dijklxixjxkxl.

Then we apply the definitions of γi in (10) to d(x) as follows.

γ1(h, u) = dii = tr(D), γ2(h, u) = dijdij = tr(D2),

γ3(h, u) = dijdjkdki = tr(D3), γ4(h, u) = diijj ,

where D is q × q matrix with elements (D)ij = dij . The four geometric quantities are
invariant to the choice of orthonormal basis as will be seen in (23) below.

Lemma 2. For h ∈ S, we consider the local coordinates (∆u,∆v) at (u,−h(u)) using
the basis {b1, . . . , bq, f}. Let G be q × q matrix with elements (G)ij = gij = bi · bj for
i, j = 1, . . . , q, and gij = (G−1)ij be the elements of the inverse matrix of G. Then the four
geometric quantities are expressed as

γ1(h, u) = h̃ijg
ij = tr(D̃G−1), γ2(h, u) = h̃ijg

jkh̃klg
li = tr((D̃G−1)2),

γ3(h, u) = h̃ijg
jkh̃klg

lmh̃mngni = tr((D̃G−1)3), γ4(h, u) = h̃ijklg
ijgkl

(23)

using the coefficients h̃ij and h̃ijkl defined in Lemma 1 and q × q matrix D̃ with elements
(D̃)ij = h̃ij. They are expressed asymptotically as

γ1(h, u) ≃ hii + 3hiikuk + (6hiikl − 2hiihmkhml − 4hijhikhjl)ukul,
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Lemma 3. Let s = M(h,λ) for h ∈ S, λ ∈ S. If λ(u) is expressed as

λ(u) ≃ λ0 + λiui + λijuiuj

with λ0 = O(1), λi = O(n−1), λij = O(n−3/2), then we have s ∈ S with coefficients
s0 = h0−λ0 = O(1), si = hi−λi−2λ0hmi(hm−λm) = O(n−1), sij = hij−λij−2λ0hmihmj+
4λ2

0hmlhmihlj = O(n−1/2), sijk = hijk − 2λ0(hmihmjk + hmjhmik + hmkhmij) = O(n−1),
sijkl = hijkl = O(n−3/2). The four geometric quantities at (0,−s(0)) are γ1(s, 0) = sii ≃
γ1 −λii − 2λ0γ2 +4λ2

0γ3, γ2(s, 0) = sijsij ≃ γ2 − 4λ0γ3, γ3(s, 0) = sijsjkski ≃ γ3, γ4(s, 0) =
siijj ≃ γ4, where γi = γi(h, 0), i = 1, . . . , 4.

5. Asymptotic analysis of bootstrap methods

We are going to show the asymptotic expansions of PV and DBP, and then prove the
asymptotic accuracy of the bootstrap methods. The argument is based on the geometric
tools developed in Section 4 as well as another tool to be developed below.

5.1. Contour surfaces of bootstrap probability

We consider a surface on which the bootstrap probability remains constant. For H = R(h)
with h ∈ S, we consider a function s(u) of u ∈ Rq satisfying

BPσ2(H|(u,−s(u))) = 1 − α, u ∈ Rq,

meaning BPσ2(H|y) = 1 − α is constant for any y ∈ B(s). Then, B(s), as well as s itself,
will be called as the contour surface of the bootstrap probability of H with variance σ2 > 0
at level 1 − α. In particular, we choose α so that (0,λ0 − h0) ∈ B(s) for a specified λ0 ∈ R.
We denote this contour surface as

s = Lσ2(h,λ0).

Lemma 4. Let s = Lσ2(h,λ0) for h ∈ S, λ0 ∈ R, and σ2 > 0. Then, s is expressed as
s = M(h, λ) by specifying λ(u) ≃ λ0 + λiui + λijuiuj with λ0 = O(1),

λi = σ2(−3hmmi + 6λ0hmlhmli), λij = σ2(−6hmmij + 2hmmhlihlj + 4hmlhmihlj). (26)

We have s ∈ S with coefficients

s0 = h0 − λ0, si = hi − 2λ0hmhmi + σ2(3hmmi − 6λ0hmlhmli − 6λ0hmihmll),

sij = hij − 2λ0hmihmj + 4λ2
0hmlhmihlj + σ2(6hijmm − 2hmmhlihlj − 4hmlhmihlj),

sijk = hijk − 2λ0(hmihmjk + hmjhmik + hmkhmij), sijkl = hijkl.

(27)

The four geometric quantities of s at (0,−s(0)) are

γ1(s, 0) ≃ γ1 − 2λ0γ2 + 4λ2
0γ3 + σ2(6γ4 − 2γ1γ2 − 4γ3),

γ2(s, 0) ≃ γ2 − 4λ0γ3, γ3(s, 0) ≃ γ3, γ4(s, 0) ≃ γ4,
(28)

where γi = γi(h, 0), i = 1, . . . , 4.

We denote the λ(u) of (26) as λσ2(u) = λ0 − σ2κ(u) with

κ(u) = γ1(h, u) − γ1(h, 0) − λ0(γ2(h, u) − γ2(h, 0))

≃ (3hmmi − 6λ0hmlhmli)ui + (6hmmij − 2hmmhlihlj − 4hmlhmihlj)uiuj . (29)
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This also relates to (8) as (1/2)∂2κ(u)/∂ui∂ui|0 = β3 or (1/2)∂2λσ2(u)/∂ui∂ui|0 = −σ2β3.
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The expression of PV(H|y) will be obtained as α for y ∈ B(s), and thus, by choosing
µ = (0,−h0) with θ = 0, we get

PV(H|y) ≃ 1 − BP(R(s)|(0,−h0)).
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in the (u, v) coordinates.
In the (x, ∆v) coordinates, ∂H is expressed as ∆v = −d(x) with

d(x) ≃ dijxixj + dijkxixjxk + dijklxixjxkxl.

Then we apply the definitions of γi in (10) to d(x) as follows.

γ1(h, u) = dii = tr(D), γ2(h, u) = dijdij = tr(D2),

γ3(h, u) = dijdjkdki = tr(D3), γ4(h, u) = diijj ,

where D is q × q matrix with elements (D)ij = dij . The four geometric quantities are
invariant to the choice of orthonormal basis as will be seen in (23) below.

Lemma 2. For h ∈ S, we consider the local coordinates (∆u,∆v) at (u,−h(u)) using
the basis {b1, . . . , bq, f}. Let G be q × q matrix with elements (G)ij = gij = bi · bj for
i, j = 1, . . . , q, and gij = (G−1)ij be the elements of the inverse matrix of G. Then the four
geometric quantities are expressed as

γ1(h, u) = h̃ijg
ij = tr(D̃G−1), γ2(h, u) = h̃ijg

jkh̃klg
li = tr((D̃G−1)2),

γ3(h, u) = h̃ijg
jkh̃klg

lmh̃mngni = tr((D̃G−1)3), γ4(h, u) = h̃ijklg
ijgkl

(23)

using the coefficients h̃ij and h̃ijkl defined in Lemma 1 and q × q matrix D̃ with elements
(D̃)ij = h̃ij. They are expressed asymptotically as

γ1(h, u) ≃ hii + 3hiikuk + (6hiikl − 2hiihmkhml − 4hijhikhjl)ukul,

γ2(h, u) ≃ hijhij + 6hijhijkuk, γ3(h, u) ≃ hijhjkhki, γ4(u, h) ≃ hiijj

(24)

using the coefficients of h(u). In particular, γi = γi(h, 0), i = 1, . . . , 4, are consistent with
their definitions in (10). Also,

1
2

∂2γ1(h, u)
∂ui∂uj

∣∣∣
0
≃ 6hmmij − 2hmmhlihlj − 4hmlhmihlj

confirms that the definition of β3 in (11) is consistent with (8).

4.3. Shifting surfaces

We consider shifting B(h) toward the normal direction. Let f(u) be the normal vector at
(u,−h(u)) ∈ B(h). For a specified λ ∈ S, we move the point (u,−h(u)) by λ(u) toward the
normal direction. This is expressed as

(θ,−s(θ)) = (u,−h(u)) + λ(u)∥f(u)∥−1f(u), (25)

where s(u) is some function of u ∈ Rq, and θ ∈ Rq is used when distinction is needed. We
can interpret (25) as

µ̂(H|(θ,−s(θ))) = (u,−h(u))

with signed distance λ(u). For sufficiently large n, such s(θ) is uniquely defined for each θ,
because all the surfaces approach flat as n → ∞. We denote (25) as

s = M(h,λ).
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Lemma 3. Let s = M(h,λ) for h ∈ S, λ ∈ S. If λ(u) is expressed as

λ(u) ≃ λ0 + λiui + λijuiuj

with λ0 = O(1), λi = O(n−1), λij = O(n−3/2), then we have s ∈ S with coefficients
s0 = h0−λ0 = O(1), si = hi−λi−2λ0hmi(hm−λm) = O(n−1), sij = hij−λij−2λ0hmihmj+
4λ2

0hmlhmihlj = O(n−1/2), sijk = hijk − 2λ0(hmihmjk + hmjhmik + hmkhmij) = O(n−1),
sijkl = hijkl = O(n−3/2). The four geometric quantities at (0,−s(0)) are γ1(s, 0) = sii ≃
γ1 −λii − 2λ0γ2 +4λ2

0γ3, γ2(s, 0) = sijsij ≃ γ2 − 4λ0γ3, γ3(s, 0) = sijsjkski ≃ γ3, γ4(s, 0) =
siijj ≃ γ4, where γi = γi(h, 0), i = 1, . . . , 4.

5. Asymptotic analysis of bootstrap methods

We are going to show the asymptotic expansions of PV and DBP, and then prove the
asymptotic accuracy of the bootstrap methods. The argument is based on the geometric
tools developed in Section 4 as well as another tool to be developed below.

5.1. Contour surfaces of bootstrap probability

We consider a surface on which the bootstrap probability remains constant. For H = R(h)
with h ∈ S, we consider a function s(u) of u ∈ Rq satisfying

BPσ2(H|(u,−s(u))) = 1 − α, u ∈ Rq,

meaning BPσ2(H|y) = 1 − α is constant for any y ∈ B(s). Then, B(s), as well as s itself,
will be called as the contour surface of the bootstrap probability of H with variance σ2 > 0
at level 1 − α. In particular, we choose α so that (0,λ0 − h0) ∈ B(s) for a specified λ0 ∈ R.
We denote this contour surface as

s = Lσ2(h,λ0).

Lemma 4. Let s = Lσ2(h,λ0) for h ∈ S, λ0 ∈ R, and σ2 > 0. Then, s is expressed as
s = M(h, λ) by specifying λ(u) ≃ λ0 + λiui + λijuiuj with λ0 = O(1),

λi = σ2(−3hmmi + 6λ0hmlhmli), λij = σ2(−6hmmij + 2hmmhlihlj + 4hmlhmihlj). (26)

We have s ∈ S with coefficients

s0 = h0 − λ0, si = hi − 2λ0hmhmi + σ2(3hmmi − 6λ0hmlhmli − 6λ0hmihmll),

sij = hij − 2λ0hmihmj + 4λ2
0hmlhmihlj + σ2(6hijmm − 2hmmhlihlj − 4hmlhmihlj),

sijk = hijk − 2λ0(hmihmjk + hmjhmik + hmkhmij), sijkl = hijkl.

(27)

The four geometric quantities of s at (0,−s(0)) are

γ1(s, 0) ≃ γ1 − 2λ0γ2 + 4λ2
0γ3 + σ2(6γ4 − 2γ1γ2 − 4γ3),

γ2(s, 0) ≃ γ2 − 4λ0γ3, γ3(s, 0) ≃ γ3, γ4(s, 0) ≃ γ4,
(28)

where γi = γi(h, 0), i = 1, . . . , 4.

We denote the λ(u) of (26) as λσ2(u) = λ0 − σ2κ(u) with

κ(u) = γ1(h, u) − γ1(h, 0) − λ0(γ2(h, u) − γ2(h, 0))

≃ (3hmmi − 6λ0hmlhmli)ui + (6hmmij − 2hmmhlihlj − 4hmlhmihlj)uiuj . (29)
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平均曲率流で動かす（3次の議論）

NBP
σ 2 (H | (u,−s(u)) = 1/ 2

H

dλ
dt

= −γ 1

t = 0

t =σ 2S

R
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さらに曲面を動かす

NBP
σ 2 (H | (u,−s(u)) = 1/ 2

dλ
dt

= 1+σ 2γ 2

t = 0

t = Φ−1(NBP
σ 2 (H | y))

S

y
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sketch	of	the	proof	for	PV

5 Asymptotic accuracy of bootstrap methods

5.1 Contour surfaces of bootstrap probability

s = Lσ2(h, a)

h = L−σ2(s,−a)

BPσ2(H|y) = constant for any y ∈ B(s)

Lσ2
2
(Lσ2

1
(H, a1), a2)

.
= Lσ2

1+σ2
2
(H, a1 + a2)

h = L0(h, 0)

s = L−1(h,λ0)

h = L1(s,−λ0)

B(s) = {(u, v) : v = −s(u)}

PV(H|y) = constant for any y ∈ B(s)

R(s)

BP1(R(s)|µ) = constant for any µ ∈ B(h)

Lemma 4 (Contour surfaces of bootstrap probability). For h ∈ S, 0 < α < 1, and

σ2 > 0, we consider a function s(u) of u ∈ Rq satisfying

BPσ2(R(h)|(u,−s(u))) = 1− α, u ∈ Rq. (23)

Then, B(s), as well as s itself, will be called as a contour surface of the bootstrap

probability of R(h) with squared scale σ2 at level 1− α. In particular, we choose α
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Thm:	scaling-law	of	DBP

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) ≃ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) ≃ 1− Φ
[
β0 − β1 − β2 + β3

]

5.3 Higher order terms of double bootstrap probabilities

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H
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Corollary:	DBP	is	third-order	accurate	(k=3),		DAU	is	fourth-order	accurate	(k=4)
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ダブルブートストラップのスケーリング則

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
≃ Φ

[
zα − (1 + σ2)β3

]
. (32)
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A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution

(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are

E(UiUj) = δij, E(UiUjUkUl) = δijδkl + δikδjl + δilδjk,

E(UiUjUkUlUmUn) = δijδklδmn + δikδjlδmn + · · ·+ δinδjkδlm︸ ︷︷ ︸
15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.

For k = 1, 2, . . ., the expectation of the product of 2k variables E(Ui1 · · ·Ui2k) is the

sum of (2k)!/(2kk!) terms of partitioning {i1, . . . , i2k} into k pairs, where each term

is the product of k Kronecker deltas corresponding to the k pairs. On the other hand,

21



sketch	of	the	proof	for	DBP
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where 0 < α < 1 is defined so that λ0 − h0 = −s0, meaning y ∈ B(s). Then, (7)

with k = 4 is expressed as

BP1(R(s)|(θ,−h(θ))) ≃ 1− α, θ ∈ Rq.

Therefore, B(h) is interpreted as a contour surface of the bootstrap proability; h
.
=

L1(s,−λ0). According to Lemma 5, the inverse operator is written as s
.
= L−1(h,λ0).

Letting σ2 = −1 in (25), we have γ1(s, 0) ≃ γ1−2λ0γ2+4λ2
0γ3− (6γ4−2γ1γ2−4γ3),

γ2(s, 0) ≃ γ2 − 4λ0γ3, γ3(s, 0) ≃ γ3, γ4(s, 0) ≃ γ4. Applying Theorem 1 to

α ≃ 1− BP1(R(s)|(0,−h0)),

we get 1−α by substituting s for h and −h0 for λ0−h0 into (11). More specifically,

we substitute −λ0 for λ0, γi(s, 0) for γi. Then we obtain (27) as α.

Proof of Theorem 4. Let s = Lσ2(h,λ0). Then,

D̃BPτ2,σ2(H|y) = 1− BPτ2(R(s)|µ̃).

We first compute D̃BPτ2,σ2(H|y) with µ̃ = (0,−h0) for θ = 0. Applying Theorem 2

to BPτ2(R(s)|µ̃), we get

D̃BPτ2,σ2(H|y) ≃ Φ
[
β′
0τ

−1 + β′
1τ + β′

2τ
3
]
,

where β′
0, β

′
1, β

′
2 are defined by replacing γi by γi(s, 0) of (25) and λ0 by −λ0, repec-

tively, in β0, β1, β2 of Theorem 1. By substituting β′
0 = −λ0, β′

1 = γ1(s, 0) +

λ0γ2(s, 0) +
4
3λ

2
0γ3, β

′
2 = 3γ4 − γ1γ2 − 4

3γ3 into it, we have, for µ̃ = (0,−h0),

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (46)

31

where 0 < α < 1 is defined so that λ0 − h0 = −s0, meaning y ∈ B(s). Then, (7)

with k = 4 is expressed as

BP1(R(s)|(θ,−h(θ))) ≃ 1− α, θ ∈ Rq.

Therefore, B(h) is interpreted as a contour surface of the bootstrap proability; h
.
=

L1(s,−λ0). According to Lemma 5, the inverse operator is written as s
.
= L−1(h,λ0).

Letting σ2 = −1 in (25), we have γ1(s, 0) ≃ γ1−2λ0γ2+4λ2
0γ3− (6γ4−2γ1γ2−4γ3),

γ2(s, 0) ≃ γ2 − 4λ0γ3, γ3(s, 0) ≃ γ3, γ4(s, 0) ≃ γ4. Applying Theorem 1 to

α ≃ 1− BP1(R(s)|(0,−h0)),

we get 1−α by substituting s for h and −h0 for λ0−h0 into (11). More specifically,

we substitute −λ0 for λ0, γi(s, 0) for γi. Then we obtain (27) as α.

Proof of Theorem 4. Let s = Lσ2(h,λ0). Then,

D̃BPτ2,σ2(H|y) = 1− BPτ2(R(s)|µ̃).

We first compute D̃BPτ2,σ2(H|y) with µ̃ = (0,−h0) for θ = 0. Applying Theorem 2

to BPτ2(R(s)|µ̃), we get

D̃BPτ2,σ2(H|y) ≃ Φ
[
β′
0τ

−1 + β′
1τ + β′

2τ
3
]
,

where β′
0, β

′
1, β

′
2 are defined by replacing γi by γi(s, 0) of (25) and λ0 by −λ0, repec-

tively, in β0, β1, β2 of Theorem 1. By substituting β′
0 = −λ0, β′

1 = γ1(s, 0) +

λ0γ2(s, 0) +
4
3λ

2
0γ3, β

′
2 = 3γ4 − γ1γ2 − 4

3γ3 into it, we have, for µ̃ = (0,−h0),

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (46)

31

contour	surface	of	BP

The	proof	completes	by	applying	the	asymptotic	expansion	of	BP	to	R(s)



Rejection	probabilities	of	DBP	and	DAU

DAU	is	fourth-order	accurate	(k=4)

DBP	is	third-order	accurate	(k=3)

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
≃ Φ

[
zα − (1 + σ2)β3

]
. (32)
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P
(
DAU(H|Y ) < α

)
≃ Φ(zα) = α

P
(
DBP(H|Y ) < α

)
≃ Φ(zα − 2β3) = α +O(n−3/2)
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Robustness	to	projection	error

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) ≃ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) ≃ 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
≃ (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

20

asymptotically as

DBPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) ≃ DBP1,−1(H|y).

5.4 Asymptotic accuracy of bootstrap methods

The probability is calculated by (1), and zα = Φ−1(α), 0 < α < 1.

Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in

Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of NBPσ2(H|Y ) is

P
(
NBPσ2(H|Y ) < α

)
≃ Φ

[
zα + (1 + σ2)

{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)

In particular, σ2 = ±1 gives

P
(
BP1(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
NBP−1(H|Y ) < α

)
≃ Φ(zα + 4

3γ3) = α +O(n−3/2).
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αγ3 − γ1γ2
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3γ4 − 4

3γ3
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− σ2 4

3γ3
]
. (31)

21

asymptotically as

DBPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) ≃ 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) ≃ DBP1,−1(H|y).

D̃BP = DBP +O(n−1)

D̃AU = DAU+O(n−2)

5.4 Asymptotic accuracy of bootstrap methods

The probability is calculated by (1), and zα = Φ−1(α), 0 < α < 1.

Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in

Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of NBPσ2(H|Y ) is

P
(
NBPσ2(H|Y ) < α

)
≃ Φ

[
zα + (1 + σ2)

{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)

21

If	 is	replaced	by

DBP	becomes

Corollary:	DBP	becomes	only	second-order	accurate	(k=2),		but
DAU	keeps	fourth-order	accuracy	(k=4)
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error	=	O(n-1)

Efron	and	Tibshirani	(1998)の結果 Shimodaira	(2014)

ＤＡＵは射影誤差に影響されにくい
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For applying Theorem 1 to BP(R(s)|(0,−h0)), we would like to replace h → s and
λ0 − h0 → −h0 in BP(R(h)|(0,λ0 − h0)). This implies replacing λ0 → −λ0 as well as γi →
γi(s, 0) in (12), because λ0−h0 → (−λ0)−s0 = −h0 as desired. This is equivalent to replacing
β0 → −β0, β1 → β1 − β3, β2 → β2 in (13) as shown in the proof of the theorem below, and
therefore, we obtain PV(H|y) ≃ 1 − Φ̄((−β0) + (β1 − β3) + β2) = Φ̄(β0 − β1 − β2 + β3).

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0 − h0) given in
Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed asymp-
totically as (14).

Related results are given in Theorem 1 of Shimodaira (2008), from which we borrowed
the idea of the inverse operator. An unusual asymptotic theory of “nearly flat” surfaces is
discussed there by utilizing Fourier transform of surfaces instead of Taylor series for handling
non-smooth surfaces such as cones.

5.3. Asymptotic expansion of the double bootstrap probability

To see the robustness of DBP against computational error in the minimization of (6), we
replace µ̂(H|y) in (20) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. We assume θ = O(1),
meaning that the computational error is O(n−1/2) with respect to the original parameter,
say, η in the spherical example. We denote D̃BPτ2,σ2(H|y) for this modified double bootstrap
probability, and derive its asymptotic expansion for y = (0,λ0 − h0).

First note that BPσ2(H|Y +) ≥ BPσ2(H|y) ⇔ Y + ∈ R(s) for s = Lσ2(h,λ0), and

D̃BPτ2,σ2(H|y) = 1 − BPτ2(R(s)|µ̃).

By applying Theorem 2 to BPτ2(R(s)|µ̃), we get the the following theorem via a straight-
forward computation.

Theorem 4 (Scaling-law of the double bootstrap probability). For the H and y = (0,λ0 −
h0) given in Theorem 1, the modified double bootstrap probability with µ̃ = (θ,−h(θ)) is
expressed asymptotically as

D̃BPτ2,σ2(H|y) ≃ Φ̄
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ2 − τ−1(τ2 + σ2)κ(θ)

]
, (31)

where κ(θ) is defined in (29).

When hi = 0, we have µ̂(H|y) = (0,−h0). By letting θ = 0 in (31), we obtain

DBPτ2,σ2(H|y) ≃ Φ̄
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ2

]
. (32)

When hi = O(n−1), we have µ̂(H|y) = (θ,−h(θ)) with some θ = O(n−1) for which κ(θ) ≃ 0.
Therefore, (32) holds for any h ∈ S, and (21) follows. This argument also confirms that the
four geometric quantities as well as βi defined at θ = 0 are interpreted as those defined at
µ̂(H|y), because γi(h, θ) ≃ γi for θ = O(n−1).

Comparing (31) with (32), we find that κ(θ) represents deviation of D̃BPτ2,σ2(H|y) from
DBPτ2,σ2(H|y) due to computational error of µ̂(H|y). For θ = O(1), the deviation is κ(θ) =
O(n−1). D̃BP1,1(H|y) = DBP1,1(H|y)+O(n−1) and thus DBP is degraded from third-order
accurate to second-order accurate under the computational error. However, the deviation
disappears in (31) when σ2 = −τ2. In particular, D̃BP1,−1(H|y) ≃ DBP1,−1(H|y) and thus
DAU remains fourth-order accurate even if there is computational error of θ = O(1).

H. SHIMODAIRA/multiscale-double bootstrap 13

Lemma 3. Let s = M(h,λ) for h ∈ S, λ ∈ S. If λ(u) is expressed as

λ(u) ≃ λ0 + λiui + λijuiuj

with λ0 = O(1), λi = O(n−1), λij = O(n−3/2), then we have s ∈ S with coefficients
s0 = h0−λ0 = O(1), si = hi−λi−2λ0hmi(hm−λm) = O(n−1), sij = hij−λij−2λ0hmihmj+
4λ2

0hmlhmihlj = O(n−1/2), sijk = hijk − 2λ0(hmihmjk + hmjhmik + hmkhmij) = O(n−1),
sijkl = hijkl = O(n−3/2). The four geometric quantities at (0,−s(0)) are γ1(s, 0) = sii ≃
γ1 −λii − 2λ0γ2 +4λ2

0γ3, γ2(s, 0) = sijsij ≃ γ2 − 4λ0γ3, γ3(s, 0) = sijsjkski ≃ γ3, γ4(s, 0) =
siijj ≃ γ4, where γi = γi(h, 0), i = 1, . . . , 4.

5. Asymptotic analysis of bootstrap methods

We are going to show the asymptotic expansions of PV and DBP, and then prove the
asymptotic accuracy of the bootstrap methods. The argument is based on the geometric
tools developed in Section 4 as well as another tool to be developed below.

5.1. Contour surfaces of bootstrap probability

We consider a surface on which the bootstrap probability remains constant. For H = R(h)
with h ∈ S, we consider a function s(u) of u ∈ Rq satisfying

BPσ2(H|(u,−s(u))) = 1 − α, u ∈ Rq,

meaning BPσ2(H|y) = 1 − α is constant for any y ∈ B(s). Then, B(s), as well as s itself,
will be called as the contour surface of the bootstrap probability of H with variance σ2 > 0
at level 1 − α. In particular, we choose α so that (0,λ0 − h0) ∈ B(s) for a specified λ0 ∈ R.
We denote this contour surface as

s = Lσ2(h,λ0).

Lemma 4. Let s = Lσ2(h,λ0) for h ∈ S, λ0 ∈ R, and σ2 > 0. Then, s is expressed as
s = M(h, λ) by specifying λ(u) ≃ λ0 + λiui + λijuiuj with λ0 = O(1),

λi = σ2(−3hmmi + 6λ0hmlhmli), λij = σ2(−6hmmij + 2hmmhlihlj + 4hmlhmihlj). (26)

We have s ∈ S with coefficients

s0 = h0 − λ0, si = hi − 2λ0hmhmi + σ2(3hmmi − 6λ0hmlhmli − 6λ0hmihmll),

sij = hij − 2λ0hmihmj + 4λ2
0hmlhmihlj + σ2(6hijmm − 2hmmhlihlj − 4hmlhmihlj),

sijk = hijk − 2λ0(hmihmjk + hmjhmik + hmkhmij), sijkl = hijkl.

(27)

The four geometric quantities of s at (0,−s(0)) are

γ1(s, 0) ≃ γ1 − 2λ0γ2 + 4λ2
0γ3 + σ2(6γ4 − 2γ1γ2 − 4γ3),

γ2(s, 0) ≃ γ2 − 4λ0γ3, γ3(s, 0) ≃ γ3, γ4(s, 0) ≃ γ4,
(28)

where γi = γi(h, 0), i = 1, . . . , 4.

We denote the λ(u) of (26) as λσ2(u) = λ0 − σ2κ(u) with

κ(u) = γ1(h, u) − γ1(h, 0) − λ0(γ2(h, u) − γ2(h, 0))

≃ (3hmmi − 6λ0hmlhmli)ui + (6hmmij − 2hmmhlihlj − 4hmlhmihlj)uiuj . (29)



まとめ

• ブートストラップ確率はベイズ事後確率
• 頻度論のp-値との差は，仮説境界の「平均曲
率」が原因

• ダブルブートストラップ法でも修正したときの
誤差は，「平均曲率の平均曲率」

• マルチスケールブートストラップ法で誤差解
消

• 検定以外にも使えるかも？ （境界までの距
離や境界の曲率を推定できる）
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Summary	and	other	issues
• DAU	=		“DBP	with	m=-n”	is	proposed	
• The	accuracy	of	BP	is	first	order	(k=1),	AU	is	third-order	(k=3),	DBP	is	third-order	

(k=3)
• DAU	is	fourth-order	accurate	(k=4)
• DAU	is	robust	to	the	projection	error	(surprisingly,	k=4)
• Geometry	of	surfaces	played	important	roles

• Shimodaira	(2008)	showed	another	theory	of	AU	using	unusual	asymptotic	theory	
of	“nearly	flat	surfaces”

• Shimodaira	(2004)	discussed	deviation	from	the	multivariate	normal	model,	and	
results	for	exponential	family	distributions	are	given	there	for	multistep-AU

• Future	topics	may	be	DAU	for	nearly	flat	surfaces,	or	for	exponential	family	
distributions
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