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Today’s route selection is limited

Shortest path algorithm
finds an optimal path

For traffic simulation

5
: :\?
o1
Prescriptive analytics for drivers Descriptive model of drivers

cf. sophisticated drivers select routes dynamically depending on latest conditions



Outline

* Limitations of traditional route selection

« Difficulties in selecting objective functions
« Time-consistent Markov decision processes

» Effectiveness of time-consistent Markov decision processes



Consider an example with three paths

Path Expected time
1. W—-C — mountain road — E 2h

2. W — C — popular highway — E | 2h

3. W-E 1.7h

mountain road; 1.5h

7:30am

0.5h

popular highway;
0.5h before 8am
2.5h after 8am

highway (1.7h)



No path is better than a dynamic strategy

Expected time with the dynamic strategy is
0.5h + 0.5x0.5h + 0.5 x 1.5h = 1.5h

after 8am (50%)

mountain road; 1.5h

7:30am

0.5h

popular highway;
0.5h before 8am
2.5h after 8am

before 8am (50%)\

highway (1.7h)



Expectation is obviously limited in representing
drivers’ preference under risk

« Two routes have same expected travel time I
» Some drivers prefer Route A :
» Others prefer Route B I
|
I

time




We study models for selecting dynamic strategies

» Interpretation of the dynamic strategy with a model of path selection is
convoluted

To select the best

dynamic strategy,

the driver must be .
& “unlucky” to select ?25

a suboptimal path

>

« Want to select optimal dynamic strategies with respect to a broad class of
objective functions

— personalized recommendation of dynamic strategies
— realistic traffic simulation
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Expected exponential utility is the standard objective
of risk-sensitive Markov decision processes

exp()
\ A
r<o' ¥ >0
P .
min. Elexp(}’X)] < min. ERM JX]= llnE[exp(yX )]
/4

(works only for ¥ >0) « ¥ >0 = risk-averse
» ¥ <0 = risk-seeking

Minimization of expected exponential utility
is essentially equivalent to minimization of

entropic risk measure
9



Which route would you take?

Route Q
90%
Route P
10% -
10 20 80 -

Travel time (min.)

Probability | 0.9 0.1
(normal) | (busy)
Route P 10 min. Unif[20,80]
min.
Route Q Unif[0,20] | 50 min.
min.

10%

20 50

Travel time (min.)

10




Route P is never optimal with respect to any entropic
risk measure

®¢ RouteP
« Some drivers choose Route P W?Z/
» Others choose Route Q ~\
« They are all rational (e.g., E[P] = E[Q]) o
[ 3
Route Q
S ERML 17
700 ot
- ERM_ [T, ]
60k T Q
- 50 ]
=
o 40 -ERMy[TQ]SERMy[TP],Vy
30 ]
20
1 —
Yo —05 00 05 1.0 1




Expected utility is the standard objective function for
decision making under risk

Choose a dynamic strategy such that
Elu(T)]

IS minimized
— T: travel time cf. Expected utility theory
— u: utility function (von Neumann & Morgenstern 1944)

Entropic risk measure is a particular expected utility
— u(x) = exp( 7 x)

12



For every path, does there exist a utility such that the

path is optimal with respect to the expected utility?

time | probability
T, 20 1.0
10 0.3
Ty 20 0.5
30 0.2
10 0.6
W 30 | 04

13



Expected utility is limited in representing driver's

preference

For any utility function, u :

— We can have only

E[u(7, )] SE[u(T,, )] E[u(T,,)]

—_ e -

or

———

BT, )] <E[u(T,, )] < Blu(T, )]

-_ e =

Never choose M with expected utility

time | probability
T, 20 1.0
10 0.3
Ty 20 0.5
30 0.2
10 0.6
W 30 | 04

E[u(T,,)]=0.5E[u(T,)]+0.5E[u(T,,)]

14



Conditional tail expectation is a popular risk measure
In finance

« Choose a dynamic strategy such that

crE (712 (=BT IT> 0,1+ (5~ )0,

|-«

IS minimized
— T: travel time
Q. =min{t|Pr(T <1t)>a}

L=Pr(T <V ) A CITE0.75[T] =15

e When T is continuous,

CTE,_[T]=E[T|T>0Q,]

|
L 25%

Qg o5=1 3

15



Choose either the road to B or that to B’ when we

leave A to reach C

-l

Normal (90%): Busy (10%):
60 min. 120 min.
10 min.
30 min.
10 min. @
Normal (90%): Busy (10%):

50 min. w.p. 99% 100 min. w.p. 99%
100 min. w.p. 1% 200 min. w.p. 1%

B-C is normal iff B’-C is normal

16



A-B’-C has smaller risk than A-B-C with respect to

Start at 6am 10 min.

10 min.

CTEq g9

A-B-C

130 min.

A-B’-C

210x0.001+110x0.009

0.01
= 120 min.

CTEO.99
Normal (90%): Busy (10%):
60 min. 120 min.

B

O min. @

Normal (90%): Busy (10%):
50 min. w.p. 99% 100 min. w.p. 99%
100 min. w.p. 1% 200 min. w.p. 1%

B-C is normal iff B’-C is normal

17



If traffic conditions are normal at B’, B'-B-C appears to
have smaller risk than B’-C with respect to CTE, o4

Normal:
60 min.

Start at 6am 10 min. e

“@i 0 min.

10 min. .-~
Vd

v Normal:
CTE, 4 50 min. w.p. 99%
. - o)
ABC 110 100 min. w.p. 1%
A-B’-B-C {100

B-C is normal iff B’-C is normal

18



If traffic conditions are busy at B’, B'-B-C appears to
have smaller risk than B’-C with respect to CTE, o4

Busy:
120 min
Start at 6am 10 min. e
|| , @i 30 min.
R 10 min. ,// @
L4 Busy:
CTE, 4 100 min. w.p. 99%
' in. w.p. 1¢
ABC 210 200 min. w.p. 1%
A-B’-B-C (160

B-C is normal iff B’-C is normal

19



Following “optimal” directions, we end up in taking a

Start at 6am

poor route surely

-l

Normal (90%): Busy (10%):
60 min. 120 min.
10 min. G
30 min.
10 min.
Normal (90%): Busy (10%):

50 min. w.p. 99% 100 min. w.p. 99%
100 min. w.p. 1% 200 min. w.p. 1%

B-C is normal iff B’-C is normal

20
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We define a time-consistent MDP as the MDP whose
objective is to minimize an iterated risk measure

X: travel time with Route A-B’-C

Will evaluate X
R with CTE 4[X]

S|
& (0.01
Want to evaluate
riskiness of X C-I;EQI.85[X]
| —

~
-

[ Y (0.1) Busy at B’
TE, J[CTE, 4[XI] Will evaluate X
=88.75 _LLwith CTE, [X]
V3

(Ev

valuate riskiness of X by
evaluating riskiness of CTE, 4[X]
CTE, [X] to be evaluated =62.5
tomorrow (known as Normal at B’

@ated CTE) -
A

(0.01)

B’ C
= 22



Formally, an iterated risk measure is a dynamic risk
measure having a recursive structure

(G2, F, P): Filtered probability space
- RS FCS.. SFR=F
Y: F-measurable random variable

We say that 0 is an iterated risk measure if
- pylY]=Y

- plY1=nlp,ulY]]
- r,: conditional risk measure mapping £, ,,-measurable random
variable to £ -measurable random variable

23



Recursive definition implies dynamic programming
finds the optimal policy for time-consistent MDP

For each action a, calculate ra[V]
v =min, r[V] {/ ———————— Y — >
a* = argmin, r[V,] 0.0 @} ____________________ .

r: risk measure |
V,: (random) value at next state given a

— ——e—— ———

s

annt
il
Py
.
.
.
o
o

v=14,a*= “tan right”

| | ‘
| |
| | 00“‘..
| _ | ..... >
| P, =0.04 |
. . | v |
Value of iterated risk measure | |

r[r[... r[X]...]] N
given that optimal actions are
taken from s,

-
o
.
.
.
.
----
as®
........
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More precisely, risk measures must be monotonic

Properties of a risk measure, r

Optimal policy for MDPs with respect to the
corresponding iterated risk measure

Monotonic: Can be found with dynamic programming
Need augmented states
X<Y X)<r(Y
= r(X)=r(¥) state .= (state, accumulated cost)
Monotonic & No need for augmented states
Translation invariant: Cannot discount future cost
rHX+co)<r(X)+c

Monotonic & Translation invariant &
Positive homogeneite:

r(aX)<ar(X)

No need for augmented states
Can discount future cost

25




Dynamic programming with monotonic and
translation-invariant iterated risk measures

Markov decision process
- S, State at time n (random variable, F -measurable)
- A, Action at time n (random variable , F -measurable)
- C,: Cost between time n and time n+1, dependingon S, A, S, . (random
variable, F_,,-measurable)
- S, State space at time n (set)
- A(s): Action space from state s (set)

TT: Set of candidate policies (set)

N-1 N-1
Find 7 that minimizes pn{ZCf 1S = S,7Z':| or equivalently P{ZC@ 1S = S,7Z':|
=0 (=n
for every s€S,, n=0,..,N-1 — v
. N-1 by translation-invariance
v, (s)=minp,| > C,|S, =57 0 (X+c)=p (X)+c
we I=n
Vy(s)=0 VseS,

Vn*(S) = min r, [Cn —I—Vn*ﬂ(SnH)Sn = S,An = a] Vs Sn,n — (),”.’N_l

acA(s)

26
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« Difficulties in selecting objective functions

« Time-consistent Markov decision processes

« Effectiveness of time-consistent Markov decision processes
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lterated risk measures overcome limitations of
expected utility and other risk measures
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Conditional tail expectation

Other risk measures

Limited in
representing
preferences

Inconsistent decisions
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Consistent decisions



A driver takes only extreme routes if his decisions
follow expected utility

For any utility function, Route 0

(equivalent to doing nothing) or Low risk
Route 10 (riskiest) is most Route 0 Low return
preferable ' 4

v
Route 10 High risk
High return
Route 0 1 i 9 10
Netgain [0| -1 | O | +1 | .. | -1 0 +1 || -1 0] +1]-1]+1
Probability {1]0.04{0.9|0.06 | ... |0.04i|1-0.1i{0.06i| ... {0.36|0.1|/0.56|0.4| 0.6




E[X X =0]

lterated risk measures can represent the preference
that cannot be represented with any expected utility

X = capital after 8 travels
| (no travel after ruined)

4.5
initial capital = 2

4.0r -
3.5k
3.0 P o

« —>3

' Ruin probability cannot
2.5[ | be in (0,0.16) for any — probabilistic |1

« expected utility « » expected utility
2.0 » iterated risk measure

0.00 0.05 0.10 0.15 0.20 0.25 0.30 X

PriX =0)
plX]=rlp  [X]] st

r[Y1=E[Y]-20Pr(Y <0)—a)[{Pr(Y <0) = o}

o :



Takeaways

» “Shortest path” is limited S
- Route selection follows a dynamic strategy

« Expected utility can only represent limited preferences for
- personalized recommendation of dynamic strategies
- realistic traffic simulation

 Traditional risk measures lead to inconsistent decisions

- Inconsistent decision maker can surely lose infinite capital against rational
decision maker

* Time-consistent MDP is defined with iterated risk measures
- can represent broad preferences with consistent decisions
- optimal policy found with dynamic programming

Standard MDP
Standard risk-sensitive MDP

Non-standard MDP

Time-consistent MDP

e =

Inconsistent decisions Consistent decisions
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