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ABSTRACT
In this paper we present the idea of mining RNA families
with structure histograms. A structure histogram is a his-
togram employing structures of some type as attributes. As
structures of RNA sequences we adopt their secondary struc-
tures which are not pseudo-knots. Unfortunately to obtain
the histogram for an RNA sequence of its length l needs
more than the (l/2)-th Catalan number time, but show that
the value for every structure in the histogram is calculated
in the time O(l3). We also give some experimental results
by applying structure histograms obtained from real RNA
data to some mining methods and demonstrated the cases
that structure histograms works effectively.

Keywords
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1. INTRODUCTION
In this paper, we present an idea of mining RNA sequences
with structure histograms. RNA is a kind of nucleic acid
similar to DNA. In analyzing RNA molecules their struc-
tures are important because they are considered to affect
the functions of the molecules. An RNA molecule forms a
wind three-dimensional structure and the structure is based
on its secondary structure, which is formed by the role of
Watson-Crick complementary base pairs in it. In this paper
we pay our attention to the secondary structures, and use
them for mining of RNA data.

The secondary structure of a RNA molecule is obtained by
representing it as a sequence, which we call an RNA se-
quence, consisting of four symbols A, U, C, and G, where U
is used instead of T for DNA sequences. Pairs of A-U and
C-G in the RNA sequence are called Watson-Crick comple-
mentary base pairs and some of them are used in forming
the secondary structure. RNA sequences are stored in some
database, e.g, Rfam database, and published through the
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Figure 1: An example of secondary structure of an
RNA

Internet. Note that not all base pairs are used for secondary
structure. This means that there can be theoretical sec-
ondary structures in an RNA sequence, and our idea is to
use such theoretical ones as attributes in data mining. In
this paper the word“secondary structure”includes such the-
oretical structures. Because secondary structures are formed
with the base pairs, some of them can be formalized with a
context free grammar and we use only such type of struc-
tures. A type of structures which cannot be represented
with the grammar is “pseudo-knot ’’.

Our idea is to make histogram of structures for every RNA
sequences. We intend to measure the strength of each struc-
ture in a given RNA sequences, by counting how many times
the structure can occur as a theoretical structure in the se-
quences. In this paper we give a method of the number of
occurrences of structures. Because the total time complex-
ity of counting occurrences of all structures would be rep-
resented with the Catalan numbers, we propose an efficient
of the method for each structure. We also give some exper-
imental results by applying structure histograms obtained
from real RNA data to some mining methods.

This paper is organized as follows: In Section 2 we give our
definitions of structures and their instances. In Section 3 we
give the method of calculating the numbers of occurrences
of every structure. In Section 4 we give some experimental
results by using structure histograms, and we conclude in
the last section.

2. STRUCTURES AND INSTANCES
We treat every RNA as a non-empty sequence of an alpha-
bet Σ = {A, U, C, G}, that is, an element of Σ+ and call it
an RNA-sequence. The length n of an RNA-sequence σ =
a1a2 · · · an is denoted by n =| σ |. A number i (1 ≤ i ≤ n)



is called an occurrence if it denotes the index of the symbol
xi, and σ[i] denotes the symbol ai, and σ[i : j] denotes the
continuous subsequence σ = aiai+1 · · · aj . A pair (i, j) of
occurrences of σ such that i < j is called a candidate pair ,
or c-pair for short, if (σ[i], σ[j]) is either of (A, U), (U, A),
(C, G), and (G, C). A c-pair represents the indices of σ the
elements at which may construct a Watson-Crick comple-
mentary base pair.

For two c-pairs p = (ai1 , aj1) and q = (ai2 , aj2) in σ, we
define two binary relations < and ≺: q < p if i2 < j2 < i1 <
j1, and q ≺ p if i1 < i2 < j2 < j1.

We define structures with a context free grammar G on an
alphabet X = {x, y} with a non-terminal S and rules:

R1 : S → xy,

R2 : S → xSy,

R3 : S → SS

We call every word in L(G) a structure. It is well-known that
the context free language L(G) is, by replacing x with ( and
y with ), the set of the sequences of parentheses correctly
matched, and the size of the set

Cn = {w ∈ L(G) | |w| = 2n}

is called the n-th Catalan number and given as

Cn =

„

2n
n

«

1

n + 1
. (1)

In order to define matching of a structure S and a sequence
σ, we distinguish x’s and y’s in S in the following manner:
We give a suffix k to each x if the x is the k-th occurrence in
S with scanning it from left to right. We also give a suffix
k to the y which matches xk. We regard every xk and yk as
a variable, and call the pair a variable pair . For example, a
structure S = xxyyxy is regarded as a sequence of variables
x1x2y2y1x3y3.

A substitution for a structure S = z1z2 · · · z2n is a mapping
θ : {x1, . . . , xn, y1, . . . , yn} −→ Σ such that (θ(xk), θ(yk)) is
a c-pair for every k = 1, 2, . . . , n. A sequence τ in Σ+ is an
instance of S if τ = Sθ for some substitution θ. The struc-
ture S appears in a sequence σ = a1a2 · · · an if σ contains
an instance of S as its subsequence, that is, there are indices
i1 < i2 < · · · < im and a substitution such that

ai1ai2 · · · aim = Sθ

for some substitution θ. The indices i1 and im are respec-
tively called the left-most position and the right-most of the
occurrence of S in σ.

A continuous subsequence τ of a sequence of σ is a token if
no c-pair (a1, a2) locates outside of τ , like a1 · · · τ · · · a2. A
continuous subsequence T of a structure S is a token if no
variable pair xj and yj locates outside of T . In the sequence
illustrated in Fig. 2, the sets {(A, U), (G, C)} and {(G, C)}
are tokens. The set of tokens in σ (S) is denoted by T (σ)
(resp. T (S)).

3. CONSTRUCTION OF HISTOGRAMS
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Figure 2: An example of a structure and its in-
stances
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Figure 3: Examples of tokens

For a given sequence σ and a structure S, we let N(σ, S) be
the number of occurrences of S in σ.

In order to calculate N(σ, S) for all S, we generate S re-
cursively according to the rules in G. For the convenience
of explanation, we introduce a parameter p for representing
|S|/2, the number of pairs in S, and another i for repre-
senting |T (S)|/2. We also define two operations ρ and ϕ for
structures S and T as

ρ(S) = xSy,
ϕ(S, T ) = ST.

A brief view of the calculation is as follows: In the calcula-
tion we use a set Sp consisting of pairs of the form (S, N(σ, S)
such that |S|/2 = p. The calculation starts with putting
S1 = {(xy, N(σ, xy)}, and extend Sp by generating longer
structures.

1. At first consider the case p = 1. The only structure
satisfying |S|/2 = p = 1 is a variable pair S = xy
regarded as x1y1, we generate S1 for by enumerating
all c-pair as its instances.

2. Next consider the cases p > 1. Generate instances of
all structures S such that |S|/2 = p

• For the case i = 1, update Sp by counting N(σ, S)
for every structure S with |T (S)| = i = 1, which
are generated by applying ρ to structures S′ with
|S′|/2 = p − 1.

• For the case i = 1, update Sp by counting N(σ, S)
for every structure S with |T (S)| = i > 1, which
are generated by applying ϕ to structures S1 and
S2 with |S1|/2 + |S2|/2 = p.
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Figure 5: Generating structures S with |T (S)| > 1
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The generation of structures with ρ and ϕ is illustrated in
Fig. 4 and Fig. 5, respectively.

We explain the calculation method more precisely, by chang-
ing the form of the tuples corrected in Sp. In the calculation
we generate tuples of the form

(l, r, N(σ[l : r], S)

for every structure S. For example, for the structure and
the sequence illustrated in Fig. 2, tuples

(1, 12, 2), (2, 12, 1), (2, 11, 1)

are generated (Fig. 2).

Let us assume that a sequence σ such that |σ| = n is given.

At first we set p = 1. Since the only structure that we have
to treat is S = xy, N(σ, xy) means the number of c-pairs in
σ (Algorithm 2). The algorithm is modified so that we can
take the least distance of c-pairs into account.

Now we set p = 2. The number of structures in this case
is obtained by choosing two structures and instances of the
case p = 1. The methods varies according to the value of
i. At first we set i = 1, and apply the ρ operator to every
structure S generated in the case p = 1. We have only one
structure xSy (Fig.4(a)). Next we set i = 2, we apply the
operator ϕ. Choose a structure S of the case p = 1, we put
another structure T with p = 1 and i = 1(Fig.5(a)).

In the case p = 3 and i = 1, we apply the operator ρ in the
same way as in the case p = 2 and i = 1 every structure with

Algorithm 1:
StructureHistogram(a sequence σ, a distance d)

1: S1 = CountPairs(σ)
2: for p = 2 to (|σ| − d)/2 do
3: Tp1 = ComposeInNest(p)
4: Sp = {Sp1}
5: for all i such that 2 ≤ i ≤ p do
6: Tpi = ComposeInParallel(p, i)
7: add Tpi to Sp

8: end for
9: if Sp = φ then

10: break
11: end if
12: end for

Algorithm 2: CountPairs(a sequence σ, the least distance d)

1: for left = 1 to |σ| − 2 do
2: for right = |σ| to left + d do
3: if isPair(σ,left, right) then
4: add (left, right, 1) to Oxy

5: end if
6: end for
7: end for
8: T11 = {(xy, Oxy)}
9: S1 = {T11}

10: return S1

p = 2(Fig.4(b)). In the case p = 3 and i ≥ 2, we first apply
the ϕ operator at first to every structure S with p = 3−1 = 2
and and every structure T with p = 1 and i = 1. Then we
apply ϕ to S with p = 1 and T with p = 3−1 = 2 and i = 1
(Fig.5(b)). Note that we can choose the structure T with
i = 1 in the last case. In Fig. 6 we show the structures of the
cases p = 1, 2, 3 and some examples of numbers of instances.

The method is illustrated in Algorithm 1-4. The algorithm
uses three sets OS , Tpi Sp. The set OS is used to store
tuples (l, r, N(σ[l : r], S) for a structure S. If |S|/2 = p and
|T (S)| = i, then OS is stored in Tpi. For every p Tpi is stored
in Sp. It is important how to implement the OS , Tpi Sp in
making the algorithms efficient, and we discuss the ways in
the next section.

4. ANALYSIS OF THE ALGORITHM
The number of structures consisting of n pairs, that is the
n-th Catalan number Cn, is represented as follows:

Cn = an + bn (2)

an = (an−1 + bn−1)a1 (3)

bn = Σn−1
k=1 (an−k + bn−k)ak (4)

a1 = 1, b1 = 0 (5)

where an is the number of structures consisting of only one
token, and b is that containing more than one tokens. The
equations (3) and (4) respectively correspond to Algorithm
3 and 4 This means that the order of the total calculation
is difficult to decrease, and we make our effort to make the
calculation for each structure S more efficient,

At first estimate the complexity of enumerating all instances



Algorithm 3: ComposeInNest(int p)

1: for all S appearning in Sp

2: OxSy = {(t.left, t.right, s.count · t.count) |
s ∈ OS , t ∈ Oxy, s ≺ t}
(procedure ρ)

3: if OxSy 6= ∅ then
4: add (xSy,OxSy) to Tp1

5: add Tp1 to Sp

6: return Sp

Algorithm 4: ComposeInParallel(int p, int i)

1: for k = i − 1 to 1 do
2: for all S appearing in Tk(i−1), T appearing in T(p−k)i

3: OST = {(s.left, t.right, s.count · t.count) |
s ∈ Tk(i−1), t ∈ T(p−k)i, s < t }

4: if OST 6= ∅ then
5: add (ST,OST ) to Tpi

6: return Tpi

of a fixed structure by using a näıve method. Assume that
|σ| = l for a given sequence. In the case of p = 1, this means
that all pairs in σ and this takes O(l2) steps. For p > 1
every structure is generated by ρ or φ. Since structure is
stored in the form of the tuple 2 in OS , it takes O(l2) steps
for a fixed argument of ρ and φ．Therefore enumerating its
instances takes O(l2) ∗ O(l2) = O(l4) steps.

In order to refine these computation, we take our attention
how to keep the tuples in OS . At first we change OS as a
list LS of trees of its depth 1, where every tree represents
a subset consisting of tuples which have the same left-most
position. The root represents the same left-most position,
and leaves are sorted in the ascending order. The trees are
also listed in LS in the ascending order of their roots (Fig. 7).

This data structure for storing them should make the com-
parison of two occurrences of structures. Consider the case
when we compare S and S′. The left-most position of an
instance p is denoted by p.left and its right-most position
is p.right. With every q ∈ S, we compare every p ∈ S′. At
first we fix q.left and q.right, and also p.left. We check
p.right in the ascending order. When all p.right is check,
we increment p.left, and check p.right. After all p.left is
checked, we increment q.right. We present this method in
Algorithm 5 and 6.

Now we improve the time complexity of comparison. The
key idea of the improvement is to make another list MS

for OS and use both of LS and MS(Fig. 8)．The list MS

also consisting of trees but every tree represents the set of
tuples of the same the right-most position. The construction
of every tree in MS and the list MS is in the symmetric
manner of the construction of LS .

Moreover, each leaf L of a tree in LS , we give an additional
attribute which is the sum of the number of instances above
L in the tree.

We change the method as illustrated in Fig. 9．When we
construct a new structure S with the φ operator from S1
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Figure 7: The method of storing structure and its
instances

Algorithm 5: CompareInNest(Candidate Out,
Candidate In, int p, int i, int j)

1: for o.left in {Out.lefts} do
2: for o.right in {Out.rights} do
3: for i.left in {In.lefts} do
4: if o.left < i.left && i.left < o.right then
5: for r.right in {R.rights} do
6: if i.right < o.right then
7: hash = {(o.left, o.right, i.count)}
8: Cp1j = Cp1j ∪ hash
9: return Cp1j

and S2, we use LS1 and MS1 . At first fix the left-most
position of S1 (Fig. 9 (a) ) and the right-most position of
S2(Fig. 9 (b) ). Then search the left-most position of S2

in the descending order and simultaneously the right-most
position of S1 (Fig. 9 (c)(c’) ). In the example illustrated
in Fig. 9, we assume that the left-most position of S1S2 is
1 and the right-most position of S1S2 is 15. Then all the
combination of the right-most position of S1 and the left-
most position of S2 are (9 , 10) , (6 , 7) , (4 , 5). The total
number of instances of S is

15 = 7 ∗ 1 + 3 ∗ 2 + 1 ∗ 2

This method takes O(2l) for every end-pair of S，the total
time is O(l3)．For the operator ρ we can improve in a similar
manner.

Algorithm 7 and 8 includes the improvement.

5. DATA MINING OF RNA FAMILIES
Here we demonstrate typical data mining tasks, classifica-
tion and clustering of real RNA families, by using the ob-
tained candidates of RNA secondary structures, and analyze
effectivity of our results. In particular, we focus on the min-
imum length of distance d = |j − i| for a pair of i-th base
and j-th base. We show that dimension reduction is realized
by increasing d experimentally.

5.1 Materials and Methods
All experiments were performed on R version 2.12.1 [10]. We
used Mac OS X version 10.6.5 with 2.93 GHz Intel Xeon and
32 GB memory.



Algorithm 6: CompareInParallel(Candidate L,
Candidate R, int p, int i, int j)

1: for l.left in {L.lefts} do
2: for l.right in {L.rights} do
3: for r.left in {R.lefts} do
4: if l.right < r.left then
5: for r.right in {R.rights} do
6: hash = {(l.left, r.right,

l.rightcount · r.left.count)}
7: Cpij = Cpij ∪ hash
8: return Cpij
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Figure 8: New list for improvement

Every data set was constructed from results obtained from
our algorithm (Figure 10). Each row corresponds to each
RNA sequence, and each attribute means the number of
candidates of secondary structures for the corresponding
RNA sequence. RNA families IRE, Histone3, CRISPR-
DR2, CRISPR-DR3, and CRISPR-DR4 were collected as
benchmarks from Rfam1 [5] (Table 1), since the number of
sequences of IRE and Histone3 are largest in which the aver-
age length of RNA sequences is relatively small (under 40).
Thus we can make data sets in reasonable time. The average
length of sequences in CRISPR-DR2 and CRISPR-DR3 are
almost same, hence we can test classification without the
effect of the difference of length of each sequence.

We performed classification of RNA families by SVM with
the RBF kernel using our constructed data sets. The R
package e1071 [9] (the R interface to libsvm [1]) was used,
and accuracy was obtained by 10 cross-validation. First we
classified two families of IRE and Histone3, second CRISPR-
DR2 and CRISPR-DR3, and third three families IRE, His-
tone3, and CRISPR-DR4.

For clustering of RNA families, we performed K-means and
DBSCAN [4], since K-means is the standard clustering algo-
rithm and DBSCAN is the typical method to find arbitrary
shaped clusters. The R packages fpc was used for DBSCAN.
We used two RNA families IRE and Histone3. To evaluate
results of clustering, we measured the adjusted Rand index
(takes values in [−1, 1], to be maximized) [7], which is the
typical external criterion, calculated by the R package clues

1The newest version 10.0 is available at
http://rfam.sanger.ac.uk/
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Figure 9: Comparing structures

Algorithm 7: CompareInNest2(Candidate Out,
Candidate In, int p, int i, int j)

1: for o.left in {Out.lefts} do
2: {pi.left} = 0
3: for o.right in {Out.rights} do
4: for i.left in {In.lefts} do
5: if o.left < i.left then
6: if i.left < o.right then
7: i.right = max(pi.left, min(In.rights))
8: while next(i.right) < o.right do
9: i.right = next(i.right)

10: if pi.left 6= min(In.rights) then
11: hash = {(o.left, o.right, i.right.count)}
12: Cp1j = Cp1j ∪ hash
13: pi.left = i.right
14: {sum right counts by every left index}
15: return Cp1j

[2]. We tuned parameters for DBSCAN and report the best
results.

5.2 Results and Discussion
We show results of classification in Table 2. We can see
that in most of cases, accuracy become higher and higher
when d increases, and the number of attributes decrease
monotonically. This means that dimension reduction can be
performed effectively with the parameter d and, moreover,
our results of RNA secondary structure candidates can be
used effectively for learning classification rules of RNA fami-
lies. Average length of RNA sequences in CRISPR-DR2 and
that in CRISPR-DR3 are almost same, thus we can classify
two families with high accuracy even if their average length
are similar. Our results are competitive compared to results
reported in literatures [3, 8, 13, 14]. However, some experi-
mental settings are different, thereby more experiments are
needed.

Table 3 shows results of clustering. All adjusted Rand in-
dexes are relatively high, thus this means that our data sets
reflect some features of RNA families. Furthermore, the
adjusted Rand indexes become higher and higher when d
increases from 1 to 5 in K-means and 1 to 4 in DBSCAN,
hence dimension reduction can be performed effectively.

6. CONCLUSION



Algorithm 8: CompareInParallel2(Candidate L,
Candidate R, int p, int i, int j)

1: for l.left in {L.lefts} do
2: for r.right in {R.rights} do
3: if l.left < r.right then
4: crrtIdx = max({R.lefts})
5: for r.left in {R.lefts} by desc do
6: for l.right in {L.rights}

(except more than crrtIdx) by desc do
7: if l.right < r.left then
8: hash = {(l.left, r.right,

l.right.count · r.left.count)}
9: Cpij = Cpij ∪ hash

10: crrtIdx = l.right
11: break
12: {sum right count by every left index}
13: return Cpij

Table 1: Benchmark RNA families used for classifi-
cation and clustering.

Family name # RNA sequences Average length

IRE 247 29.86
Histone3 381 30
CRISPR-DR2 64 29.86
CRISPR-DR3 41 30
CRISPR-DR4 61 28

We have presented the method of obtaining structure his-
tograms for RNA sequences. The total amount of the time
complexity of obtaining the histogram for an RNA sequence
of its length 2n is of the n-th Catalan number, but, by de-
signing new data-structures of keeping instances, we show
that the value for every structure in the histogram is cal-
culated in the time O(l3). We also give some experimental
results by applying structure histograms obtained from real
RNA data to some mining methods and demonstrated the
cases that structure histograms work effectively. For ap-
plying structure histograms to more practical problems, we
have to consider about the dimension reduction more seri-
ously and this is one of our future work.

Enormous RNA sequences are accumulated in previous re-
searches, and many methods have been proposed for pre-
dicting RNA secondary structures. However, because of the
large size of the RNA data, predicting secondary structures
does not catch up analyzing RNA sequences. We expect
that our method could contribute semi-automatic prediction
of secondary structures and predicting RNA functions.
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K. Sjölander, R. C. Underwood, and D. Haussler.
Stochastic context-free grammers for tRNA modeling.
Nucleic Acids Research, 22(23):5112, 1994.

[12] Y. Tabei, K. Tsuda, T. Kin, and K. Asai. SCARNA:
fast and accurate structural alignment of RNA
sequences by matching fixed-length stem fragments.
Bioinformatics, 22(14):1723, 2006.

[13] J. P. Vert. Classification of biological sequences with
kernel methods. In Y. Sakakibara, S. Kobayashi,
K. Sato, T. Nishino, and E. Tomita, editors,
Grammatical Inference: Algorithms and Applications,
volume 4201 of Lecture Notes in Computer Science,
pages 7–18. Springer, 2006.

[14] J. T. Wang and X. Wu. Kernel design for RNA
classification using support vector machines.
International Journal of Data Mining and
Bioinformatics, 1(1):57 – 76, 2006.


