
Mining RNA Families with Structure Histograms

Yudai Kawai
Grad. Sch. of Informatics

Kyoto University
Kyoto, 606-8501, Japan
kawai@iip.ist.i.kyoto-

u.ac.jp

Mahito Sugiyama
Grad. Sch. of Informatics

Kyoto University
Kyoto, 606-8501, Japan
JSPS Research Fellow

mahito@iip.ist.i.kyoto-
u.ac.jp

Akihiro Yamamoto
Grad. Sch. of Informatics

Kyoto University
Kyoto, 606-8501, Japan

akihiro@i.kyoto-u.ac.jp

ABSTRACT
In this paper we present the idea of mining RNA families
with structure histograms. A structure histogram is a his-
togram employing structures of some type as attributes. As
structures of RNA sequences we adopt their secondary struc-
tures which are not pseudo-knots. Unfortunately to obtain
the histogram for an RNA sequence of its length l needs
more than the (l/2)-th Catalan number time, but show that
the value for every structure in the histogram is calculated
in the time O(l3). We also give some experimental results
by applying structure histograms obtained from real RNA
data to some mining methods and demonstrated the cases
that structure histograms works effectively.

Keywords
RNA sequences, RNA families, Secondary structure, Data
mining

1. INTRODUCTION
In this paper, we present an idea of mining RNA sequences
with structure histograms. RNA is a kind of nucleic acid
similar to DNA. In analyzing RNA molecules their struc-
tures are important because they are considered to affect
the functions of the molecules. An RNA molecule forms a
wind three-dimensional structure and the structure is based
on its secondary structure, which is formed by the role of
Watson-Crick complementary base pairs in it. In this paper
we pay our attention to the secondary structures, and use
them for mining of RNA data.

The secondary structure of a RNA molecule is obtained by
representing it as a sequence, which we call an RNA se-
quence, consisting of four symbols A, U, C, and G, where U
is used instead of T for DNA sequences. Pairs of A-U and
C-G in the RNA sequence are called Watson-Crick comple-
mentary base pairs and some of them are used in forming
the secondary structure. RNA sequences are stored in some
database, e.g, Rfam database, and published through the

The 5th International Workshop on Data-Mining and Statistical Science
(DMSS2011) Osaka, Japan, March 2011

C A G C A C U U G A C U
C

RNA sequence

U
A

G

RNA secondary structure

5' 3'

C A

C

U
U

G

A

C
stem

loop

branch point

Figure 1: An example of secondary structure of an
RNA

Internet. Note that not all base pairs are used for secondary
structure. This means that there can be theoretical sec-
ondary structures in an RNA sequence, and our idea is to
use such theoretical ones as attributes in data mining. In
this paper the word“secondary structure”includes such the-
oretical structures. Because secondary structures are formed
with the base pairs, some of them can be formalized with a
context free grammar and we use only such type of struc-
tures. A type of structures which cannot be represented
with the grammar is “pseudo-knot ’’.

Our idea is to make histogram of structures for every RNA
sequences. We intend to measure the strength of each struc-
ture in a given RNA sequences, by counting how many times
the structure can occur as a theoretical structure in the se-
quences. In this paper we give a method of the number of
occurrences of structures. Because the total time complex-
ity of counting occurrences of all structures would be rep-
resented with the Catalan numbers, we propose an efficient
of the method for each structure. We also give some exper-
imental results by applying structure histograms obtained
from real RNA data to some mining methods.

This paper is organized as follows: In Section 2 we give our
definitions of structures and their instances. In Section 3 we
give the method of calculating the numbers of occurrences
of every structure. In Section 4 we give some experimental
results by using structure histograms, and we conclude in
the last section.

2. STRUCTURES AND INSTANCES
We treat every RNA as a non-empty sequence of an alpha-
bet Σ = {A, U, C, G}, that is, an element of Σ+ and call it
an RNA-sequence. The length n of an RNA-sequence σ =
a1a2 · · · an is denoted by n =| σ |. A number i (1 ≤ i ≤ n)

is called an occurrence if it denotes the index of the symbol
xi, and σ[i] denotes the symbol ai, and σ[i : j] denotes the
continuous subsequence σ = aiai+1 · · · aj . A pair (i, j) of
occurrences of σ such that i < j is called a candidate pair ,
or c-pair for short, if (σ[i], σ[j]) is either of (A, U), (U, A),
(C, G), and (G, C). A c-pair represents the indices of σ the
elements at which may construct a Watson-Crick comple-
mentary base pair.

For two c-pairs p = (ai1 , aj1) and q = (ai2 , aj2) in σ, we
define two binary relations < and ≺: q < p if i2 < j2 < i1 <
j1, and q ≺ p if i1 < i2 < j2 < j1.

We define structures with a context free grammar G on an
alphabet X = {x, y} with a non-terminal S and rules:

R1 : S → xy,

R2 : S → xSy,

R3 : S → SS

We call every word in L(G) a structure. It is well-known that
the context free language L(G) is, by replacing x with (and
y with), the set of the sequences of parentheses correctly
matched, and the size of the set

Cn = {w ∈ L(G) | |w| = 2n}

is called the n-th Catalan number and given as

Cn =

„

2n
n

«

1

n + 1
. (1)

In order to define matching of a structure S and a sequence
σ, we distinguish x’s and y’s in S in the following manner:
We give a suffix k to each x if the x is the k-th occurrence in
S with scanning it from left to right. We also give a suffix
k to the y which matches xk. We regard every xk and yk as
a variable, and call the pair a variable pair . For example, a
structure S = xxyyxy is regarded as a sequence of variables
x1x2y2y1x3y3.

A substitution for a structure S = z1z2 · · · z2n is a mapping
θ : {x1, . . . , xn, y1, . . . , yn} −→ Σ such that (θ(xk), θ(yk)) is
a c-pair for every k = 1, 2, . . . , n. A sequence τ in Σ+ is an
instance of S if τ = Sθ for some substitution θ. The struc-
ture S appears in a sequence σ = a1a2 · · · an if σ contains
an instance of S as its subsequence, that is, there are indices
i1 < i2 < · · · < im and a substitution such that

ai1ai2 · · · aim = Sθ

for some substitution θ. The indices i1 and im are respec-
tively called the left-most position and the right-most of the
occurrence of S in σ.

A continuous subsequence τ of a sequence of σ is a token if
no c-pair (a1, a2) locates outside of τ , like a1 · · · τ · · · a2. A
continuous subsequence T of a structure S is a token if no
variable pair xj and yj locates outside of T . In the sequence
illustrated in Fig. 2, the sets {(A, U), (G, C)} and {(G, C)}
are tokens. The set of tokens in σ (S) is denoted by T (σ)
(resp. T (S)).

3. CONSTRUCTION OF HISTOGRAMS

C A G C A C U U G A C U

1 12

C A G C A C U U G A C U

1 12

C A G C A C U U G A C U

2 12

C A G C A C U U G A C U

2 11

Figure 2: An example of a structure and its in-
stances

C A G C A C U U G A C U C A G C A C U U G A C U

C A G C A C U U G A C U C A G C A C U U G A C U

a b

c d

Figure 3: Examples of tokens

For a given sequence σ and a structure S, we let N(σ, S) be
the number of occurrences of S in σ.

In order to calculate N(σ, S) for all S, we generate S re-
cursively according to the rules in G. For the convenience
of explanation, we introduce a parameter p for representing
|S|/2, the number of pairs in S, and another i for repre-
senting |T (S)|/2. We also define two operations ρ and ϕ for
structures S and T as

ρ(S) = xSy,
ϕ(S, T) = ST.

A brief view of the calculation is as follows: In the calcula-
tion we use a set Sp consisting of pairs of the form (S, N(σ, S)
such that |S|/2 = p. The calculation starts with putting
S1 = {(xy, N(σ, xy)}, and extend Sp by generating longer
structures.

1. At first consider the case p = 1. The only structure
satisfying |S|/2 = p = 1 is a variable pair S = xy
regarded as x1y1, we generate S1 for by enumerating
all c-pair as its instances.

2. Next consider the cases p > 1. Generate instances of
all structures S such that |S|/2 = p

• For the case i = 1, update Sp by counting N(σ, S)
for every structure S with |T (S)| = i = 1, which
are generated by applying ρ to structures S′ with
|S′|/2 = p − 1.

• For the case i = 1, update Sp by counting N(σ, S)
for every structure S with |T (S)| = i > 1, which
are generated by applying ϕ to structures S1 and
S2 with |S1|/2 + |S2|/2 = p.

Inside structure Inside structure
a b

Figure 4: Generating structures S with |T (S)| = 1

Left structure Left structure
a b

Figure 5: Generating structures S with |T (S)| > 1

17

33

15 16

34

20 13 10

P = 1

P = 2

P = 3

I = 1 I ⩾ 2

Figure 6: 1 ≤ P ≤ 3

The generation of structures with ρ and ϕ is illustrated in
Fig. 4 and Fig. 5, respectively.

We explain the calculation method more precisely, by chang-
ing the form of the tuples corrected in Sp. In the calculation
we generate tuples of the form

(l, r, N(σ[l : r], S)

for every structure S. For example, for the structure and
the sequence illustrated in Fig. 2, tuples

(1, 12, 2), (2, 12, 1), (2, 11, 1)

are generated (Fig. 2).

Let us assume that a sequence σ such that |σ| = n is given.

At first we set p = 1. Since the only structure that we have
to treat is S = xy, N(σ, xy) means the number of c-pairs in
σ (Algorithm 2). The algorithm is modified so that we can
take the least distance of c-pairs into account.

Now we set p = 2. The number of structures in this case
is obtained by choosing two structures and instances of the
case p = 1. The methods varies according to the value of
i. At first we set i = 1, and apply the ρ operator to every
structure S generated in the case p = 1. We have only one
structure xSy (Fig.4(a)). Next we set i = 2, we apply the
operator ϕ. Choose a structure S of the case p = 1, we put
another structure T with p = 1 and i = 1(Fig.5(a)).

In the case p = 3 and i = 1, we apply the operator ρ in the
same way as in the case p = 2 and i = 1 every structure with

Algorithm 1:
StructureHistogram(a sequence σ, a distance d)

1: S1 = CountPairs(σ)
2: for p = 2 to (|σ| − d)/2 do
3: Tp1 = ComposeInNest(p)
4: Sp = {Sp1}
5: for all i such that 2 ≤ i ≤ p do
6: Tpi = ComposeInParallel(p, i)
7: add Tpi to Sp

8: end for
9: if Sp = φ then

10: break
11: end if
12: end for

Algorithm 2: CountPairs(a sequence σ, the least distance d)

1: for left = 1 to |σ| − 2 do
2: for right = |σ| to left + d do
3: if isPair(σ,left, right) then
4: add (left, right, 1) to Oxy

5: end if
6: end for
7: end for
8: T11 = {(xy, Oxy)}
9: S1 = {T11}

10: return S1

p = 2(Fig.4(b)). In the case p = 3 and i ≥ 2, we first apply
the ϕ operator at first to every structure S with p = 3−1 = 2
and and every structure T with p = 1 and i = 1. Then we
apply ϕ to S with p = 1 and T with p = 3−1 = 2 and i = 1
(Fig.5(b)). Note that we can choose the structure T with
i = 1 in the last case. In Fig. 6 we show the structures of the
cases p = 1, 2, 3 and some examples of numbers of instances.

The method is illustrated in Algorithm 1-4. The algorithm
uses three sets OS , Tpi Sp. The set OS is used to store
tuples (l, r, N(σ[l : r], S) for a structure S. If |S|/2 = p and
|T (S)| = i, then OS is stored in Tpi. For every p Tpi is stored
in Sp. It is important how to implement the OS , Tpi Sp in
making the algorithms efficient, and we discuss the ways in
the next section.

4. ANALYSIS OF THE ALGORITHM
The number of structures consisting of n pairs, that is the
n-th Catalan number Cn, is represented as follows:

Cn = an + bn (2)

an = (an−1 + bn−1)a1 (3)

bn = Σn−1
k=1 (an−k + bn−k)ak (4)

a1 = 1, b1 = 0 (5)

where an is the number of structures consisting of only one
token, and b is that containing more than one tokens. The
equations (3) and (4) respectively correspond to Algorithm
3 and 4 This means that the order of the total calculation
is difficult to decrease, and we make our effort to make the
calculation for each structure S more efficient,

At first estimate the complexity of enumerating all instances

Algorithm 3: ComposeInNest(int p)

1: for all S appearning in Sp

2: OxSy = {(t.left, t.right, s.count · t.count) |
s ∈ OS , t ∈ Oxy, s ≺ t}
(procedure ρ)

3: if OxSy 6= ∅ then
4: add (xSy,OxSy) to Tp1

5: add Tp1 to Sp

6: return Sp

Algorithm 4: ComposeInParallel(int p, int i)

1: for k = i − 1 to 1 do
2: for all S appearing in Tk(i−1), T appearing in T(p−k)i

3: OST = {(s.left, t.right, s.count · t.count) |
s ∈ Tk(i−1), t ∈ T(p−k)i, s < t }

4: if OST 6= ∅ then
5: add (ST,OST) to Tpi

6: return Tpi

of a fixed structure by using a näıve method. Assume that
|σ| = l for a given sequence. In the case of p = 1, this means
that all pairs in σ and this takes O(l2) steps. For p > 1
every structure is generated by ρ or φ. Since structure is
stored in the form of the tuple 2 in OS , it takes O(l2) steps
for a fixed argument of ρ and φ．Therefore enumerating its
instances takes O(l2) ∗ O(l2) = O(l4) steps.

In order to refine these computation, we take our attention
how to keep the tuples in OS . At first we change OS as a
list LS of trees of its depth 1, where every tree represents
a subset consisting of tuples which have the same left-most
position. The root represents the same left-most position,
and leaves are sorted in the ascending order. The trees are
also listed in LS in the ascending order of their roots (Fig. 7).

This data structure for storing them should make the com-
parison of two occurrences of structures. Consider the case
when we compare S and S′. The left-most position of an
instance p is denoted by p.left and its right-most position
is p.right. With every q ∈ S, we compare every p ∈ S′. At
first we fix q.left and q.right, and also p.left. We check
p.right in the ascending order. When all p.right is check,
we increment p.left, and check p.right. After all p.left is
checked, we increment q.right. We present this method in
Algorithm 5 and 6.

Now we improve the time complexity of comparison. The
key idea of the improvement is to make another list MS

for OS and use both of LS and MS(Fig. 8)．The list MS

also consisting of trees but every tree represents the set of
tuples of the same the right-most position. The construction
of every tree in MS and the list MS is in the symmetric
manner of the construction of LS .

Moreover, each leaf L of a tree in LS , we give an additional
attribute which is the sum of the number of instances above
L in the tree.

We change the method as illustrated in Fig. 9．When we
construct a new structure S with the φ operator from S1

9

1

6

4

52

9

3

6

1

2

4

6

2

structure
instances

Right-end
position

Left-end
position

Figure 7: The method of storing structure and its
instances

Algorithm 5: CompareInNest(Candidate Out,
Candidate In, int p, int i, int j)

1: for o.left in {Out.lefts} do
2: for o.right in {Out.rights} do
3: for i.left in {In.lefts} do
4: if o.left < i.left && i.left < o.right then
5: for r.right in {R.rights} do
6: if i.right < o.right then
7: hash = {(o.left, o.right, i.count)}
8: Cp1j = Cp1j ∪ hash
9: return Cp1j

and S2, we use LS1 and MS1 . At first fix the left-most
position of S1 (Fig. 9 (a)) and the right-most position of
S2(Fig. 9 (b)). Then search the left-most position of S2

in the descending order and simultaneously the right-most
position of S1 (Fig. 9 (c)(c’)). In the example illustrated
in Fig. 9, we assume that the left-most position of S1S2 is
1 and the right-most position of S1S2 is 15. Then all the
combination of the right-most position of S1 and the left-
most position of S2 are (9 , 10) , (6 , 7) , (4 , 5). The total
number of instances of S is

15 = 7 ∗ 1 + 3 ∗ 2 + 1 ∗ 2

This method takes O(2l) for every end-pair of S，the total
time is O(l3)．For the operator ρ we can improve in a similar
manner.

Algorithm 7 and 8 includes the improvement.

5. DATA MINING OF RNA FAMILIES
Here we demonstrate typical data mining tasks, classifica-
tion and clustering of real RNA families, by using the ob-
tained candidates of RNA secondary structures, and analyze
effectivity of our results. In particular, we focus on the min-
imum length of distance d = |j − i| for a pair of i-th base
and j-th base. We show that dimension reduction is realized
by increasing d experimentally.

5.1 Materials and Methods
All experiments were performed on R version 2.12.1 [10]. We
used Mac OS X version 10.6.5 with 2.93 GHz Intel Xeon and
32 GB memory.

Algorithm 6: CompareInParallel(Candidate L,
Candidate R, int p, int i, int j)

1: for l.left in {L.lefts} do
2: for l.right in {L.rights} do
3: for r.left in {R.lefts} do
4: if l.right < r.left then
5: for r.right in {R.rights} do
6: hash = {(l.left, r.right,

l.rightcount · r.left.count)}
7: Cpij = Cpij ∪ hash
8: return Cpij

9

1

6

4

52

9

3

6

1

2

4

6

2

4

5

9

6

1

1

1

2

22 3

6

1

2

2

45

11

1

3

7

2

structure
instances

Right-end
position

Left-end
position

Sum of
instances

structure
instances

Right-end
position

Left-end
position

Figure 8: New list for improvement

Every data set was constructed from results obtained from
our algorithm (Figure 10). Each row corresponds to each
RNA sequence, and each attribute means the number of
candidates of secondary structures for the corresponding
RNA sequence. RNA families IRE, Histone3, CRISPR-
DR2, CRISPR-DR3, and CRISPR-DR4 were collected as
benchmarks from Rfam1 [5] (Table 1), since the number of
sequences of IRE and Histone3 are largest in which the aver-
age length of RNA sequences is relatively small (under 40).
Thus we can make data sets in reasonable time. The average
length of sequences in CRISPR-DR2 and CRISPR-DR3 are
almost same, hence we can test classification without the
effect of the difference of length of each sequence.

We performed classification of RNA families by SVM with
the RBF kernel using our constructed data sets. The R
package e1071 [9] (the R interface to libsvm [1]) was used,
and accuracy was obtained by 10 cross-validation. First we
classified two families of IRE and Histone3, second CRISPR-
DR2 and CRISPR-DR3, and third three families IRE, His-
tone3, and CRISPR-DR4.

For clustering of RNA families, we performed K-means and
DBSCAN [4], since K-means is the standard clustering algo-
rithm and DBSCAN is the typical method to find arbitrary
shaped clusters. The R packages fpc was used for DBSCAN.
We used two RNA families IRE and Histone3. To evaluate
results of clustering, we measured the adjusted Rand index
(takes values in [−1, 1], to be maximized) [7], which is the
typical external criterion, calculated by the R package clues

1The newest version 10.0 is available at
http://rfam.sanger.ac.uk/

9

1

6

4

52

9

Left-end
position

Right-end
position

6

5

153

7

10

3

1

2

2

5

11

1

3

7

2

1

15

15

151

15

3

15

2

2

a b

c’

c

<
φ

3

The number of The number of The number of

Sum of
instances

structure
instances

Right-end
position

Left-end
position

Left-end
position

Right-end
position

Sum of
instances

structure
instances

Right-end
position

Left-end
position

Figure 9: Comparing structures

Algorithm 7: CompareInNest2(Candidate Out,
Candidate In, int p, int i, int j)

1: for o.left in {Out.lefts} do
2: {pi.left} = 0
3: for o.right in {Out.rights} do
4: for i.left in {In.lefts} do
5: if o.left < i.left then
6: if i.left < o.right then
7: i.right = max(pi.left, min(In.rights))
8: while next(i.right) < o.right do
9: i.right = next(i.right)

10: if pi.left 6= min(In.rights) then
11: hash = {(o.left, o.right, i.right.count)}
12: Cp1j = Cp1j ∪ hash
13: pi.left = i.right
14: {sum right counts by every left index}
15: return Cp1j

[2]. We tuned parameters for DBSCAN and report the best
results.

5.2 Results and Discussion
We show results of classification in Table 2. We can see
that in most of cases, accuracy become higher and higher
when d increases, and the number of attributes decrease
monotonically. This means that dimension reduction can be
performed effectively with the parameter d and, moreover,
our results of RNA secondary structure candidates can be
used effectively for learning classification rules of RNA fami-
lies. Average length of RNA sequences in CRISPR-DR2 and
that in CRISPR-DR3 are almost same, thus we can classify
two families with high accuracy even if their average length
are similar. Our results are competitive compared to results
reported in literatures [3, 8, 13, 14]. However, some experi-
mental settings are different, thereby more experiments are
needed.

Table 3 shows results of clustering. All adjusted Rand in-
dexes are relatively high, thus this means that our data sets
reflect some features of RNA families. Furthermore, the
adjusted Rand indexes become higher and higher when d
increases from 1 to 5 in K-means and 1 to 4 in DBSCAN,
hence dimension reduction can be performed effectively.

6. CONCLUSION

Algorithm 8: CompareInParallel2(Candidate L,
Candidate R, int p, int i, int j)

1: for l.left in {L.lefts} do
2: for r.right in {R.rights} do
3: if l.left < r.right then
4: crrtIdx = max({R.lefts})
5: for r.left in {R.lefts} by desc do
6: for l.right in {L.rights}

(except more than crrtIdx) by desc do
7: if l.right < r.left then
8: hash = {(l.left, r.right,

l.right.count · r.left.count)}
9: Cpij = Cpij ∪ hash

10: crrtIdx = l.right
11: break
12: {sum right count by every left index}
13: return Cpij

Table 1: Benchmark RNA families used for classifi-
cation and clustering.

Family name # RNA sequences Average length

IRE 247 29.86
Histone3 381 30
CRISPR-DR2 64 29.86
CRISPR-DR3 41 30
CRISPR-DR4 61 28

We have presented the method of obtaining structure his-
tograms for RNA sequences. The total amount of the time
complexity of obtaining the histogram for an RNA sequence
of its length 2n is of the n-th Catalan number, but, by de-
signing new data-structures of keeping instances, we show
that the value for every structure in the histogram is cal-
culated in the time O(l3). We also give some experimental
results by applying structure histograms obtained from real
RNA data to some mining methods and demonstrated the
cases that structure histograms work effectively. For ap-
plying structure histograms to more practical problems, we
have to consider about the dimension reduction more seri-
ously and this is one of our future work.

Enormous RNA sequences are accumulated in previous re-
searches, and many methods have been proposed for pre-
dicting RNA secondary structures. However, because of the
large size of the RNA data, predicting secondary structures
does not catch up analyzing RNA sequences. We expect
that our method could contribute semi-automatic prediction
of secondary structures and predicting RNA functions.

Acknowledgments
The authors are grateful for valuable discussions and com-
ments to Toshiki Saitoh, Takeaki Uno, and Koichiro Doi.
This work is partially supported by Grant-in-Aid for Scien-
tific Research (A) 30230535 from JSPS.

7. REFERENCES
[1] C. C. Chang and C. J. Lin. LIBSVM: A library for

support vector machines, 2001.

[2] F. Chang, W. Qiu, R. H. Zamar, R. Lazarus, and

479323CAGCAUCGAUGA

RNA

343317CAGCAUGGAGAC

393416AUUAGUUGUCGA

[] [[]] [[]] []

 045 0

 3 0 0

 0 0 12

[[[[]]]] [[[[]][]]] [[[[][[]]]]

CAGCAUCGAUGA

RNA

364318

[] [[]] [[]] []

45

[[[[]][]]]

[[[[][[]]]]

CAGCAUGGAGAC

RNA

343317

[] [[]] [[]] []

 3

[[[[]]]]

AUUAGUUGUCGA

RNA

393416

[] [[]] [[]] []

12

Figure 10: Construction of data sets from the num-
ber of candidates of secondary structures for each
RNA sequence.

Table 2: Results of classification. The parameter d
was increased from 1 to 6, and accuracy of classifi-
cation was calculated.

IRE and Histone3

d = 1 2 3 4 5 6

accuracy (%) 60.7 96.8 96.8 97.9 99.0 99.7
attributes 11144 2910 1027 335 170 114

CRISPR-DR2 and CRISPR-DR3

d = 1 2 3 4 5 6

accuracy(%) 61.0 61.0 61.0 92.4 91.4 88.6
attributes 14101 3851 1053 388 174 94

IRE, Histone3, and CRISPR-DR4

d = 1 2 3 4 5 6

accuracy (%) 55.3 55.3 90.3 95.2 98.3 98.8
attributes 12633 2960 1078 446 177 118

X. Wang. clues: An R package for nonparametric
clustering based on local shrinking. Journal of
Statistical Software, 33(4):1–16, 2010.

[3] L. Childs, Z. Nikoloski, P. May, and D. Walther.
Identification and classification of ncRNA molecules
using graph properties. Nucleic Acids Research,
37(9):1 – 12, 2009.

[4] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, volume 96, pages
226–231, 1996.

[5] P. P. Gardner, J. Daub, J. G. Tate, E. P. Nawrocki,
D. L. Kolbe, S. Lindgreen, A. C. Wilkinson, R. D.
Finn, S. Griffiths-Jones, S. R. Eddy, and A. Bateman.
Rfam: updates to the RNA families database. Nucleic
Acids Research, 2008.

[6] R. L. Graham, D. E. Knuth, and O. Patashnik.
Concrete mathematics: A foundation for computer
science, volume 2. Addison-Wesley Reading, MA,

40 50 60 70 80 90

100

200

300

400

40 50 60 70 80 90

100

200

300

400

a b

Figure 11: Scatter plots of a data set from Histone3
and IRE with d = 6 (axes are first two attributes). In
(a), circle points belong to Histone3, and triangles
to IRE, and (b) is a clustering result obtained by
K-means.

Table 3: Results (adjusted Rand index) of clustering
for two families IRE and Histone3.

d = 1 2 3 4 5 6

K-means 0.54 0.54 0.56 0.58 0.62 0.59
DBSCAN 0.14 0.14 0.75 0.78 0.67 0.64

1994.

[7] L. Hubert and P. Arabie. Comparing partitions.
Journal of Classification, 2(1):193–218, 1985.

[8] Y. Karklin, R. F. Meraz, and S. R. Holbrook.
Classification of non-coding RNA using graph
representations of secondary structure. In Proceedings
of Pacific Symposium on Biocomputing, volume 10,
pages 4 – 15, 2004.

[9] D. Meyer. Support Vector Machines: The interface to
libsvm in package e1071, 2010.

[10] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, 2010.

[11] Y. Sakakibara, M. Brown, R. Hughey, I. Mian,
K. Sjölander, R. C. Underwood, and D. Haussler.
Stochastic context-free grammers for tRNA modeling.
Nucleic Acids Research, 22(23):5112, 1994.

[12] Y. Tabei, K. Tsuda, T. Kin, and K. Asai. SCARNA:
fast and accurate structural alignment of RNA
sequences by matching fixed-length stem fragments.
Bioinformatics, 22(14):1723, 2006.

[13] J. P. Vert. Classification of biological sequences with
kernel methods. In Y. Sakakibara, S. Kobayashi,
K. Sato, T. Nishino, and E. Tomita, editors,
Grammatical Inference: Algorithms and Applications,
volume 4201 of Lecture Notes in Computer Science,
pages 7–18. Springer, 2006.

[14] J. T. Wang and X. Wu. Kernel design for RNA
classification using support vector machines.
International Journal of Data Mining and
Bioinformatics, 1(1):57 – 76, 2006.

