March 30, 2011, The 5" International Workshop on
Data-Mining and Statistical Science@Osaka University

Kernel-based Similarity Search
In Massive Graph Databases
with Wavelet Trees

Yasuo Tabel

(JST ERATO Minato Project)
Joint work with Koji Tsuda (AIST)

Outline

Introduction

-1 Recent development of graph databases

-1 Needs for graph similarity search

1 Bag-of-words representation of a graph

-1 Semi-conjunctive query

Method

-1 Scalable similarity search with wavelet trees

Experiments
-1 Use a large-scale graph dataset
-1 25 million chemical compounds

Graphs are everywhere

Gene co-expression
network

Chemical compound Social Network

Graph Similarity Search

Retrieve graphs similar to the query

Large databases

~1More than 20 million chemical compounds In
PubChem database

Bag-of-words representation of graphs
+1WL procedure (NIPS 2009)

Why not use document retrieval methods?
-1 Inverted index
-1 Not that easy (explained later)

Weisfeiler -Lehman Procedure (NIPS,09)

Convert a graph into a set of words
(bag-of-words)
(A)

Make a label set of adjacent
vertices ex) {E,A,D}

E Sort ex)AD,E
B Add the vertex label as a prefix
A Ny ex) B,A,D,E
- Map the label sequence to a

@ E) unique value
ex) B,A,D,E aR

© = Assign the value as the new

Bag-of-words
{AB,D,E,!, R} vertex label

Search by cosine similarity

Identify all graphs in the database whose
cosine is larger than a threshold 1-"

y=_ WL Ql .
JW QI

1W,, Q: bag-of-words of graphs

The above solution can be relaxed as
follows,

yif Ky@w)i1"7, then

@ Iy IRNwWE =L,

+1 Can be used for fast search

W st K,(W,Q

Semi-conjunctive query

Cosine guery can be relaxed to the following
form

W st [W! Qk

-1 The number of common words between
two bag-of-words W; and Q

Ex) [W. 1 Q|=|(A,C,E,FH) T (A,E,I,J,L)

=[(AE)[=2

-1 k=(1-")2|Q|

No false negatives

- False positives can easily be filtered out by

cosine calculations

Inverted iIndex

In natural language processing, inverted
iIndex has been used to solve semi-
conjunctive guery

Inverted Index .
Associative map

. -1 key nword
$ -1 value n graph identifiers

% : :
2 iIncluding a word

Bottom-up search

Inverted Index

Look the index up with
query bag-of-words

#
fA, Aggregate all the lists
of graph indices
Query:(A,C,E) Sort
@ Aggregation Scan
(2,8,13,15,8,10,16,)

G- Sort
(2,4,8,8,9,10,13,13,14,15,16)

k=

Search time of inverted index

on 25 million graphs

Search time of inverted index Is not so different from
that of sequencial scan

@40 secC
—a— Inverted index

30 Seq. Scan
g
o
S
5
= 20
4
(]
(®)]
(]
]
>
o

10 A

v
0+ #=
T [T [T T
0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07

of graphs

Why?

Each word Is not
Query:(A,C,E) specific enough
~&- Aggregation 5ery contains 1000s
(2,8,13,15,8,10,16,4,9,13,14) of words
8- Sort Aggregated array Is

(2,4,8,8,9,10,13,13,14,15,16) VERY long
l ! ' 1Sorting takes O(ClogC)

C INn time

Overview of our method

Top-down search in a tree over the series of
graphs

Huge memory, If tree Is Implemented with
pointers

Wavelet Tree: Succinct data structure

The smaller the similarity threshold Is, the
quicker the algorithm finishes

¥MNot the case In inverted index

Binary tree over graphs

Q a4
2] [3][4](s][e][7][s]

{000} {001{010X011}1005101{110}{111}

leaf N graph

node n interval

Each node is identified
by a bit string (v={01})
At the leaves, the graph
Indices correspond to
int(v)+1

(e.qg., int(010)+1=2+1=3)

Summarization of bag-of-words

Represent bag-of-words as a bit array
12345678

Ex) W.=(1,3,4,7,8)m x=(1,0,1,1,0,0,1,1)

' 1 Take disjunction T of all bit arrays in the interval
of a node v

EXx) For an interval [1,4]

X,=(0,1,0,0,0,0,1,0) V=X T X, T X3 1 X,
X,=(1,0,1,1,0,0,0,0) » V:(1,1,1,1,O,O,1,1)
X,=(1,0,0,0,0,0,1,1)

X,=(1,0,0,0,0,0,0,1)

Binary tree over graphs

y,=111111 Assign to each node
v a bit arrays vy,

y, - bit array
~1I-th bitis 1 if graphs

In an interval have
the corresponding

g LA ! g word.
1) 2]) (3] [4](s](e](7][8]

{000} {001{010X011}1005101{110}{111}

Top-down traversal

y,=111111

bl b
2] [3][4](s][e][7][s]

{000} {001{010X011}1005101{110}{111}

Q: bag-of-words of a
qguery

Perform top-down
traversal

Prune the search
space If # vl k

The Iarger K1s, the
smaller the search
space IS

Huge Memory

Time Is O(#m) : Very fast
1 #. the number of traversed node
-1 m: the number of bag-of-words Iin a query

Space I1s O(Mnlogn) bit
-1 M: the number of unigue words
+1n: the number of graphs

Wavelet Tree! (SODA,03)

Replace y, in each node v by a rank
dictionary

-1explained in next slides

Implement a tree without using pointers

Only 60% memory overhead compared to
the inverted index (Vigna,08)

Access to the summary information in any
Internal node

Rank dictionary (Raman,02)

Give bit array B[1,n] the following operation:
1 rank,(B,i): return the number of c a{0,1} in B[1! 1]

Ex) B=0110011100

i12345678910
rank,(B,8)=5 X1 1001110 O
rank,(B,5)=3 011001110 0

Implementation of rank dictionary

Divide the bit array B into

B (I (arge blocks of lengt

l l ! R,=Ranks of large
RL—L—— Divide each large

N [=log?n
nlocks
nlock to

small blocks of length s=logn/2

L)L L L L | | RsRanksofsmal

R S i O O O D D

rank,(B,1)=R[I/I][+R[i/s]+(remaining rank)

Time:O(1)

relative to the large block

nlocks

Memory: n +o(n) bits

Restricted inverted index

Inverted Index Concatenate graph ids

for words In the root

" Restrict the inverted index for

$ the interval [s,,t,] of a node v
%

18 A B C
Aroot |13 68257 127 45

14] A B C_ A B C D [48]
Aleft |1 321 2 4 Aright | 6 8|5 7| 7 5

Whole structure of

restricted inverted index

[1,8] A B C
1368 257/12745

—

[1,4] AR C_D e [58]

321
1.2 /\[3 4[5, 6]/\[6 7]

ABC

A ABC
1212 34 %5 187 7
7\ A/\ /\

A C B C A B C A

11 [22 |3 (4 %5@ 717| [l

]

Similarity search

To retrieve graphs similar to a query
Q=(A,C), the tree is traversed in the top-
down manner.

18] A C
Aroot |13 68 257 12745
1od} 4
14 A _C [5,8] _A C
Aleft |1 321 2 4 Aright | 6 8|5 7] 7| 5
I

Similarity search

To retrieve graphs similar to a query Q=(A,C), the tree
IS traversed in a top-down manner.

Observation

1 To perform top-down traversal, only intervals
of words In each node are necessary

Al14] C [8.10]
Aroot |13 68 25712745
Y4 >4
Al ,2] C[4.5 All2] C[5,5]
Aleft |1 321 24 Aright | 6 8|5 7| 7| 5
|_

Similarity search

Replace restricted inverted index Av In
each node v with a bit array bv.

-1 bv[i]=1 If Av[i] goes to the right child

CSP 001101100101
Aroot |1 316 8 25 7 1 2 7 4 5
O/\l
bleft |01 00 0 1 bright 0 1 01 1 O
Aleft |1 3 21 2 4 Aright | 6 8 5 7 7| 5

Similarity search

Intervals of child nodes can be computed by
rank operations

! Siefiqy), [=FANKo(DV,S,-1)+1 Ly j=ranky(OV, L)

"1 Srightv) j =ranky (v, s,;-1)+1,tgp =rank, (bv,t,)

C [8,10]
EX) —
CSPI 001101100101
Aroot |1 3 68 25 712 /745

rank,(broot,8-1)+1=4, rank, (broot,8-1)+1=5,
ranko(broot,lo):S /\ rankl(broot,lo):s

C [4,5] C [5,9]
bleft |01 00 01 bright 01 01 1|0
Aleft 1321 2 4 Aright 6 8 57 7|5

Croot

Wavelet Tree

Wavelet tree can be obtained to replace the restricted
Inverted indices with bit arrays
Wavelet tree consists of bit arrays bv and initial
iIntervals Croot.

A

C

001

1

0 1

1

001

0 1

—

0001

01

0 1

0 1

0

7

100

0 0

Wavelet Tree

Graph ids can be recovered from bit strings

on the path from the root to leaves

Croot A B C
0011{011 00101

Q/N

010001 010110
M M
0101 0 1 100 100

IZ@N! o/\L O/\L 0/ \1

000 001 010 011 100 101 110 111

Memory

(1+$)Nlogn + MlogN bits

Bit arrays bv Initial intervals Croot
-1 N: the number of all words in the database

+1n: the number of graphs
+1$: overhead for rank dictionary ($=0.6)

For inverted index, Nlogn bits
About 60% overhead to inverted index!!

Experiments

25 million chemical compounds from
PubChem database

Use search time and memory as
evaluation measures

Compare our method gWT to

1 inverted index

+1sequential scan implemented in G-Hash
(Wang et al, 2009)

Search time on 25 million graphs

440 sec
-~ @38 sec

401 —— gwT04
—=— gWT0.35
—e— gWT03
—=a— |nverted index
|—+— Seq. Scan

w
o

average search time (sec)
N
o

—
o
|
e

/ - $-8 sec
| —=——————— %3 SEC

2 sec

I I I I I |
0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07
of graphs

Memory usage

2.0e+04

—~

1.5e+04-

1.0e+04-

memory (mega byte

5.0e+03-

0.0e+00-
0.0e+00 50e+06 1.0e+07 1.5e+07 20e+07 2.5e+07
of graphs

Overhead of rank dictionary

2.0e+04

overhead
bv

_—

1.5e+04-

1.0e+04-

memory (mega byte

5.0e+03-

0.0e+00-

0.0e+00 5.0e+06 1.0e+07 156407 2.0e+07 2.5e+07
of graphs

Construction time

2.5e+04

fingerprint
wavelet tree
2.0e+04-
g 1.5e+04-
i)
Q
-
= 1.0e+04-
5.0e+03-
0.0e+00-

00e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07
of graphs

Related work

¥ A lot of methods have been proposed so far.
1.gindex [Yan et al., 04]

2.Graph Grep [Shasha et al., 07]
3.Tree+Delta [Zhao et al., 07]

4.TreePi [Zhang et al., 07]

5.Gstring [Jiang et al., 07]

6.FG-Index [Cheng et al., O7]

/.GDIndex [Williams et al., 07]

etc

Related work
ET ¥ Decompose graphs
Into a set of
~& Decompose substructures
v - subgraphs, trees,
b ‘ ./.I paths etc

¥ Build a substructure-
based index

& |ndex

Drawbacks

¥ Require frequent subgraph mining
¥ Do not scale to millions of graphs

Summary

Efficient similarity search method for
massive graph databases

Solve semi-conjunctive query efficiently
Built on wavelet trees

Use Weisfeiler-Lehman procedure to
convert graphs into bag-of-words

Applicable to more than 20 million graphs
Software
http://code.google.com/p/gwt/

Acknowledgements

¥ Prof. Shin-ichi Minato (Hokkaido Univ.)
¥ Dr. Daisuke Okanohara (PFI)
¥ Members in ERATO Minato Project

