
Kernel-based Similarity Search
in Massive Graph Databases

with Wavelet Trees ��

Yasuo Tabei
(JST ERATO Minato Project)
Joint work with Koji Tsuda (AIST)��

March 30, 2011, The 5th International Workshop on
Data-Mining and Statistical Science@Osaka University��

Outline��

! !Introduction
" ! Recent development of graph databases
" ! Needs for graph similarity search
" ! Bag-of-words representation of a graph
" ! Semi-conjunctive query

! !Method
" ! Scalable similarity search with wavelet trees

! !Experiments
" ! Use a large-scale graph dataset
" ! 25 million chemical compounds

Graphs are everywhere ��

 Gene co-expression
 network

 ��
 Chemical compound

 ��

 Protein 3D structure

 ��

RNA 2D structure

 ��
Social Network

 ��

Graph Similarity Search ��

! !Retrieve graphs similar to the query
! !Large databases

" ! More than 20 million chemical compounds in
PubChem database

! !Bag-of-words representation of graphs
" ! WL procedure (NIPS 2009)

! !Why not use document retrieval methods?
" ! Inverted index
" ! Not that easy (explained later)

Weisfeiler -Lehman Procedure (NIPS,09)��

i) Make a label set of adjacent
 vertices ex) {E,A,D}
ii) Sort ex) A,D,E

iii) Add the vertex label as a prefix
 ex) B,A,D,E
iv) Map the label sequence to a

unique value
 ex) B,A,D,E�à R

v) Assign the value as the new
 vertex label��

A��

D��

E��B��

! !Convert a graph into a set of words
 (bag-of-words)��

Bag-of-words
{A,B,D,E,!, R,!} ��

A��

D��

R�� E��

Search by cosine similarity��

! !Identify all graphs in the database whose
cosine is larger than a threshold 1-"

" ! Wi, Q: bag-of-words of graphs

! !The above solution can be relaxed as
follows,

�yIf , then

" ! Can be used for fast search

Wi s.t KN (Wi,Q) =
|Wi ! Q |

|Wi | |Q |
! 1" !

KN (Q,W) ! 1" !

(1! !)2 |Q |! |W |!
|Q |

(1! !)2

Semi-conjunctive query��
! !Cosine query can be relaxed to the following
form

" ! The number of common words between

two bag-of-words Wi and Q

 Ex) |Wi�ì Q|=|(A,C,E,F,H)�ì (A,E,I,J,L)|
 =|(A,E)|=2

" ! k=(1-")2|Q|
" !No false negatives
" !False positives can easily be filtered out by
cosine calculations

Wi s.t |Wi ! Q |" k

Inverted index��

! !In natural language processing, inverted
index has been used to solve semi-
conjunctive query��

Inverted Index��
�8�P�S�E�� �(�S�B�Q�I���J�E�T��
�"�� ���
���
�����
������
�#�� ���
���
������
�$�� ���
�����
������
�%�� ���
���
������
�&�� ���
���
�����
������

! !Associative map
" ! key �ñ word
" ! value�ñ graph identifiers
 including a word

Bottom-up search��
Inverted Index��

Query:(A,C,E)��

(2,8,13,15,8,10,16,4,9,13,14)��

(2,4,8,8,9,10,13,13,14,15,16)��

Aggregation��

Sort��

�8�P�S�E�� �(�S�B�Q�I���J�E�T��
�"�� ���
���
�����
������
�#�� ���
���
������
�$�� ���
�����
������
�%�� ���
���
������
�&�� ���
���
�����
������

i) Look the index up with
 query bag-of-words

ii) Aggregate all the lists
of graph indices

iii) Sort
�Ÿ)Scan

��

k=����

Search time of inverted index
on 25 million graphs��

! !Search time of inverted index is not so different from
 that of sequencial scan��

40 sec��
38 sec��

Why? ��

! !Each word is not
specific enough

! !Query contains 1000s
of words

! !Aggregated array is
VERY long

! !Sorting takes O(ClogC)
in time

Query:(A,C,E)��

(2,8,13,15,8,10,16,4,9,13,14)��

(2,4,8,8,9,10,13,13,14,15,16)��

Aggregation��

Sort��

C��

Overview of our method ��

! !Top-down search in a tree over the series of
graphs

! !Huge memory, if tree is implemented with
pointers

! !Wavelet Tree: Succinct data structure
! !The smaller the similarity threshold is, the

quicker the algorithm finishes
¥!Not the case in inverted index

Binary tree over graphs��

! !leaf �ñ��graph
! !node���ñ��interval
! ! Each node is identified

by a bit string (v={01})

! ! At the leaves, the graph
indices correspond to
int(v)+1

 (e.g., int(010)+1=2+1=3)

[1,8]��

[1,4]�� [5,8]��

[1,2]�� [3,4]�� [5,6]�� [7,8]��

1�� 3��2�� 4�� 5�� 6�� 7�� 8��

0�� 1��

0�� 1�� 0�� 1��

0�� 1�� 0�� 1��0�� 1��0�� 1��

{000}��{001}��{010}��{011}��{100}��{101}��{110}��{111}��

Summarization of bag-of-words��

! ! Represent bag-of-words as a bit array
 1 2 3 4 5 6 7 8
Ex) Wi=(1,3,4,7,8) xi=(1,0,1,1,0,0,1,1)

! ! Take disjunction �î ��of all bit arrays in the interval

of a node v

Ex) For an interval [1,4]
X1=(0,1,0,0,0,0,1,0)
X2=(1,0,1,1,0,0,0,0)
X3=(1,0,0,0,0,0,1,1)
X4=(1,0,0,0,0,0,0,1)

yv=x1�î x2�î x3�î x4
 =(1,1,1,1,0,0,1,1)��

Binary tree over graphs��

! !Assign to each node
v a bit arrays yv

! ! yv : bit array
" ! i-th bit is 1 if graphs

in an interval have
the corresponding
word.

[1,8]��

[1,4]�� [5,8]��

[1,2]�� [3,4]�� [5,6]�� [7,8]��

1�� 3��2�� 4�� 5�� 6�� 7�� 8��

{000}��{001}��{010}��{011}��{100}��{101}��{110}��{111}��

yv=111111��

yv=110111��
yv=101101��

yv=010101��yv=110100��yv=100100��yv=001101��

Top-down traversal��

! !Q: bag-of-words of a
query

! !Perform top-down
traversal

! !Prune the search
space if

! !The larger k is, the
smaller the search
space is

[1,8]��

[1,4]�� [5,8]��

[1,2]�� [3,4]�� [5,6]�� [7,8]��

1�� 3��2�� 4�� 5�� 6�� 7�� 8��

{000}��{001}��{010}��{011}��{100}��{101}��{110}��{111}��

yv=111111��

yv=110111��
yv=101101��

yv=010101��yv=110100��yv=100100��yv=001101��

yv[j] ! k
j" Q
#

Huge Memory��

! !Time is O(#m) : Very fast
" ! #: the number of traversed node
" ! m: the number of bag-of-words in a query

! !Space is O(Mnlogn) bit
" ! M: the number of unique words
" ! n: the number of graphs

Wavelet Tree! (SODA,03)��

! !Replace yv in each node v by a rank
dictionary
" ! explained in next slides

! !Implement a tree without using pointers
! !Only 60% memory overhead compared to

the inverted index (Vigna,08)
! !Access to the summary information in any

internal node

Rank dictionary (Raman,02)��

! !Give bit array B[1,n] the following operation:
" ! rankc(B,i): return the number of c�å {0,1} in B[1! i]��

Ex) B=0110011100��

i 1 2 3 4 5 6 7 8 9 10
 0 1 1 0 0 1 1 1 0 0
 0 1 1 0 0 1 1 1 0 0��

rank1(B,8)=5
rank0(B,5)=3��

Implementation of rank dictionary��

! ! Divide the bit array B into
large blocks of length l=log2n
 RL=Ranks of large blocks

! ! Divide each large block to
small blocks of length s=logn/2
 Rs=Ranks of small blocks

 relative to the large block

B��

RL��

RS��

rank1(B,i)=RL[i/l]+Rs[i/s]+(remaining rank)��

Time:O(1)
Memory: n +o(n) bits��

Restricted inverted index��
! !Concatenate graph ids
 for words in the root
! !Restrict the inverted index for

the interval [sv,tv] of a node v��

 Inverted Index��
�8�P�S�E�� �(�S�B�Q�I���J�E�T��

�"�� ���
���
���
����

�#�� ���
���
����

�$�� ���
���
����

�%�� ���
����

A�� B�� C�� D��

A�� B�� C�� D�� A�� B�� C�� D��

�½4�� >4��

[1,4] [4,8]

[1,8]
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

Aleft 1 3 2 1 2 4 Aright 6 8 5 7 7 5

Whole structure of
restricted inverted index��

A�� B�� C�� D��

A�� B�� C�� D�� A�� B�� C�� D��[1,4] [5,8]

[1,8]
1 3 6 8 2 5 7 1 2 7 4 5

1 3 2 1 2 4 6 8 5 7 7 5

1 2 1 2
A��B�� C��

3 4
A��D��

6 5 5 8 7 7
A��B��D�� A��B��C��

1 1
A��C��

2 2
B��C��

3 4 5 5
B��D��A�� D��

6
A��

7 7 8
B��C�� A��

[1,2] [3,4] [5,6] [6,7]

Similarity search��

! !To retrieve graphs similar to a query
 Q=(A,C), the tree is traversed in the top-
 down manner.

A�� C��

A�� C�� A�� C��

�½4�� >4��

[1,4]

[1,8]
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

Aleft 1 3 2 1 2 4 Aright 6 8 5 7 7 5
[5,8]

Similarity search��
! ! To retrieve graphs similar to a query Q=(A,C), the tree

is traversed in a top-down manner.

! !Observation
" ! To perform top-down traversal, only intervals

of words in each node are necessary

A [1,4] �� C [8,10] ��

A [1,2] ��C [4,5] �� A[1,2] �� C[5,5] ��

�½4�� >4��

Aroot 1 3 6 8 2 5 7 1 2 7 4 5

Aleft 1 3 2 1 2 4 Aright 6 8 5 7 7 5

Similarity search��

! !Replace restricted inverted index Av in
each node v with a bit array bv.
" ! bv[i]=1 if Av[i] goes to the right child

�C�S�P�P�U�� 0��0�� 1��1�� 0�� 1�� 1�� 0�� 0�� 1�� 0�� 1��
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

bleft�� 0��1�� 0��0�� 0�� 1��
Aleft 1 3 2 1 2 4

bright�� 0��1�� 0��1�� 1�� 0��
Aright 6 8 5 7 7 5

1��0��

Similarity search��
! !Intervals of child nodes can be computed by

rank operations
" ! sleft(v),j=rank0(bv,svj-1)+1,tleft(v),j=rank0(bv,tvj)
" ! sright(v),j =rank1(bv,svj-1)+1,tright(v),j=rank1(bv,tvj)

�C�S�P�P�U�� 0��0�� 1��1�� 0�� 1�� 1�� 0�� 0�� 1�� 0�� 1��
Aroot 1 3 6 8 2 5 7 1 2 7 4 5

bleft�� 0��1�� 0��0�� 0�� 1��
Aleft 1 3 2 1 2 4

bright�� 0��1�� 0��1�� 1�� 0��
Aright 6 8 5 7 7 5

C [8,10] ��

C [4,5] �� C [5,5] ��

rank0(broot,8-1)+1=4,
rank0(broot,10)=5��

rank1(broot,8-1)+1=5,
rank1(broot,10)=5��

Ex)

Wavelet Tree��

0 0 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 1 1 0 0

A�� B�� C�� D��

! !Wavelet tree can be obtained to replace the restricted
Inverted indices with bit arrays
! !Wavelet tree consists of bit arrays bv and initial
intervals Croot.

Croot��

Wavelet Tree��

0 0 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 1 1 0 0

A�� B�� C�� D��

0�� 1��

0�� 1�� 0�� 1��

0�� 1�� 0�� 1�� 0�� 1�� 0�� 1��
000 001 010 011 100 101 110 111

! !Graph ids can be recovered from bit strings
 on the path from the root to leaves��

Croot��

Memory��

! !(1+$)Nlogn + MlogN bits

" ! N: the number of all words in the database
" ! n: the number of graphs

" ! $: overhead for rank dictionary ($=0.6)

! ! For inverted index, Nlogn bits
! ! About 60% overhead to inverted index!!

Bit arrays bv�� Initial intervals Croot��

Experiments��

! !25 million chemical compounds from
PubChem database

! !Use search time and memory as
evaluation measures

! !Compare our method gWT to
" ! inverted index
" ! sequential scan implemented in G-Hash

(Wang et al, 2009)��

Search time on 25 million graphs��

40 sec��
38 sec��

8 sec��
3 sec��
2 sec��

Memory usage��

Overhead of rank dictionary��

Construction time��

Related work ��

¥! A lot of methods have been proposed so far.
 1.gIndex [Yan et al., 04]
 2.Graph Grep [Shasha et al., 07]
 3.Tree+Delta [Zhao et al., 07]
 4.TreePi [Zhang et al., 07]
 5.Gstring [Jiang et al., 07]
 6.FG-Index [Cheng et al., 07]
 7.GDIndex [Williams et al., 07]
 etc ��

Related work ��
¥! Decompose graphs
 into a set of
 substructures
 - subgraphs, trees,

paths etc

¥! Build a substructure-
 based index

! ��

Decompose ��

Index ��

Drawbacks ��

¥! Require frequent subgraph mining
¥! Do not scale to millions of graphs

Summary��

! !Efficient similarity search method for
massive graph databases

! !Solve semi-conjunctive query efficiently
! !Built on wavelet trees
! !Use Weisfeiler-Lehman procedure to

convert graphs into bag-of-words
! !Applicable to more than 20 million graphs
! !Software
 http://code.google.com/p/gwt/

Acknowledgements��

¥! Prof. Shin-ichi Minato (Hokkaido Univ.)
¥! Dr. Daisuke Okanohara (PFI)
¥! Members in ERATO Minato Project��

