
Agent-Based Convex Skyline Set Query
for Cloud Computing Environment

[Extended Abstract]

Yasuhiko Morimoto
Hiroshima University, Japan

morimoto@mis.hiroshima-
u.ac.jp

MD. Anisuzzaman
Siddique

University of Rajshahi,
Bangladesh

anis_cst@yahoo.com

MD. Shamsul Arefin
∗

Hiroshima University, Japan
d105660@hiroshima-

u.ac.jp

ABSTRACT
Given a set of objects, a skyline query �nds the objects that
are not dominated by another object. A skyline query helps
us to �lter unnecessary information e�ciently and gives us
clues for various decision making tasks. On the other hand,
we have to be aware of individual's privacy. In privacy aware
environments, we usually have to hide individual record's
values even though there is no ID information in the ta-
ble. In such situation, we cannot use conventional skyline
queries. To handle the privacy problem, we considered a
skyline query for sets of objects in a database. Let s be the
number of objects in each set and n be the number of objects
in the database. There are nCs sets in the database. We
consider an e�cient algorithm for computing convex skyline
of the nCs sets, which we call �convex skyline sets�. We
further expand the idea to use the skyline set query in a
cloud computing environment in this paper. We propose a
method for computing a skyline set query from distributed
databases without disclosing individual records to others.
There is no doubt that most of the cloud service providers do
not want to disclose any individual record in their database.
The proposed method utilize an agent computing framework
and solves the privacy problems of skyline queries in cloud
computing environments.

1. INTRODUCTION
Skyline queries retrieve a set of skyline objects so that a
user can choose promising objects or eliminate unnecessary
objects. Given a k-dimensional database DB, an object p
is said to be in skyline of DB if there is no object q in DB
such that q is better than p in all k dimensions. If there
exists such an object q, then we say that p is dominated
by q or q dominates p. Figure 1 shows a typical example
∗On leave from Chittagong University of Engineering and
Technology, Bangladesh.

ID Price Dist

h1 3 8

h2 5 4

h3 4 3

h4 9 2

h5 7 3

Skylineh1 h3 h2 h5 h4 Price
Dist

(b) Skyline(a) Hotels
Figure 1: Skyline Example

of skyline objects. The table in Figure 1 is a list of hotels,
each of which contains two numerical attributes �distance�
and �price�. In the list, the best choice usually comes from
the skyline, i.e., one of {h1, h3, h4} (See Figure 1 (b)). A
number of e�cient algorithms for computing skyline have
been reported in the literature [1, 8, 2, 5, 6, 3].

Recently, the individuals' privacy preserving is one of the
important data management issues. In many tables in a
database, we have to hide individual record's values to pre-
serve privacy even though there is no ID information in the
table. In such situation, we cannot use conventional skyline
queries.

Therefore in [7], we considered a skyline query for sets of
objects in a database. Let s be the number of objects in
each set and n be the number of objects in the database.
There are nCs sets in the database. We consider an ef-
�cient algorithm for computing convex skyline of the nCs

sets, which we call �convex skyline sets�. This function does
not disclose individual values of an object. Instead, it dis-
closes aggregated values of s objects. It will be one of the
most promising alternatives for decision making in a privacy
aware environment.

Figure 2 (a) is a list of 3-sets, in which all of the combi-
nations of three hotels are listed. The �h123� denotes a set
of {h1,h2,h3}. �Distance� and �Price� of �h123� are the sum

Skyline h234h123h135 h124h125h134 h145h235 h245h345
ID Pri Dis ID Pri Dis

h123 12 15 h145 19 13

h124 17 14 h234 18 9

h125 15 15 h235 16 10

h134 16 13 h245 21 9

h135 14 14 h345 20 8 Price
Dist

(b) Skyline of 3 Hotels(a) Sets of 3 Hotels
Figure 2: Skyline of 3-Set

of the �Distance� and �Price� of respective hotels in the set.
The skyline of the combinations of three hotels are {h123,
h135, h235, h234, h345}. If one wants to know the cheapest
hotel, she/he can �nd that the cheapest set is h123 from the
skyline and can easily imagine that the price of the cheapest
hotel is around 4, since price of the cheapest 3-set h123 is
12. Similarly, if one prefers cheaper and closer, she/he may
choose h235 from the skyline and can easily imagine the value
of the preferable choice from the aggregated values.

In this paper, we expanded the skyline set queries to dis-
tributed databases. Recent development of network infras-
tructure makes it possible to provide various services over
the Internet, which we call �cloud computing.� In the cloud
computing environment, each service provider is located in
di�erent sites and collects information in her/his own database.
Some of the services collect information in a distributed
database. Hence, users' information are separately stored
in the Internet. If we can compute skyline set queries over
the cloud, we can �nd valuable knowledge.

However, a database owner, in general, does not want to dis-
close any record's value of her/his database to other database
owners. This is the most signi�cant problem for users of sky-
line queries. Therefore, we consider an agent based method
that computes a skyline set query without disclosing any
individual record to others. The proposed method solves
the privacy problems of skyline queries in cloud computing
environment.

2. SKYLINE SETS PROBLEM
We consider the database DB having k attributes and n
records. Let a1, a2, ..., ak be the k attributes of DB. With-
out loss of generality, we assume that smaller value in each
attribute is better.

Let s-set be an object set whose size is s. We assume s is a
relatively small number such that 2 ≤ s ≤ 10 though we can
compute s-sets for much larger s. Let S be a database of all
s-sets in DB. Note that the number of record in S, i.e., the
number of s-sets in DB, is nCs = n!

(n−s)!s!
, we denote the

number by |S|. We assume a virtual database of S on the k
dimensional space of DB. Each record of the database is an
s-set whose value of each attribute (dimension) is the sum
of s values of corresponding s objects. We denote p.al as
the l-th attribute value of a record p in S.

A s-set p ∈ S is said to dominate another s-set q ∈ S, de-

Price
Dist Θ1=(-1,0)

Θ2=(0,-1)Θ1,2

(20,8)

(1
2,

15
)

(16,10)

Figure 3: Touching Oracle in 2D Space

noted as p ≤ q, if p.ar ≤ q.ar (1 ≤ r ≤ k) for all k attributes
and p.at < q.at (1 ≤ t ≤ k) for at least one attribute. We
call such p as dominant s-set and q as dominated s-set be-
tween p and q.

An s-set p ∈ S is said to be a skyline s-set if p is not domi-
nated by any other s-set in S.

2.1 Convex Skyline
We can consider a record in S to be a point in k-dimensional
vector space. Convex hull for the set of |S| points is the
minimum polyhedron containing the set.

Consider the examples of Figure 1 and Figure 2 again. There
are 10 points in S if s = 3. Since there are two attributes in
the database, those 10 points are in two-dimensional space
as in Figure 2 (b). The dotted polygon in Figure 3 is the
convex hull of the 10 points.

In Figure 3, (12, 15) and (20, 8) are the point that has the
minimum value of attribute �Price� and �Distance�, respec-
tively. We call such points that have the minimum value of
an attribute as initial points. Notice that such points must
be in the convex hull. We call the line (hyperplane) between
the two initial points (k initial points) the initial facet.

Among all points in the convex hull, points that lie outside
of the initial facet are skyline objects and we call such points
convex skyline objects. In k-dimensional space, we compute
such initial hyperplane surrounded by k points as the initial
facet. Then, we compute convex skyline objects that lie in
the convex hull outside the initial facet.

The de�nition of convex skyline sets problem can be sim-
pli�ed as follows: Given a natural number s, �nd all s-sets
that lies in both the convex hull and the skyline of S.

3. ALGORITHM FOR COMPUTING CON-
VEX SKYLINE SETS

In this section, we assume that there is a single database
that is the union of all distributed databases and explain
how to compute the convex skyline sets from the union.

If we compute all of the s-sets from the original database and
make a database containing |S| records, the problem can be
solved by a conventional skyline query algorithm. However,

Table 1: Inner Product with Tangent Lines
o (Θ1,o) (Θ2,o) (Θ1,2,o)
h1 -3 -8 -85
h2 -5 -4 -67
h3 -4 -3 -52
h4 -9 -2 -79
h5 -7 -3 -73

|S| is unacceptably large when the original database size
is large. Therefore, we consider an algorithm for �nding
convex skyline sets without computing |S| s-sets.

3.1 Touching Oracle
Each s-set in S can be represented as a k-dimensional point
x = (x1, x2, ..., xk) where xi (1 ≤ i ≤ k) is the sum of the
i-th attribute's value of the s objects in DB.

Touching oracle function is a method to compute a point on
the convex hull without generating S. It computes the tan-
gent point of the convex hull of S and a (k− 1)-dimensional
hyperplane directly from DB.

In the hotel example, there are �ve records in the original
databases DB as in Figure 1 (a). Each of the �ve records
is represented as a two-dimensional point, which we call an
atomic point, which is denoted as o.

Assume there is a (k− 1)-dimensional hyperplane (which is
a line if k = 2), whose normal vector is Θ1 = (−1, 0) in the
two-dimensional space. In order to �nd the tangent point
with the 1-dimensional hyperplane (line) and the convex hull
without precomputing all points in S, we compute (Θ1,o),
i.e., inner products of the normal vector and each atomic
point as in the second column of Table 1. We choose the
top three inner products, i.e., {h1, h2, h3}. Those top three
inner products composes the tangent point (12, 15), which
is the 3-set, h123. Similarly, for a line with Θ2 = (0,−1), we
can �nd {h3, h4, h5} is the top three in the inner products
of (Θ2,o). It composes the tangent point (20, 8), which is
the tangent point of the convex hull and the 1-dimensional
hyperplane (line) whose normal vector is Θ2.

Like this way, we can compute a tangent point, which is a
point on the convex hull, by giving the normal vector of a
tangent line. In k-dimensional case, we can �nd a tangent
point with a tangent (k−1)-dimensional hyperplane by giv-
ing the normal vector of the tangent (k − 1)-dimensional
hyperplane.

The touching oracle function chooses top s inner products
from n atomic points in DB. Since s is negligible small
constant, we can compute the tangent point by scanning n
atomic points only once, which is O(n).

3.2 Convex Hull Search
Next, we discuss how to use the touching oracle function to
compute all convex skyline s-sets. First of all, we compute
initial k tangent points that can be computed by touching
oracle with initial k vectors Θx = (θ1, θ2, ..., θk) where θi =
−1 if i = x, otherwise θi = 0 for each x = 1, ..., k. Note that

those k initial tangent points are on the horizon of the initial
facet ((k − 1)-dimensional hyperplane). Convex skyline s-
sets are points lie outside of the initial facet and are in the
convex hull.

Next, we compute the normal vector of the initial facet. In
the example above, we have initial two tangent points: we
have p1 = (12, 15) with the normal vector Θ1 = (−1, 0) and
we have p2 = (20, 8) with the normal vector Θ2 = (0,−1).
Using the facet containing the two initial points, we can
compute the normal vector of the facet as Θ1,2 = (−(15 −
8), (12− 20)) = (−7,−8), which directs outside of the facet.
Using this normal vector, we can �nd new tangent point
h235, which is (16, 10). The new tangent point expands the
initial facet into two facets, which are the facet surrounded
by p1 = (12, 15) and (16, 10) and the facet surrounded by
(16, 10) and p2 = (20, 8).

We recursively compute tangent points for each of the ex-
panded facet. If we �nd new point outside the facet, we
expand the facet further. We continually adopt the recur-
sive operation while we can �nd new tangent point outside
the facet. Finally, we can �nd all convex skyline s-sets. We
can apply this recursive operation for higher k-dimensional
space [4]. In the k-dimensional case, new tangent point,
which is found by the touching oracle, divides the initial
facet into k facets. In high dimensional case, the normal
vector of each facet can be computed as follows:

Three Dimensional Case:
Assume we have a facet surrounded by following three points:

P1 = (p11, p12, p13)

P2 = (p21, p22, p23)

P3 = (p31, p32, p33)

We assume that P1, P2 and P3 are clockwise order when
we look the facet from outside of the convex hull. Now, we
can compute two edge vectors by using the three points as
follows. Suppose the edges are following vectors.

V 1 = (v11, v12, v13) = (p21, p22, p23)− (p11, p12, p13)

V 2 = (v21, v22, v23) = (p31, p32, p33)− (p11, p12, p13)

The outside normal vector of this facet is computed as the
expansion of the following symbolic determinant.

V 1⊗ V 2 =

˛̨
˛̨
˛̨

e1 e2 e3

v11 v12 v13

v21 v22 v23

˛̨
˛̨
˛̨

In the formula, e1, e2, and e3 are the elementary vectors
(1,0,0), (0,1,0) and (0,0,1) respectively. Using this normal
vector, we can divide this facet into three facets if we can
�nd a new tangent point outside of the facet by the touching
oracle function. If P is found outside of the facet, then the
three new facets are as follows:

(P1, P, P3)

(P1, P2, P)

(P, P2, P3)

The normal vectors of these three facets are

(P − P1)⊗ (P3− P1)

(P2− P1)⊗ (P − P1)

(P2− P)⊗ (P3− P)

if points in each facet are clockwise order when we look the
facet from outside of convex hull.

Four Dimensional Case:
We can use the idea into higher dimensional case analogi-
cally.

Assume that we have a facet surrounded by four points as
follows:

P1 = (p11, p12, p13, p14)

P2 = (p21, p22, p23, p24)

P3 = (p31, p32, p33, p34)

P4 = (p41, p42, p43, p44)

Using similar operations of 3D case, we can compute three
vectors as follows:

V 1 = (v11, v12, v13, v14) = P2− P1

V 2 = (v21, v22, v23, v24) = P3− P1

V 3 = (v31, v32, v33, v34) = P4− P1

Then, the normal vector that directs outside can be com-
puted as the expansion of the following determinant.

V 1⊗ V 2⊗ V 3 =

˛̨
˛̨
˛̨
˛̨

e1 e2 e3 e4

v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

˛̨
˛̨
˛̨
˛̨

In the determinant, the value of e1, e2, e3 and e4 are (1,0,0,0),
(0,1,0,0), (0,0,1,0), and (0,0,0,1), respectively. If P is found
outside of the facet, then the four new facets are as follows:

(P1, P2, P3, P)

(P1, P2, P, P4)

(P1, P, P3, P4)

(P, P2, P3, P4)

The normal vectors of these four facets are as follows:

(P2− P1)⊗ (P3− P1)⊗ (P − P1)

(P2− P1)⊗ (P − P1)⊗ (P4− P1)

(P − P1)⊗ (P3− P1)⊗ (P4− P1)

(P2− P)⊗ (P3− P)⊗ (P4− P)

k-Dimensional Case:
We can expand above operations for k-dimensional case. As-
sume we have a facet surrounded by following k points.

P1 = (p11, p12, ..., p1k)

P2 = (p21, p22, ..., p2k)

· · ·

Pk = (pk1, pk2, ..., pkk)

We can calculate (k− 1) vectors like V 1, V 2, · · · , V (k− 1).
Then, the normal vector of the facet that directs outside can
be computed as the expansion of the following determinant.

V 1⊗ · · · ⊗ V (k − 1) =

˛̨
˛̨
˛̨
˛̨

e1 · · · ek

v11 · · · v1k

· · · · · · · · ·
v(k − 1)1 · · · v(k − 1)k

˛̨
˛̨
˛̨
˛̨

If P is found outside of the facet, then the k new facets are
as follows:

(P, P2, · · · , Pk − 1, Pk)

(P1, P, · · · , Pk − 1, Pk)

· · ·

(P1, P2, · · · , Pk − 1, P)

The normal vectors of these k facets are as follows:
((P2− P)⊗ · · · ⊗ (Pk − 1− P)⊗ (Pk − P))

((P − P1)⊗ · · · ⊗ (Pk − 1− P1)⊗ (Pk − P1))

· · ·

((P2− P1)⊗ · · · ⊗ (Pk − 1− P1)⊗ (P − P1))

4. PRIVACY PRESERVING SKYLINE SETS
QUERY IN DISTRIBUTED DATABASES

In a cloud computing environment, databases are distributed
in the network. If we can use skyline queries across the dis-
tributed databases, we can include more information than
a single database and hence we have more chances to �nd
unknown knowledge. However, since we have to be aware
of privacy, each database owner does not want to disclose a
record in her/his database, even though she/he can under-
stand the importance of knowledge from skyline queries.

As we have mentioned above, skyline set queries do not dis-
close a record value of a database. In this section, we present
an agent-based method for computing skyline set queries
from distributed databases, in which any individual record
values are not disclosed to others.

4.1 Problem Formulation
We assume there are m databases, which share the same
schema, in a network. Let DB1, DB2, · · · , DBm be the
databases. Each database has a view table whose schema
has following columns: ID, a1, a2, · · · , ak, where ID is the

ID a1 a2

o1 6 3
o2 3 5

o3 7 5

o4 5 8

o5 4 6DB1 DB2 DB3
ID a1 a2

o6 7 8

o7 8 3

o8 4 9

o9 3 7

o10 8 5

ID a1 a2

o11 5 5

o12 2 6

o13 6 4

o14 9 7

o15 6 8

Figure 4: Distributed Database Example

Coordinator
DB1 DB2 DBmDB3Circular List

set size “s”normal vector “θ”skyline set of θ

Figure 5: Agent-Based Computation

primary key attribute and ai (i = 1, ..., k) are k-dimensional
numerical attributes. The problem is to compute skyline
sets from the union of those m databases without disclosing
individual record values to others.

Figure 4 is an example of a distributed database consists
of three local databases, DB1, DB2, and DB3. Each local
database contains �ve two-dimensional records.

In the example, 3-set that corresponds to normal vector
(−1, 0) is {o2,o9,o12}, whose coordinate values in the two-
dimensional space is (8, 18). Similarly, 3-set that corre-
sponds to normal vector (0,−1) is {o1,o7,o13} = (20, 10).

Given s, we have to compute all such convex skyline s-sets
from a distributed database.

4.2 Agent-Based Computation
We assume there is a coordinator who is responsible for per-
forming the convex hull search, which is mentioned in Sec-
tion 3.2. The coordinator creates agents and provides a nor-
mal vector to each agent. Each agent computes the touching
oracle function, which is mentioned in Section 3.1. In order
to carry out the touching oracle function, each agent travels
each of the local databases along a pre-de�ned circular list.
Figure 5 shows the overview of the agent-based computa-
tion.

Assume that we have to compute convex skyline 3-set query
from the distributed databases of Figure 4. The coordinator
generates two agents for the two initial normal vectors, i.e.,

ID a1 a2

o1 6 3
o2 3 5

o3 7 5

o4 5 8

o5 4 6DB1
IP a1 a2123 θ=(-1,0) (1) ask “normal vector” and “s” IP-6

-3

-7

-5

-4(2) computeinner product for θ=(-1,0)(3) push top “s”valuesθ=(-1,0)s=3IP a1 a21 -3 3 52 -4 4 63 -5 5 8IP a1 a21 -3 3 52 -4 4 63 -5 5 8θ=(-1,0)to next DB
Coordinatorgenerate agentand assign a normal vector

Figure 6: Agent with (−1, 0) at DB1

(−1, 0) and (0,−1).

Each agent has an normal vector and a priority queue, also
known as �heap data structure�, that keeps the top 3 inner
product values and their corresponding record values. One
of the initial two agents has (−1, 0). The other agent has
(0,−1). Each of the two agents starts traveling the circular
list to compute the touching oracle result of the assigned
normal vector.

Figure 6 shows the touching oracle computation of the agent
having (−1, 0) at DB1. When an agent arrives to a server of
a distributed database, the server (1) asks the normal vector
of the agent. Next, the server (2) computes inner product
for each record of the database. The server, then, (3) pushes
the top 3 inner product values to the agent. In the example
of Figure 6, (−3, 3, 5), (−4, 4, 6), and (−5, 5, 8) are pushed
to the priority queue of the agent. In this example, all the
pushed values are stored in the top-3 priority queue. After
these three procedures, the agent goes to the next server.

Note that the server cannot see the content of the priority
queue of the agent during these three procedures.

Figure 7 shows the touching oracle computation of the agent
at DB2. In this server, (−3, 3, 7), (−4, 4, 9), and (−7, 7, 8)
are pushed. In each of the push operations, the agent com-
pares the least one to new one and replaces the priority
queue (pop the least one and push the new one) if neces-
sary. After the push operations of this server, the agent
goes to the next server with the top 3 values so far.

Figure 8 shows the touching oracle computation of the agent
at DB3. After the necessary procedures of this server, the
agent returns to the coordinator. When an agent returns,
the coordinator asks the normal vector and the correspond-
ing skyline 3-set. In this example, the coordinator receives
Θ1 = (−1, 0) and p1 = (8, 18) from the agent.

Similarly, when the agent with (0,−1) returns from the

ID a1 a2

o6 7 8

o7 8 3

o8 4 9

o9 3 7

o10 8 5DB2
IP a1 a21 -3 3 52 -4 4 63 -5 5 8θ=(-1,0) (1) ask “normal vector” and “s” IP-7

-8

-4

-3

-8(2) computeinner product for θ=(-1,0)(3) push top “s”valuesθ=(-1,0) s=3IP a1 a21 -3 3 72 -4 4 93 -7 7 8IP a1 a21 -3 3 52 -3 3 73 -4 4 6θ=(-1,0)to next DB
Figure 7: Agent with (−1, 0) at DB2

ID a1 a2

o11 5 5

o12 2 6

o13 6 4

o14 9 7

o15 6 8DB3
IP a1 a21 -3 3 52 -3 3 73 -4 4 6θ=(-1,0) (1) ask “normal vector” and “s” IP-5

-2

-6

-9

-6(2) computeinner product for θ=(-1,0)(3) push top “s”valuesθ=(-1,0) s=3IP a1 a21 -2 2 62 -5 5 53 -6 6 4IP a1 a21 -2 2 62 -3 3 53 -3 3 7θ=(-1,0)to next DB
Coordinatorθ=(-1,0)p=(8,18)

Figure 8: Agent with (−1, 0) at DB3

Θ1=(-1,0)
Θ2=(0,-1)Θ1,2 =(-8,-12)p1=(8,18)

p2=(20,10)p1,2=(11,14)
ID a1 a2

o1 6 3
o2 3 5

o3 7 5

o4 5 8

o5 4 6DB1 DB2 DB3
ID a1 a2

o6 7 8

o7 8 3

o8 4 9

o9 3 7

o10 8 5

ID a1 a2

o11 5 5

o12 2 6

o13 6 4

o14 9 7

o15 6 8

IP-84
-84

-116

-136

-104

IP-152
-100

-140

-108

-124

IP-100
-88

-96

-156

-144

Coordinator
s=3, Θ(-8,-12)p=(11,14)

Figure 9: Agent-Based Convex Hull Search

travel, the coordinator receives Θ2 = (0,−1) and p2 =
(20, 11).

Note that the coordinator cannot see the content of the pri-
ority queue of each agent.

After receiving all surrounding points of a facet, the co-
ordinator computes the normal vector of the facet by us-
ing the surrounding points. In the example, p1 = (8, 18),
which is found by Θ1 = (−1, 0), and p2 = (20, 10), which is
found by Θ2 = (0,−1), are two surrounding points of the
initial facet (line segment between p1 and p2). The coor-
dinator computes the normal vector Θ1,2 = (−8,−12) =
(−(18 − 19), 8 − 20) from p1 = (8, 18) and p2 = (20, 10).
Then, the coordinator generates another agent that has the
normal vector Θ1,2 = (−8,−12).

The agent travels the distributed databases and comes back
with skyline 3-set, which is p1,2 = (11, 14), which is com-
posed of {o1, o2, o12} as in Figure 9. This point expands
the initial facet (line segment between p1 and p2) into two
facets, which are the line segment between p1 and p1,2 and
the line segment between p1,2 and p2. The coordinator recur-
sively computes a normal vector for each facet and generates
agents. The coordinator continues the convex hull search of
Section 3.2 by using agents.

5. IMPLEMENTATION AND EXPERIMENT
We implemented the proposed skyline set queries function
in a distributed database. We used Java Agent Develop-
ment Framework (JADE) running on eight Windows PCs
which are connected by an Ethernet switch. Each of the
PCs has an Intel(R) Core2 Duo, 2 GHz CPU, and 3 GB
main memory. All database servers including the coordina-
tor who participate the skyline set queries join in the same
agent platform. In this framework, each server creates a
container of the agent platform, in which there are agents.
Agents circulate the information, which we call �agent� in
Section 4 that has a normal vector and a priority queue,
along the circular list.

1000150020002500300035004000
2 4 6 8 10Time (ms) Set Sizea) Correlated

2D 3D4D 5D

1000150020002500300035004000
2 4 6 8 10Time (ms) Set Sizeb) Anti-Correlated

2D 3D4D 5D

1000150020002500300035004000
2 4 6 8 10Time (ms) Set Sizec) Independent

2D 3D4D 5D
Figure 10: Time Varying Set Size

We conduct a series of experiments to evaluate the perfor-
mance of the implemented method using di�erent types of
datasets. As benchmark databases, we use the databases
proposed by Borzsonyi et al [1], in which there are three
types of synthetic data distributions: �correlated�, �anti-
correlated�, and �independent�.

We �rst evaluate the response time. Figure 10 shows the re-
sults of 2D, 3D, 4D and 5D cases for datasets with 500k data
distributed to eight servers so that each server contains at
least 50k data. We observe that proposed method becomes
slower if "s" increases. If �s� increases, the number of sets
in convex skyline also increases, which seems to be the main
cause of the result.

Next, we evaluate the e�ect of dataset size. We used datasets
with cardinality 100k, 200k, 300k, 400k and 500k. The num-
ber of servers is eight. In case of 100k, each of the eight
server contains at least 10k data. Similarly, for datasets
200k, 300k, 400k and 500k each server has at least 20k, 30k,
40k and 50k data respectively. In this experiment, we keep

05001000150020002500300035004000
100k 200k 300k 400k 500kTime (ms) Data Sizea) Correlated

2D 3D4D 5D

05001000150020002500300035004000
100k 200k 300k 400k 500kTime (ms) Data Sizeb) Anti-correlated

2D 3D4D 5D

05001000150020002500300035004000
100k 200k 300k 400k 500kTime (ms) Data Sizec) Independent

2D 3D4D 5D
Figure 11: Time Varying Data Size

"s" to 10. Figure 11 shows the results. We observe that
the response time increases if the dataset size increases. We
also observe that it gradually increases if the dimension in-
creases.

Next, we examine the e�ect of the number of servers. In each
experiment, we distribute 500k data to m = 2, ..., 8 servers.
In this experiment, we set s = 4 and examine 2D, 3D, 4D
and 5D cases. Figure 12 shows the result. We �nd that
if the number of servers increases, the computation time
also increases. In the current implementation, we did not
consider pipeline execution of the proposed method. It is
clear that we can easily parallelize the method by pipeline
execution, which is our most signi�cant future work.

6. CONCLUSION
In privacy aware environments, we have to hide individual
values and are only allowed to disclose aggregated values of
objects. In such situations, skyline query for sets of objects
can be a promising alternative in decision-making.

50010001500200025003000
2 3 4 5 6 7 8

Time (ms) Number of Servera) Correlated
2D 3D4D 5D

50010001500200025003000
2 3 4 5 6 7 8Time (ms) Number of Serverb) Anti-correlated

2D 3D4D 5D

50010001500200025003000
2 3 4 5 6 7 8Time (ms) Number of Serverc) Independent

2D 3D4D 5D
Figure 12: Time Varying The Number of Servers

Moreover, crucial information for decision-making are dis-
tributed in di�erent databases in cloud computing environ-
ment. Most of the cloud service providers do not want to
disclose individual record in their database. Therefore, we
present an agent-based skyline set query for a distributed
database in this paper. We can compute skyline set query
from a distributed database without disclosing individual
record to others and can solve the privacy problems of sky-
line queries in the cloud computing environment.

As we mentioned in the previous section, the proposed method
can be parallelized. One of our future direction is to make
the proposed method e�cient by pipeline executions. An-
other problem that have to be considered is security en-
hancement. Currently, we assumed that all participants are
honest and do not deceive agents to tap others' informa-
tion. For example, one server pushes (0, 0, 0), (0, 0, 0), and
(−100, 100, 100) for the agent with Θ = (−1, 0) in the exam-
ple of Figure 6, 7, and 8, intentionally. The server will �nd
the skyline set for Θ = (−1, 0) is p = (2, 6) and can predict
there is a record (2, 6) in another server. We have to consider
a protection method against such statistical compromise.

7. ACKNOWLEDGMENTS
This work was partially supported by KAKENHI (19500123).
Md. Anisuzzaman Siddique and Md. Shamsul Are�n were
supported by the scholarship of MEXT Japan.

8. REFERENCES
[1] S. Borzsonyi, D. Kossmann, and K. Stocker. The

skyline operator. In Proc. of the IEEE ICDE
Conference, pages 421�430, 2001.

[2] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: An online algorithm for skyline queries. In
Proc. of VLDB Conference, pages 275�286, 2002.

[3] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. Dada: A
data cube for dominant relationship analysis. In Proc.
of ACM SIGMOD Conference, pages 659�670, 2006.

[4] Y. Morimoto, T. Fukuda, H. Matsuzawa, K. Yoda, and
T. Tokuyama. Algorithms for mining association rules
for binary segmentations of huge categorical databases.
In Proc. of VLDB Conference, pages 380�391, 1998.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal
and progressive algorithm for skyline queries. In Proc.
of ACM SIGMOD Conference, pages 467�478, 2003.

[6] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best
views of skyline: A semantic approach based on
decisive subspaces. In Proc. of VLDB Conference,
pages 253�264, 2005.

[7] M. A. Siddique and Y. Morimoto. Algorithm for
computing convex skyline objectsets on numerical
databases. IEICE Trans. on Information and Systems,
(10):2709�2716, 2010.

[8] K. L. Tan, P. K. Eng, and B. C. Ooi. E�cient
progressive skyline computation. In Proc. of VLDB
Conference, pages 301�310, 2001.

